Oracle Rdb™ SQL Reference Manual Volume 4

Total Page:16

File Type:pdf, Size:1020Kb

Oracle Rdb™ SQL Reference Manual Volume 4 Oracle Rdb™ SQL Reference Manual Volume 4 Release 7.3.2.0 for HP OpenVMS Industry Standard 64 for Integrity Servers and OpenVMS Alpha operating systems August 2016 ® SQL Reference Manual, Volume 4 Release 7.3.2.0 for HP OpenVMS Industry Standard 64 for Integrity Servers and OpenVMS Alpha operating systems Copyright © 1987, 2016 Oracle Corporation. All rights reserved. Primary Author: Rdb Engineering and Documentation group This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065. This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications. Oracle, Java, Oracle Rdb, Hot Standby, LogMiner for Rdb, Oracle SQL/Services, Oracle CODASYL DBMS, Oracle RMU, Oracle CDD/Repository, Oracle Trace, and Rdb7 are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services. Contents Send Us Your Comments ........................................... xi Preface ........................................................... xiii 8 SQL Statements HELP Statement . ......................................... 8–2 IF Control Statement ........................................ 8–4 IMPORT Statement ......................................... 8–7 INCLUDE Statement ........................................ 8–31 INSERT Statement ......................................... 8–39 INSERT from FILENAME Statement . ......................... 8–55 INTEGRATE Statement ...................................... 8–58 ITERATE Control Statement . ................................. 8–75 LEAVE Control Statement . ................................. 8–77 LOCK TABLE Statement ..................................... 8–80 LOOP Control Statement ..................................... 8–84 OPEN Statement . ......................................... 8–87 Operating System Invocation ( $ ) Statement ...................... 8–92 PREPARE Statement ........................................ 8–94 PRINT Statement . ......................................... 8–105 QUIT Statement . ......................................... 8–107 RELEASE Statement ........................................ 8–108 RELEASE SAVEPOINT Statement ............................. 8–112 RENAME Statement ........................................ 8–115 REPEAT Control Statement . ................................. 8–124 REPLACE Statement ........................................ 8–127 RETURN Control Statement . ................................. 8–141 REVOKE Statements ........................................ 8–143 iii REVOKE Statement . ...................................... 8–144 REVOKE Statement: ANSI/ISO-Style ........................... 8–155 REVOKE Statement: Roles ................................... 8–164 ROLLBACK Statement ...................................... 8–166 ROLLBACK TO SAVEPOINT Statement . ...................... 8–171 SAVEPOINT Statement ...................................... 8–174 SELECT Statement: General Form ............................. 8–177 SELECT Statement: Singleton Select ........................... 8–192 SET Statement ............................................ 8–196 SET ALIAS Statement . ...................................... 8–218 SET QUERY Statement ...................................... 8–221 SET CONSTRAINTS Statement . .............................. 8–226 SET ANSI Statement . ...................................... 8–229 SET AUTOMATIC TRANSLATION Statement .................... 8–232 SET CATALOG Statement .................................... 8–235 SET CHARACTER LENGTH Statement . ...................... 8–240 SET COMPOUND TRANSACTIONS Statement ................... 8–244 SET CONNECT Statement ................................... 8–246 SET Control Statement ...................................... 8–250 SET DEFAULT CHARACTER SET Statement .................... 8–252 SET DEFAULT CONSTRAINT MODE Statement .................. 8–254 SET DEFAULT DATE FORMAT Statement . ...................... 8–257 SET DIALECT Statement .................................... 8–260 SET DISPLAY Statement .................................... 8–275 SET DISPLAY CHARACTER SET Statement ..................... 8–282 SET FLAGS Statement ...................................... 8–285 SET HOLD CURSORS Statement .............................. 8–320 SET IDENTIFIER CHARACTER SET Statement .................. 8–323 SET KEYWORD RULES Statement ............................ 8–325 SET LITERAL CHARACTER SET Statement ..................... 8–328 SET NAMES Statement ...................................... 8–330 SET NATIONAL CHARACTER SET Statement ................... 8–333 SET OPTIMIZATION LEVEL Statement . ...................... 8–335 SET QUIET COMMIT Statement .............................. 8–340 SET QUOTING RULES Statement ............................. 8–342 SET SCHEMA Statement .................................... 8–346 SET SESSION AUTHORIZATION Statement ..................... 8–350 iv SET SQLDA Statement ...................................... 8–352 SET TRANSACTION Statement ............................... 8–359 SET VIEW UPDATE RULES Statement ......................... 8–387 SHOW Statement . ......................................... 8–391 SIGNAL Control Statement . ................................. 8–434 Simple Statement . ......................................... 8–439 START TRANSACTION Statement ............................. 8–441 TRACE Control Statement . ................................. 8–446 TRUNCATE TABLE Statement ................................ 8–452 UNDECLARE Variable Statement .............................. 8–456 UPDATE Statement ......................................... 8–457 WHENEVER Statement ..................................... 8–465 WHILE Control Statement . ................................. 8–468 Index Examples 8–1 Updating the Database File Using Repository Definitions . ........ 8–62 8–2 Modifying Repository Definitions Using the INTEGRATE Statement with the ALTER DICTIONARY Clause ....................... 8–66 8–3 Storing Existing Database File Definitions in the Repository ...... 8–70 8–4 Modifying Repository Field Using the INTEGRATE DOMAIN Statement with the ALTER DICTIONARY Clause .............. 8–73 Tables 8–1 SQL Statements That Can Be Dynamically Executed ............ 8–99 8–2 Comparison between RENAME and ALTER Statements . ........ 8–118 8–3 Supported SQL*Plus SET statements ........................ 8–205 8–4 Logical Names for Internationalization of SET Statements ........ 8–207 8–5 Dialect Settings ......................................... 8–261 8–6 Debug Flag Keywords . ................................. 8–286 8–7 SQL Share Modes ....................................... 8–363 8–8 Comparison of Row Locking for Updates ...................... 8–364 8–9 Phenomena Permitted at Each Isolation Level . ................ 8–365 8–10 Effects of Lock Specifications on Multiuser Access ............... 8–369 v 8–11 Defaults for the SET and DECLARE TRANSACTION Statements ............................................. 8–371 8–12 Phenomena Permitted at Each Isolation Level ................
Recommended publications
  • Powerdesigner 16.6 Data Modeling
    SAP® PowerDesigner® Document Version: 16.6 – 2016-02-22 Data Modeling Content 1 Building Data Models ...........................................................8 1.1 Getting Started with Data Modeling...................................................8 Conceptual Data Models........................................................8 Logical Data Models...........................................................9 Physical Data Models..........................................................9 Creating a Data Model.........................................................10 Customizing your Modeling Environment........................................... 15 1.2 Conceptual and Logical Diagrams...................................................26 Supported CDM/LDM Notations.................................................27 Conceptual Diagrams.........................................................31 Logical Diagrams............................................................43 Data Items (CDM)............................................................47 Entities (CDM/LDM)..........................................................49 Attributes (CDM/LDM)........................................................55 Identifiers (CDM/LDM)........................................................58 Relationships (CDM/LDM)..................................................... 59 Associations and Association Links (CDM)..........................................70 Inheritances (CDM/LDM)......................................................77 1.3 Physical Diagrams..............................................................82
    [Show full text]
  • Embedded Database Logic
    Embedded Database Logic Lecture #15 Database Systems Andy Pavlo 15-445/15-645 Computer Science Fall 2018 AP Carnegie Mellon Univ. 2 ADMINISTRIVIA Project #3 is due Monday October 19th Project #4 is due Monday December 10th Homework #4 is due Monday November 12th CMU 15-445/645 (Fall 2018) 3 UPCOMING DATABASE EVENTS BlazingDB Tech Talk → Thursday October 25th @ 12pm → CIC - 4th floor (ISTC Panther Hollow Room) Brytlyt Tech Talk → Thursday November 1st @ 12pm → CIC - 4th floor (ISTC Panther Hollow Room) CMU 15-445/645 (Fall 2018) 4 OBSERVATION Until now, we have assumed that all of the logic for an application is located in the application itself. The application has a "conversation" with the DBMS to store/retrieve data. → Protocols: JDBC, ODBC CMU 15-445/645 (Fall 2018) 5 CONVERSATIONAL DATABASE API Application Parser Planner Optimizer BEGIN Query Execution SQL Program Logic SQL Program Logic ⋮ COMMIT CMU 15-445/645 (Fall 2018) 5 CONVERSATIONAL DATABASE API Application Parser Planner Optimizer BEGIN Query Execution SQL Program Logic SQL Program Logic ⋮ COMMIT CMU 15-445/645 (Fall 2018) 5 CONVERSATIONAL DATABASE API Application Parser Planner Optimizer BEGIN Query Execution SQL Program Logic SQL Program Logic ⋮ COMMIT CMU 15-445/645 (Fall 2018) 5 CONVERSATIONAL DATABASE API Application Parser Planner Optimizer BEGIN Query Execution SQL Program Logic SQL Program Logic ⋮ COMMIT CMU 15-445/645 (Fall 2018) 5 CONVERSATIONAL DATABASE API Application Parser Planner Optimizer BEGIN Query Execution SQL Program Logic SQL Program Logic ⋮ COMMIT CMU 15-445/645 (Fall 2018) 6 EMBEDDED DATABASE LOGIC Move application logic into the DBMS to avoid multiple network round-trips.
    [Show full text]
  • OLAP, Relational, and Multidimensional Database Systems
    OLAP, Relational, and Multidimensional Database Systems George Colliat Arbor Software Corporation 1325 Chcseapeakc Terrace, Sunnyvale, CA 94089 Introduction Many people ask about the difference between implementing On-Line Analytical Processing (OLAP) with a Relational Database Management System (ROLAP) versus a Mutidimensional Database (MDD). In this paper, we will show that an MDD provides significant advantages over a ROLAP such as several orders of magnitude faster data retrieval, several orders of magnitude faster calculation, much less disk space, and le,~ programming effort. Characteristics of On-Line Analytical Processing OLAP software enables analysts, managers, and executives to gain insight into an enterprise performance through fast interactive access to a wide variety of views of data organized to reflect the multidimensional aspect of the enterprise data. An OLAP service must meet the following fundamental requirements: • The base level of data is summary data (e.g., total sales of a product in a region in a given period) • Historical, current, and projected data • Aggregation of data and the ability to navigate interactively to various level of aggregation (drill down) • Derived data which is computed from input data (performance rados, variance Actual/Budget,...) • Multidimensional views of the data (sales per product, per region, per channel, per period,..) • Ad hoc fast interactive analysis (response in seconds) • Medium to large data sets ( 1 to 500 Gigabytes) • Frequently changing business model (Weekly) As an iUustration we will use the six dimension business model of a hypothetical beverage company. Each dimension is composed of a hierarchy of members: for instance the time dimension has months (January, February,..) as the leaf members of the hierarchy, Quarters (Quarter 1, Quarter 2,..) as the next level members, and Year as the top member of the hierarchy.
    [Show full text]
  • On Active Deductive Databases
    On Active Deductive Databases The Statelog Approach Georg Lausen Bertram Ludascher Wolfgang May Institut fur Informatik Universitat Freiburg Germany flausenludaeschmayginfo rmat ikun ifr eibur gde Abstract After briey reviewing the basic notions and terminology of active rules and relating them to pro duction rules and deductive rules resp ectively we survey a number of formal approaches to active rules Subsequentlywe present our own stateoriented logical approach to ac tive rules which combines the declarative semantics of deductive rules with the p ossibility to dene up dates in the style of pro duction rules and active rules The resulting language Statelog is surprisingly simple yet captures many features of active rules including comp osite eventde tection and dierent coupling mo des Thus it can b e used for the formal analysis of rule prop erties like termination and expressivepo wer Finally weshowhow nested transactions can b e mo deled in Statelog b oth from the op erational and the mo deltheoretic p ersp ective Intro duction Motivated by the need for increased expressiveness and the advent of new appli cations rules have b ecome very p opular as a paradigm in database programming since the late eighties Min Today there is a plethora of quite dierent appli cation areas and semantics for rules From a birdseye view deductive and active rules may b e regarded as two ends of a sp ectrum of database rule languages Deductive Rules Production Rules Active Rules higher level lower level stratied well RDL pro ARDL Ariel Starburst Postgres
    [Show full text]
  • Multidimensional Network Analysis
    Universita` degli Studi di Pisa Dipartimento di Informatica Dottorato di Ricerca in Informatica Ph.D. Thesis Multidimensional Network Analysis Michele Coscia Supervisor Supervisor Fosca Giannotti Dino Pedreschi May 9, 2012 Abstract This thesis is focused on the study of multidimensional networks. A multidimensional network is a network in which among the nodes there may be multiple different qualitative and quantitative relations. Traditionally, complex network analysis has focused on networks with only one kind of relation. Even with this constraint, monodimensional networks posed many analytic challenges, being representations of ubiquitous complex systems in nature. However, it is a matter of common experience that the constraint of considering only one single relation at a time limits the set of real world phenomena that can be represented with complex networks. When multiple different relations act at the same time, traditional complex network analysis cannot provide suitable an- alytic tools. To provide the suitable tools for this scenario is exactly the aim of this thesis: the creation and study of a Multidimensional Network Analysis, to extend the toolbox of complex network analysis and grasp the complexity of real world phenomena. The urgency and need for a multidimensional network analysis is here presented, along with an empirical proof of the ubiquity of this multifaceted reality in different complex networks, and some related works that in the last two years were proposed in this novel setting, yet to be systematically defined. Then, we tackle the foundations of the multidimensional setting at different levels, both by looking at the basic exten- sions of the known model and by developing novel algorithms and frameworks for well-understood and useful problems, such as community discovery (our main case study), temporal analysis, link prediction and more.
    [Show full text]
  • Curriculum Vitae Michael Kay Phd FBCS
    Curriculum Vitae Michael Kay PhD FBCS Michael Kay is widely known in the XML world as an expert on the XML processing languages XSLT and XQuery. This reputation derives from his book XSLT Programmer's Reference, from the open-source Saxon XSLT and XQuery processor which he developed, and from his work within the W3C consortium as a member of the XSLT and XQuery working groups, and as editor of several of the specifications. His expertise in the field was recognized in 2005 when he was awarded the XML Cup, an annual international award made to individuals who have made outstanding contributions to the XML Community. Before moving into the XML field in 1998, Michael Kay specialized in database and information management technology. He designed a series of successful software products for the computer manufacturer ICL, and was one of the company's most senior engineers advising the company and it customers on technology strategy. Michael Kay is a member of the XML Guild, a loose federation of leading independent XML consultants who pool knowledge and experience to tackle the most challenging XML-related problems. Personal Details Name Michael Howard Kay Address 52 Matlock Road, Caversham Heights, Reading, Berks, UK. RG4 7BS Phone +44 118 948 3589 Email [email protected] Date of Birth 1951-10-11 Nationality British (born in Germany) Languages English, German, some French Career Summary Feb 2004 - present Director, Saxonica Limited Development and Marketing of commercial Saxon-SA product Ongoing development of open source Saxon-B product Independent
    [Show full text]
  • Introduction to Graph Database with Cypher & Neo4j
    Introduction to Graph Database with Cypher & Neo4j Zeyuan Hu April. 19th 2021 Austin, TX History • Lots of logical data models have been proposed in the history of DBMS • Hierarchical (IMS), Network (CODASYL), Relational, etc • What Goes Around Comes Around • Graph database uses data models that are “spiritual successors” of Network data model that is popular in 1970’s. • CODASYL = Committee on Data Systems Languages Supplier (sno, sname, scity) Supply (qty, price) Part (pno, pname, psize, pcolor) supplies supplied_by Edge-labelled Graph • We assign labels to edges that indicate the different types of relationships between nodes • Nodes = {Steve Carell, The Office, B.J. Novak} • Edges = {(Steve Carell, acts_in, The Office), (B.J. Novak, produces, The Office), (B.J. Novak, acts_in, The Office)} • Basis of Resource Description Framework (RDF) aka. “Triplestore” The Property Graph Model • Extends Edge-labelled Graph with labels • Both edges and nodes can be labelled with a set of property-value pairs attributes directly to each edge or node. • The Office crew graph • Node �" has node label Person with attributes: <name, Steve Carell>, <gender, male> • Edge �" has edge label acts_in with attributes: <role, Michael G. Scott>, <ref, WiKipedia> Property Graph v.s. Edge-labelled Graph • Having node labels as part of the model can offer a more direct abstraction that is easier for users to query and understand • Steve Carell and B.J. Novak can be labelled as Person • Suitable for scenarios where various new types of meta-information may regularly
    [Show full text]
  • SQL from Wikipedia, the Free Encyclopedia Jump To: Navigation
    SQL From Wikipedia, the free encyclopedia Jump to: navigation, search This article is about the database language. For the airport with IATA code SQL, see San Carlos Airport. SQL Paradigm Multi-paradigm Appeared in 1974 Designed by Donald D. Chamberlin Raymond F. Boyce Developer IBM Stable release SQL:2008 (2008) Typing discipline Static, strong Major implementations Many Dialects SQL-86, SQL-89, SQL-92, SQL:1999, SQL:2003, SQL:2008 Influenced by Datalog Influenced Agena, CQL, LINQ, Windows PowerShell OS Cross-platform SQL (officially pronounced /ˌɛskjuːˈɛl/ like "S-Q-L" but is often pronounced / ˈsiːkwəl/ like "Sequel"),[1] often referred to as Structured Query Language,[2] [3] is a database computer language designed for managing data in relational database management systems (RDBMS), and originally based upon relational algebra. Its scope includes data insert, query, update and delete, schema creation and modification, and data access control. SQL was one of the first languages for Edgar F. Codd's relational model in his influential 1970 paper, "A Relational Model of Data for Large Shared Data Banks"[4] and became the most widely used language for relational databases.[2][5] Contents [hide] * 1 History * 2 Language elements o 2.1 Queries + 2.1.1 Null and three-valued logic (3VL) o 2.2 Data manipulation o 2.3 Transaction controls o 2.4 Data definition o 2.5 Data types + 2.5.1 Character strings + 2.5.2 Bit strings + 2.5.3 Numbers + 2.5.4 Date and time o 2.6 Data control o 2.7 Procedural extensions * 3 Criticisms of SQL o 3.1 Cross-vendor portability * 4 Standardization o 4.1 Standard structure * 5 Alternatives to SQL * 6 See also * 7 References * 8 External links [edit] History SQL was developed at IBM by Donald D.
    [Show full text]
  • CODASYL Database Management Systems, IBM Systems J
    CODASYL Data-Base Management Systems ROBERT W. TAYLOR IBM Research Laboratory, San Jose, California 9519S ond RANDALLL. FRANK Computer Science Department, University of Utah, Salt Lake City, Utah 8~I12 This paper presents in tutorial fashion the concepts, notation, aud data-base languages that were defined by the CODASYL Data Description Language and Programming Language Committees. Data structure diagram notation is ex- plained, and sample data-base definitionis developed along with several sample programs. " Advanced features of the languages are discussed, together with examples of their use. An extensive bibliography is included. Keywords and Phrases: data base, data-b~e management, data-base definition,data description language, data independence, data structure diagram, data model, DBTG Report, data-base machines, information structure design CR Categories: 3.51, 4.33, 4.34 NTRODUCTION Data Base Language Task Group of the CODASYL Programming Language Com- The data base management system (DBMS) mittee. In fact, this article uses the syntax specifications, as published in the 1971 of the more recent reports [$2, $3, $4]. Report of the CODASYL Data Base Task However, because the fundamental system Group (DBTG) [S1], are a landmark in the architecture remains essentially the same development of data base technology. These as that specified in the 1971 Report, we specifications have been the subject of much still use the abbreviation DBTG; though debate, both pro and con, and have served not strictly accurate, "DBTG" does reflect as the basis for several commercially avail- popular usage. able systems, as Fry and Sibley noted in This article explains the specifications; it their paper in this issue of COMPUTING will not attempt to debate the merits and/or SURVErS, page 7.
    [Show full text]
  • Sql Server Truncate All Tables in Database Logging
    Sql Server Truncate All Tables In Database Curbless Lorenzo naphthalised dissimilarly, he divinised his scavengers very wham. Embryologic and systematized Allan never engages his avarices! Sometimes belted Willi stenciled her Layla murderously, but direst Lucien hearkens retroactively or rebuilds voetstoots. Sp_refreshview in sql server truncate all the records in the db truncate all triggers from one way to remove all of a delete clause. Challenges so how to sql server truncate all database platform supports information_schema is this worked for. Identities of their database server truncate all tables at once we get involved, a business process modeler bpm tool micro. Affect my tables, all tables in my blogs is going to find still getting an aos server table or build my own and sql. Referred in sql truncate all database backup, but we can an account. Control and sql truncate tables database in a database and allocated space than the truncate the sql truncate a little late but you can use a number of the server? Exactly what query and server truncate all tables in database by a script? Tell sql databases with sql server truncate tables in three simple use a database engineer certified by a specific comment. Freelancing work or a sql truncate all tables database with lots of the tables referenced by anybody that? Work or window and sql server truncate all in database backup, you are used to install we can perform truncate all the tables instead of a test. Client has to sql server truncate database and the command because it might be reset it requires to complete overview of columns in microsoft analysis services.
    [Show full text]
  • SQL Commands
    Computer Science (083) _ 7th Week Assignment with Notes Chapter Name: - MySQL Revision tour Class: -12th SQL Commands o SQL commands are instructions. It is used to communicate with the database. It is also used to perform specific tasks, functions, and queries of data. o SQL can perform various tasks like create a table, add data to tables, drop the table, modify the table, set permission for users. 1. Data Definition Language (DDL) o DDL changes the structure of the table like creating a table, deleting a table, altering a table, etc. o All the command of DDL are auto-committed that means it permanently save all the changes in the database. Here are some commands that come under DDL: o CREATE o ALTER o DROP o TRUNCATE CREATE :- It is used to create a new table in the database. Syntax: CREATE TABLE TABLE_NAME (COLUMN_NAME DATATYPES[,....]); Example: CREATE TABLE EMPLOYEE(Name VARCHAR2(20), Email VARCHAR2(100), DOB DAT E); DROP: It is used to delete both the structure and record stored in the table. Syntax:- DROP TABLE ; Example:- DROP TABLE EMPLOYEE; ALTER: It is used to alter the structure of the database. This change could be either to modify the characteristics of an existing attribute or probably to add a new attribute. Syntax: To add a new column in the table ALTER TABLE table_name ADD column_name COLUMN-definition; To modify existing column in the table: ALTER TABLE MODIFY(COLUMN DEFINITION....); EXAMPLE ALTER TABLE STU_DETAILS ADD(ADDRESS VARCHAR2(20)); ALTER TABLE STU_DETAILS MODIFY (NAME VARCHAR2(20)); TRUNCATE: It is used to delete all the rows from the table and free the space containing the table.
    [Show full text]
  • Open Data, Big Data and Smart Cities
    Open Data, Big Data and Smart Cities Rosario Uceda-Sosa [email protected] Cognitive Computing Department IBM T.J. Watson Research Labs 1 The questions 1. Storing data. How varied is web data, really? 2. Information ecosystems. How are people likely to use data? What ecosystems (app developers, domain experts, publishers) will be built to leverage this data? 3. Usable, scalable semantics. What’s the role of semantic technologies in these ecosystems? The answers will vary by domain. We’ll use Smart Cities as our main threads, but we’ll also refer 2 1. Storing data. A historic shift in data paradigms 2000’s, (Open) LINKED DATA is about using the Web to connect related data that wasn't previously linked, or using the Web to lower the barriers to linking data currently linked using other methods. More specifically, Wikipedia defines Linked Data as "a term used to describe a recommended best practice for exposing, sharing, and connecting pieces of data, information, and knowledge on the Semantic Web using URIs and RDF." (From linkeddata.org) Abstraction: Network Data (any format) connected through (inferred) navigational relations 1972, RDBMS. Instead of records being stored in some sort of linked list of free-form records as in Codasyl, Codd's idea was to use a "table" of fixed-length records, with each table used for a different type of entity. A linked-list system would be very inefficient when storing "sparse" databases where some of the data for any one record could be left empty. The relational model solved this by splitting the data into a series of normalized tables (or relations), with optional elements being moved out of the main table to where they would take up room only if needed.
    [Show full text]