The Trigeminocardiac Reflex – a Comparison with the Diving Reflex in Humans

Total Page:16

File Type:pdf, Size:1020Kb

The Trigeminocardiac Reflex – a Comparison with the Diving Reflex in Humans State of the art paper The trigeminocardiac reflex – a comparison with the diving reflex in humans Frederic Lemaitre1, Tumul Chowdhury2, Bernhard Schaller3 1Faculty of Sports Sciences, University of Rouen, Mont-Saint-Aignan, France Corresponding author: 2Department of Anesthesia and Perioperative Medicine, University of Manitoba, Dr Tumul Chowdhury MD, DM Winnipeg, Canada Department of Anesthesia 3Department of Neurosurgery, University Hospital Paris, Paris, France and Perioperative Medicine 2nd Floor, Herry Medovy House Submitted: 19 March 2013 671-William’s Ave Accepted: 30 June 2013 Health Sciences Center University of Manitoba Arch Med Sci 2015; 11, 2: 419–426 Winnipeg, Canada R3E 0Z2 DOI: 10.5114/aoms.2015.50974 Phone: (204) 298 5912 Copyright © 2015 Termedia & Banach Fax: (204) 787 4291 E-mail: [email protected] Abstract The trigeminocardiac reflex (TCR) has previously been described in the literature as a reflexive response of bradycardia, hypotension, and gas- tric hypermotility seen upon mechanical stimulation in the distribution of the trigeminal nerve. The diving reflex (DR) in humans is characterized by breath-holding, slowing of the heart rate, reduction of limb blood flow and a gradual rise in the mean arterial blood pressure. Although the two reflexes share many similarities, their relationship and especially their functional purpose in humans have yet to be fully elucidated. In the present review, we have tried to integrate and elaborate these two phenomena into a unified physiological concept. Assuming that the TCR and the DR are closely linked functionally and phylogenetically, we have also highlighted the significance of these reflexes in humans. Key words: reflexes, oxygen-conserving effects, breath-hold, brain, trigeminocardiac reflex, diving reflex. Introduction The trigeminal cardiac reflex (TCR) and diving reflex (DR) are neuro- genic reflexes that share many similarities in their clinical presentations and mechanisms of action; however, their relationship and especial- ly their functional purpose in humans have yet to be fully elucidated [1–10]. In the present review, we have tried to integrate and elaborate these two phenomena into a unified physiological concept. We have also highlighted the significance and current role of these reflexes in humans. Definitions The trigeminocardiac reflex The TCR is a well-established neurogenic reflex which manifests as bradycardia, hypotension, and gastric hypermotility seen upon mechan- ical stimulation in the distribution of the trigeminal nerve [1–3]. Initial reports were based on animal experiments; however, TCR in neurosurgi- cal patients was first elaborated by Schaller et al. in 1999 [3–6]. In their key work, Schaller et al. meticulously defined TCR, and their observa- tions are still used and commonly appreciated by researchers worldwide Frederic Lemaitre, Tumul Chowdhury, Bernhard Schaller [1–3, 5–7]. The incidence of the TCR in neurosur- elaborate the similarities as well as dissimilarities gical procedures involving or near the trigeminal between these two unique reflexes and therefore nerve vicinity was reported to be about 10–18% possibly integrate these into one common mecha- [7, 8]. These studies have usually taken a 20% nism. We assume that partially, if not substantial- decrease in hemodynamic changes as the cut-off ly, the TCR and the DR are closely linked function- limit to define TCR; therefore the true incidence ally as well as phylogenetically and represent old may be even higher. Moreover, the intensity of TCR reflexes that are physiological in humans in the is also a factor of the intensity of stimuli like the first few months of life. DR, which increases proportionally to decreasing water temperature [1–8]. At the molecular level, General similarities TCR is believed to be a physiological oxygen con- There are obvious strong links between the serving reflex which when incited initiates a pow- TCR and the DR that are generally accepted. Both erful sympathetic system response (within a few reflexes are based on the integrity of the trigem- seconds) and thus increases the cerebral blood inal-brain stem reflex arc [2, 3]. In both, brady- flow (CBF). This regional elevation of CBF without cardia is a common manifestation and is induced accompanying changes in the cerebral metabolic via reflex centers located in the medulla oblon- rate of oxygen or glucose rapidly provides oxygen gata [1, 28]. Efferent parasympathetic pathways to the brain in a more efficient manner. External mediate bradycardia and similarly efferent sym- stimuli and individual factors have a variable influ- pathetic pathways mediate peripheral vasocon- ence on inciting the TCR in humans [8]. striction. The diving reflex General differences The diving reflex in humans is characterized The TCR occurs due to either peripheral or cen- by breath-holding, slowing of the heart rate, a de- tral stimulation [3]. Stimulation of the trigeminal crease in cardiac output with sympathetic mediat- nerve anywhere along the face including the nose, ed peripheral vasoconstriction, an increase in mean orbit, eyeball and scalp (the area supplied by the arterial blood pressure (MABP) and splenic contrac- trigeminal nerve) up to the gasserian ganglion tion [9–16]. Blood is re-directed to more vital or- (entry into the intracranial compartment) is con- gans (heart, brain and lung) while at the peripheral sidered as a peripheral TCR. The DR can be consid- level poor irrigation of tissues manifests as lactate ered as a peripheral TCR. The gasserian ganglion accumulation. A simultaneous splenic contraction to the brainstem constitutes the rest of the tri- is also observed which indeed increases the stat- geminal nerve course, and stimulation along this ic apnea duration and helps in further resurgence part is considered as the central TCR. Peripheral of red blood cells in the blood circulation [17, 18]. TCR stimulation may present with bradycardia These phenomena also exist during repeated epi- with or without hypotension, whereas central TCR sodes of dynamic apnea [13]. Diving reflex is firstly stimulation is usually followed by severe bradycar- triggered by breath-holding and is augmented fur- dia/asystole and hypotension [3, 8]. What differs ther by immersion of the face into cold water [19, is that in the TCR there is a secondary decrease 20]. This response is also very prompt; therefore, in MABP, whereas in the DR the MABP gradually it can be considered as a reflex. The inhibition of increases. The difference might simply reflect the the respiratory centers and the absence of afferent fact that the stimulus in the DR is not ceased as input from pulmonary stretch receptors increase immediately as in the TCR. At present it is still not vasomotor and cardio-inhibitory activity [21–23]. clear whether this increase in MABP is specific for All these modifications allow economizing of the all peripheral TCRs or only for a subgroup. oxygen stores for the breath-hold diver (BHD) [18, 21, 24–27]. Similar to the TCR, the DR also acts as Bradycardia a protective oxygen-conserving reflex (OCR) and aims to keep the body alive during cold water im- It is a well-established fact that during breath- mersion. Thus it protects the vital organs (the heart hold diving, the heart rate (HR) becomes slower. and the brain) from extreme hypoxia. The DR in hu- The reduction in HR is brought about by the in- mans is modifiable by various factors including wa- volvement of both central inspiratory and phasic ter temperature, exercise, partial pressure of arte- pulmonary afferent mechanisms [29]. Similarly, rial oxygen (PaO2), carbon dioxide tension (PaCO2) it has been reported that tracheal intubation im- and psychological factors [22]. posed during surgical procedures may give some Though the two reflexes share a lot of similar- protection against activation of the TCR [30]. Ba- ities, their relationship and especially their func- bies under 6 months of age are excellent swim- tional purpose in humans have not yet been fully mers due to their DR: a baby’s air passage blocks elucidated. In the present article, we have tried to in contact with water, which explains the common 420 Arch Med Sci 2, April / 2015 The trigeminocardiac reflex – a comparison with the diving reflex in humans observation of babies “swimming” under water that progressively formed in the course of evolu- with open mouths. tion in order to increase cardiorespiratory survival. Both reflexes, the TCR and the DR, have a well- This hypothesis is further underlined by the fact known reciprocal influence on cardiac vagal and that the two main divisions of the autonomic sympathetic activity in adults resulting in bra- nervous system – the sympathetic and parasym- dycardia [31, 32]. Despite the above-mentioned pathetic system – support different types of ex- brainstem changes, the striking age-related de- change with the external environment. The main cline in occurrence of the TCR/DR in adults could function of the sympathetico-adrenal system is be the result of increased arterial stiffness [32]. to organize the function of the visceral organs In fact, in some instances the HR may rebound for an action to be performed by the organism to produce a delayed tachycardia being indicative of in response to the (unexpected) requirements of a temporal difference in the activation of the auto- the environment (“fight or flight”). On the other nomic outflows with the increase in cardiac sympa- hand, the role of the parasympathetic system is thetic activity outlasting
Recommended publications
  • Features of Hemodynamics of Pulmonary Circulation During the Diving Reflex
    FULL COMMUNICATIONS PHYSIOLOGY Features of hemodynamics of pulmonary circulation during the diving reflex Ekaterina Podyacheva1, Tatyana Zemlyanukhina1, Lavrentij Shadrin2, and Tatyana Baranova1 1Department of General Physiology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation 2Department of Physical Culture and Sports, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation Address correspondence and requests for materials to Ekaterina Podyacheva, [email protected] Abstract The adaptive cardiovascular reactions of the human diving reflex were studied. The diving reflex was activated by submerging a face in cold water under labo- ratory conditions. Forty volunteers (aged 18–24) were examined. ECG, arterial blood pressure (ABP) and central blood flow were recorded by the impedance rheography method in resting state, during diving simulation (DS) and after apnea. During DS there is a statistically significant decrease in the dicrotic in- dex (DCI), which reflects a decrease in the resistive vessel tone and as well as diastolic index (DSI), characterizing lung perfusion. A comparison of the latent periods (LP) of an increase in ABP and a drop in DCI showed that a decrease in pulmonary vascular tone develops faster than ABP begins to increase. The LP for lowering DCI is from 0.6 to 10 s; for an increase in ABP — from 6 to 30 s. A short LP for DCI and the absence of a correlation between a decrease in ABP and DCI suggests that a decrease in pulmonary vascular tone during DS occurs reflexively and independently of a change in ABP. Keywords: diving reflex, systemic circulation, pulmonary circulation, impedan- ce rheography, plethysmography.
    [Show full text]
  • APNEA TRAINING and PHYSICAL CHARACTERISTICS: ENHANCEMENT of the DIVE RESPONSE, APNEIC TIME, and RECOVERY by Nathanael Stanford A
    APNEA TRAINING AND PHYSICAL CHARACTERISTICS: ENHANCEMENT OF THE DIVE RESPONSE, APNEIC TIME, AND RECOVERY by Nathanael Stanford A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Kinesiology Boise State University May 2019 © 2019 Nathanael Stanford ALL RIGHTS RESERVED BOISE STATE UNIVERSITY GRADUATE COLLEGE DEFENSE COMMITTEE AND FINAL READING APPROVALS of the thesis submitted by Nathanael Stanford Thesis Title: Apnea Training and Physical Characteristics: Enhancement of The Dive Response, Apneic Time, and Recovery Date of Final Oral Examination: 08 March 2019 The following individuals read and discussed the thesis submitted by student Nathanael Stanford, and they evaluated his presentation and response to questions during the final oral examination. They found that the student passed the final oral examination. Shawn R. Simonson, Ed.D. Chair, Supervisory Committee Timothy R. Kempf, Ph.D. Member, Supervisory Committee Jeffrey M. Anderson, MA Member, Supervisory Committee The final reading approval of the thesis was granted by Shawn R. Simonson, Ed.D., Chair of the Supervisory Committee. The thesis was approved by the Graduate College. ACKNOWLEDGEMENTS I would first like to thank my thesis advisor, Shawn Simonson for his continual assistance and guidance throughout this master thesis. He fostered an environment that encouraged me to think critically about the scientific process. The mentorship he offered directed me on a path of independent thinking and learning. I would like to thank my research technician, Sarah Bennett for the hundreds of hours she assisted me during data collection. This thesis would not have been possible without her help. To my committee member Tim Kempf, I want to express my gratitude for his assistance with study design and the scientific writing process.
    [Show full text]
  • Minnesota Ttaps Part 1
    MINNESOTA TTAPS PART 1 COURSE NAME: USE OF REFLEXES TO RESOLVE BIOMECHANICS OF CHRONIC NEURO-MUSCULAR-SKELETAL DIAGNOSES COURSE COORDINATOR: ALAN R. BONEBRAKE, DC 630C N CENTRAL EXPY PLANO, TX 75074 COURSE DESCRIPTION: P.A.C.E APPROVED 16 CEs USE OF MYOTATIC, POSTURAL, RECIPROCAL, WITHDRAWAL, AND CROSSED EXTENSOR REFLEXES TO RESOLVE PAIN AND BIOMECHANICS OF CHRONIC NEURO-MUSCULAR- SKELETAL CONDITIONS EDUCATIONAL OBJECTIVES: DISCUSSION OF NORMAL FUNCTION OF MYOTATIC REFLEXES DISCUSSION OF CAUSES OF FACILITATED NERVES RELATING TO WITHDRAWAL REFLEXES CAUSING CHRONIC NEURO-MUSCULAR-SKELETAL CONDITIONS DISCUSSION OF VARIETIES OF WITHDRAWAL REFLEXES DISCUSSION OF AND WORKSHOP OF REINSTATING NORMOTONUS OF HYPERTONIC NERVES AND MUSCLES THROUGH REFLEX INHIBITION UTILIZING MYOTATIC REFLEXES TEACHING METHODS: VERBAL, OVERHEAD PROJECTOR, HANDOUT OF COURSE OUTLINE AND POSSIBLY THE OVERHEADS THAT AREN’T COPYRIGHTED, INSTRUCTOR WATCHING AND CRITIQUING THE STUDENTS PERFORMING THE TREATMENTS RECOMMENDED READING: GUYTON’S TEXTBOOK OF MEDICAL PHYSIOLOGY, 5TH & 9TH ED.; CHUSID’S CORRELATIVE NEUROANATOMY AND FUNCTIONAL NEUROLOGY; MAZION’S ILLUSTRATED MANUAL OF NEURO/ ORTHO/PHYSIOLOGICAL TESTS; THE CHALLENGE OF PAIN BY MELZACK; AND WALL; ACUPUNCTURE, THE ANCIENT CHINESE ART OF HEALING AND HOW IT WORKS SCIENTIFICALLY BY FELIX MANN, MB; CUNNINGHAM’S TEXTBOOK OF ANATOMY, 11TH ED; DORLAND’S ILLUSTRATED MEDICAL DICTIONARY, 25TH ED ~ 1 ~ st 1 hour: All-or-none law The all-or-none law is the principle that the strength by which a nerve or muscle fiber responds to a stimulus is independent of the strength of the stimulus. If that stimulus exceeds the threshold potential, the nerve or muscle fiber will give a complete response; otherwise, there is no response.
    [Show full text]
  • I AMYLIN MEDIATES BRAINSTEM
    AMYLIN MEDIATES BRAINSTEM CONTROL OF HEART RATE IN THE DIVING REFLEX A Dissertation Submitted to The Temple University Graduate Board In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy By Fan Yang May, 2012 Examination committee members: Dr. Nae J Dun (advisor), Dept. of Pharmacology, Temple University Dr. Alan Cowan, Dept. of Pharmacology, Temple University Dr. Lee-Yuan Liu-Chen, Dept. of Pharmacology, Temple University Dr. Gabriela Cristina Brailoiu, Dept. of Pharmacology, Temple University Dr. Parkson Lee-Gau Chong, Dept. of Biochemistry, Temple University Dr. Hreday Sapru (external examiner), Depts. of Neurosciences, Neurosurgery & Pharmacology/Physiology, UMDNJ-NJMS. i © 2012 By Fan Yang All Rights Reserved ii ABSTRACT AMYLIN’S ROLE AS A NEUROPEPTIDE IN THE BRAINSTEM Fan Yang Doctor of Philosophy Temple University, 2012 Doctoral Advisory Committee Chair: Nae J Dun, Ph.D. Amylin, or islet amyloid polypeptide is a 37-amino acid member of the calcitonin peptide family. Amylin role in the brainstem and its function in regulating heart rates is unknown. The diving reflex is a powerful autonomic reflex, however no neuropeptides have been described to modulate its function. In this thesis study, amylin expression in the brainstem involving pathways between the trigeminal ganglion and the nucleus ambiguus was visualized and characterized using immunohistochemistry. Its functional role in slowing heart rate and also its involvement in the diving reflex were elucidated using stereotaxic microinjection, whole-cel patch-clamp, and a rat diving model. Immunohistochemical and tract tracing studies in rats revealed amylin expression in trigeminal ganglion cells, which also contained vesicular glutamate transporter 2 positive.
    [Show full text]
  • Fort Riley Military Munitions Response Program Camp Forsyth Landfill Area 2 Munitions Response Site Operable Unit 09, FTRI-003-R-01 Geary County, Kansas U.S
    Final Record of Decision June 2020 Fort Riley Military Munitions Response Program Camp Forsyth Landfill Area 2 Munitions Response Site Operable Unit 09, FTRI-003-R-01 Geary County, Kansas U.S. Army Corps of Engineers Omaha District FORT RILEY Final Contract No.: W912DQ-17-D-3023 Delivery Order No.: W9128F-17-F-0233 Record of Decision MILITARY MUNITIONS RESPONSE PROGRAM FORT RILEY CAMP FORSYTH LANDFILL AREA 2 MUNITIONS RESPONSE SITE OPERABLE UNIT 09, FTRI-003-R-01 GEARY COUNTY, KANSAS Prepared for and Prepared by U.S. ARMY CORPS OF ENGINEERS Omaha District June 2020 Revision 01 Record of Decision Camp Forsyth Landfill Area 2 MRS, Fort Riley, Kansas Table of Contents 1.0 DECLARATION .......................................................................................................... 1-1 1.1 Site Name and Location.................................................................................................... 1-1 1.2 Statement of Basis and Purpose...................................................................................... 1-1 1.3 Assessment of Site ............................................................................................................ 1-1 1.4 Description of Selected Remedy ...................................................................................... 1-1 1.5 Statutory Determinations .................................................................................................. 1-1 1.5.1 Part 1: Statutory Requirements ................................................................................
    [Show full text]
  • Cardiac Hypoxic Resistance and Decreasing Lactate During Maximum
    www.nature.com/scientificreports OPEN Cardiac hypoxic resistance and decreasing lactate during maximum apnea in elite breath hold divers Thomas Kjeld1*, Jakob Møller 1, Kristian Fogh1, Egon Godthaab Hansen2, Henrik Christian Arendrup3, Anders Brenøe Isbrand4, Bo Zerahn4, Jens Højberg5, Ellen Ostenfeld6, Henrik Thomsen1, Lars Christian Gormsen 7 & Marcus Carlsson6 Breath-hold divers (BHD) enduring apnea for more than 4 min are characterized by resistance to release of reactive oxygen species, reduced sensitivity to hypoxia, and low mitochondrial oxygen consumption in their skeletal muscles similar to northern elephant seals. The muscles and myocardium of harbor seals also exhibit metabolic adaptations including increased cardiac lactate-dehydrogenase- activity, exceeding their hypoxic limit. We hypothesized that the myocardium of BHD possesses 15 similar adaptive mechanisms. During maximum apnea O-H2O-PET/CT (n = 6) revealed no myocardial perfusion defcits but increased myocardial blood fow (MBF). Cardiac MRI determined blood oxygen level dependence oxygenation (n = 8) after 4 min of apnea was unaltered compared to rest, whereas cine-MRI demonstrated increased left ventricular wall thickness (LVWT). Arterial blood gases were collected after warm-up and maximum apnea in a pool. At the end of the maximum pool apnea (5 min), arterial saturation decreased to 52%, and lactate decreased 20%. Our fndings contrast with previous MR studies of BHD, that reported elevated cardiac troponins and decreased myocardial 15 perfusion after 4 min of apnea. In conclusion, we demonstrated for the frst time with O-H2O-PET/CT and MRI in elite BHD during maximum apnea, that MBF and LVWT increases while lactate decreases, indicating anaerobic/fat-based cardiac-metabolism similar to diving mammals.
    [Show full text]
  • ACTA BIOMEDICA SUPPLEMENT Atenei Parmensis | Founded 1887
    Acta Biomed. - Vol. 91 - Suppl. 1 - February 2020 | ISSN 0392 - 4203 ACTA BIOMEDICA SUPPLEMENT ATENEI PARMENSIS | FOUNDED 1887 Official Journal of the Society of Medicine and Natural Sciences of Parma Acta Biomed. - Vol. 91 - Suppl.1 February 2020 Acta Biomed. - Vol. and Centre on health systems’ organization, quality and sustainability, Parma, Italy The Acta Biomedica is indexed by Index Medicus / Medline Excerpta Medica (EMBASE), the Elsevier BioBASE, Scopus (Elsevier). and Bibliovigilance New insights on upper airway diseases Guest Editors: Giorgio Ciprandi, Desiderio Passali Free on-line www.actabiomedica.it Mattioli 1885 1, comma DCB Parma - Finito di stampare February 2020 46) art. Pubblicazione trimestrale - Poste Italiane s.p.a. - Sped. in A.P. - D.L. 353/2003 (conv. in L. 27/02/2004 n. - D.L. 353/2003 (conv. Pubblicazione trimestrale - Poste Italiane s.p.a. Sped. in A.P. ACTA BIO MEDICA Atenei parmensis founded 1887 OFFICIAL JOURNAL OF THE SOCIETY OF MEDICINE AND NATURAL SCIENCES OF PARMA AND CENTRE ON HEALTH SYSTEM’S ORGANIZATION, QUALITY AND SUSTAINABILITY, PARMA, ITALY free on-line: www.actabiomedica.it EDITOR IN CHIEF ASSOCIATE EDITORS Maurizio Vanelli - Parma, Italy Carlo Signorelli - Parma, Italy Vincenzo Violi - Parma, Italy Marco Vitale - Parma, Italy SECTION EDITORS DEPUTY EDITOR FOR HEALTH DEPUTY EDITOR FOR SERTOT Gianfranco Cervellin- Parma, Italy PROFESSIONS EDITION EDITION Domenico Cucinotta - Bologna, Italy Leopoldo Sarli - Parma, Italy Francesco Pogliacomi - Parma, Italy Vincenzo De Sanctis- Ferrara, Italy Paolo
    [Show full text]
  • Near Drowning
    Near Drowning McHenry Western Lake County EMS Definition • Near drowning means the person almost died from not being able to breathe under water. Near Drownings • Defined as: Survival of Victim for more than 24* following submission in a fluid medium. • Leading cause of death in children 1-4 years of age. • Second leading cause of death in children 1-14 years of age. • 85 % are caused from falls into pools or natural bodies of water. • Male/Female ratio is 4-1 Near Drowning • Submersion injury occurs when a person is submerged in water, attempts to breathe, and either aspirates water (wet) or has laryngospasm (dry). Response • If a person has been rescued from a near drowning situation, quick first aid and medical attention are extremely important. Statistics • 6,000 to 8,000 people drown each year. Most of them are within a short distance of shore. • A person who is drowning can not shout for help. • Watch for uneven swimming motions that indicate swimmer is getting tired Statistics • Children can drown in only a few inches of water. • Suspect an accident if you see someone fully clothed • If the person is a cold water drowning, you may be able to revive them. Near Drowning Risk Factor by Age 600 500 400 300 Male Female 200 100 0 0-4 yr 5-9 yr 10-14 yr 15-19 Ref: Paul A. Checchia, MD - Loma Linda University Children’s Hospital Near Drowning • “Tragically 90% of all fatal submersion incidents occur within ten yards of safety.” Robinson, Ped Emer Care; 1987 Causes • Leaving small children unattended around bath tubs and pools • Drinking
    [Show full text]
  • Hold Your Breath Underwater for 3 Minutes
    HOLD YOUR BREATH UNDERWATER FOR 3 MINUTES. [basic] NERVE RUSH MISSION Nerve Rush deconstructs the world of extreme sports and adventure travel through a titillating array of adrenaline-packed content. We support folks and brands who test their physical and mental limits, who push for adventure and who empower others to live a more gut-wrenching life. YOUR ADRENALINE GUIDES In an effort to push the Nerve Rush community to test both physical and mental limits, we developed a series of adrenaline guides, broken down into different achievement levels. Use our guides to inject more gut-wrenching adventure into your life. WHY HOLD YOUR BREATH UNDERWATER? From surfing and snorkeling to a full day at the beach, learning to hold your breath can help you to feel more comfortable underwater – a critical component to battling huge waves or hunting for colorful coral. Static Apnea is a discipline in which Static Apnea World Record a person holds their breath (apnea) underwater for as long as possible, To date, the world record for holding one’s and need not swim any distance. Static Apnea is defined by the breath underwater without the use of International Association for oxygen in preparation is held by Stéphane Development of Apnea (AIDA International) and is distinguished Mifsud, with a whopping 11 minutes 35 from the Guinness World Record for seconds. breath holding underwater, which allows the use of oxygen in preparation. Beat Harry Houdini’s Life Record We’re not saying you can beat Mifsud, but shoot to beat Harry Houdini. His personal record was 3 minutes 30 seconds! HOW TO HOLD YOUR BREATH FOR 3 MINUTES The following method is adapted from this Tim Ferriss blog post.
    [Show full text]
  • WSF Freediver - Management
    WSF Freediver - Management World Series Freediving™ www.freedivingRAID.com MANAGEMENT WSF Freediver - Management THE 4 FREEDIVING ELEMENTS ....................................................................... 2 EQUALISATION .................................................................................................. 2 BREATHING FOR FREEDIVING ...................................................................... 7 RECOVERY BREATHING ................................................................................... 8 FREEDIVING TECHNIQUES ............................................................................. 9 FREEDIVING BUDDY SYSTEM ........................................................................ 12 PROPER BUOYANCY FOR DEPTH FREEDIVING ........................................... 14 ADVENTURE FREEDIVING & COMPETITION ................................................ 18 FREEDIVING ....................................................................................................... 18 TRAINING FOR FREEDIVING ........................................................................... 22 Section 4 - Page 1 RAID WSF FREEDIVER www.freedivingRAID.com THE 4 FREEDIVING ELEMENTS 1. Conserving Oxygen O2 2. Equalisation EQ 3. Flexibility FLX 4. Safety SFE The 5th Element that is key to success is you, the freediver! EQUALISATION EQ Objectives: 1. State 2 processes of equalisation for the eustachian tubes 2. Demonstrate the 5 steps of the Frenzel manoeuvre 3. State the main difference between the Valsalva and Frenzel manoeuvres
    [Show full text]
  • Model Document: Review Paper
    6186ch05.qxd_lb 1/13/06 12:57 PM Page 130 130 5 / Writing a Review Paper Include title, author, course, The Role of Hypothermia and the Diving and date on title page for Reflex in Survival of Near-Drowning student papers. Accidents Do not number title page, but consider it page 1. Brian Martin Biology 281 April 17, 200- 6186ch05.qxd_lb 1/13/06 12:57 PM Page 131 Sample Review Paper 131 Hypothermia and the Diving Reflex 2 ABSTRACT State aims and scope; concisely This paper reviews the contributions summarize of hypothermia and the mammalian diving major points. reflex (MDR) to human survival of cold- water immersion incidents. The effect of the victim’s age on these processes is also examined. A major protective role of hypothermia comes from a reduced meta- bolic rate and thus lowered oxygen con- sumption by body tissues. Although hypothermia may produce fatal cardiac arrhythmias such as ventricular fibrilla- tion, it is also associated with brady- cardia and peripheral vasoconstriction, both of which enhance oxygen supply to the heart and brain. The MDR also results in bradycardia and reduced peripheral blood flow, as well as laryngospasm, which protects victims against rapid in- halation of water. Studies of drowning and near-drowning accidents involving children and adults suggest that victim survival depends on the presence of both hypothermia and the MDR, as neither alone can provide adequate cerebral protection during long periods of hypoxia. Future lines of research are suggested and re- Introduce lated to improved patient care. topic; give paper’s aims INTRODUCTION and scope.
    [Show full text]
  • Second Quarter 2016 • Volume 24 • Number 87
    The Journal of Diving History, Volume 24, Issue 2 (Number 87), 2016 Item Type monograph Publisher Historical Diving Society U.S.A. Download date 10/10/2021 17:42:22 Link to Item http://hdl.handle.net/1834/35936 Second Quarter 2016 • Volume 24 • Number 87 After Boutan, Underwater Photography in Science | U.S. Divers Prototype Helmet for SEALAB III, DSSP Vintage Australian Demand Valves | Fred Devine and the SALVAGE CHIEF | Cousteau and CONSHELF 2016 Historical Diving Society USA Raffle Get your tickets now! The predecessor of the USN Mark V Helmet #3 of 10 manufactured by DESCO to the specifications and recommendations in Chief Gunner George Stillson’s 1915 REPORT ON DEEP DIVING TESTS Tickets are $5 each or five for $20 Tickets can be ordered by contacting [email protected] or by mailing a check or money order payable to HDS USA Fund raiser, PO Box 453, Fox River Grove, IL 60021-0453. The drawing will take place at the Santa Barbara Maritime Museum, Santa Barbara, CA on August 27, 2016. Other prizes include HDS apparel, books, and DVDs. The winner need not be present to win. All proceeds benefit the Historical Diving Society USA. Prize Winners are responsible for shipping and all applicable taxes. No purchase necessary. To obtain a non-purchase ticket send a self addressed stamped envelope to the above address. Void where prohibited by law. Grand Prize is an $8,000 Value Second Quarter 2016, Volume 24, Number 87 The Journal of Diving History 1 THE JOURNAL OF DIVING HISTORY SECOND QUARTER 2016 • VOLUME 24 • NUMBER 87 ISSN 1094-4516 FEATURES Civil War Diving and Salvage Vintage Australian Demand Valves By James Vorosmarti, MD By Bob Campbell 10 Like much of American diving during the 19th century, the printed 22 As noted by historian Ivor Howitt, and here by author Bob Campbell, record of diving during the Civil War is scarce.
    [Show full text]