"Reactive Hard Templating" : from Carbon Nitrides to Metal Nitrides

Total Page:16

File Type:pdf, Size:1020Kb

Max Planck Institut für Kolloid und Grenzflächenforschung “Reactive Hard Templating” From Carbon Nitrides to Metal Nitrides Dissertation zur Erlangung des akademischen Grades "doctor rerum naturalium" (Dr. rer. nat.) in der Wissenschaftsdisziplin Kolloidchemie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam von Anna Fischer Potsdam, März 2008 This work is licensed under a Creative Commons License: Attribution - Noncommercial - Share Alike 2.0 Germany To view a copy of this license visit http://creativecommons.org/licenses/by-nc-sa/2.0/de/ Online published at the Institutional Repository of the Potsdam University: http://opus.kobv.de/ubp/volltexte/2008/1977/ urn:nbn:de:kobv:517-opus-19777 [http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-19777] Abstract Nanostructured inorganic materials are routinely synthesized by the use of templates. Depending on the synthesis conditions of the product material, either “soft” or “hard” templates can be applied. For sol-gel processes, usually “soft” templating techniques are employed, while “hard” templates are used for high temperature synthesis pathways. In classical templating approaches, the template has the unique role of structure directing agent, in the sense that it is not participating to the chemical formation of the resulting material. This work investigates a new templating pathway to nanostructured materials, where the template is also a reagent in the formation of the final material. This concept is described as “reactive templating” and opens a synthetic path toward materials which cannot be synthesised on a nanometre scale by classical templating approaches. Metal nitrides are such kind of materials. They are usually produced by the conversion of metals or metal oxides in ammonia flow at high temperature (T > 1000°C), which make the application of classical templating techniques difficult. Graphitic carbon nitride, g-C3N4, despite its fundamental and theoretical importance, is probably one of the most promising materials to complement carbon in material science and many efforts are put in the synthesis of this material. A simple polyaddition/elimination reaction path at high temperature (T = 550°C) allows the polymerisation of cyanamide toward graphitic carbon nitride solids. By hard templating, using nanostructured silica or aluminium oxide as nanotemplates, a variety of nanostructured graphitic carbon nitrides such as nanorods, nanotubes, meso- and macroporous powders could be obtained by nanocasting or nanocoating. Due to the special semi-conducting properties of the graphitic carbon nitride matrix, the nanostructured graphitic carbon nitrides show unexpected catalytic activity for the activation of benzene in Friedel-Crafts type reactions, making this material an interesting metal free catalyst. Furthermore, due to the chemical composition of g-C3N4 and the fact that it is totally decomposed at temperatures between 600°C and 800°C even under inert atmosphere, g-C3N4 was shown to be a good nitrogen donor for the synthesis of early transition metal nitrides at high temperatures. Thus using the nanostructured carbon nitrides as “reactive templates” or “nanoreactors”, various metal nitride nanostructures, such as nanoparticles and porous frameworks could be obtained at high temperature. In this approach the carbon nitride nanostructure played both the role of the nitrogen source and of the exotemplate, imprinting its size and shape to the resulting metal nitride nanostructure. 1 Zusammenfassung Die Nanostrukturierung anorganischer Materialien, d.h. die Kontrolle ihrer Form und Größe auf der Nanometerebene durch unterschiedliche Herstellungsverfahren, ist ein sich immer noch erweiterndes Forschungsgebiet. Eine solche Nanostrukturierung wird oft über sogenannte Templatierungsverfahren erreicht: Hier werden Formgeber (Template) mit definierter Morphologie und Größe verwendet und deren Struktur in ein neues Material abgebildet. Templatierungsverfahren können, je nach der Beschaffenheit des Templats, zwischen „weich“ und „hart“ unterschieden werden. Die Begriffe beziehen sich dabei vor allem auf die mechanische und thermische Stabilität der Template, d.h. weiche Template sind vornehmlich organischer, harte Template anorganischer Natur. Wo weiche Template in milden chemischen Verfahren eingesetzt werden, werden harte Template zur Herstellung von Materialien bei Hochtemperaturverfahren verwendet (z. B. poröse Kohlenstoffe). Allgemein dienen Template ausschließlich als Strukturgeber und gehen in keiner Weise in Form einer chemischen Reaktion in die Synthese des gewünschten Materials mit ein. Gegenstand dieser Arbeit ist ein neues Templatierungsverfahren: Die „reaktive Templatierung“. Hierbei wird das Templat - neben seiner Funktion als Strukturgeber – auch als Reagenz für die Synthese des Produktes verwendet. Dieser Synthese-Ansatz öffnet damit neue Wege für die Synthese von nanostrukturierten Materialien, die durch klassische Templatierungsansätze schwer zugänglich sind. Hierzu zählen zum Beispiel die Metallnitride. Üblicherweise werden Metallnitride über die Umsetzung von Metallen oder Metalloxiden in einem Ammoniakstrom bei Mindesttemperaturen von 1000°C gewonnen, was die Anwendung klassischer Templatierungsverfahren beinahe unmöglich macht. Darüber hinaus sind konzentrierte Lauge oder Flusssäure, welche zur Entfernung klassischer harter Template benötigt werden auch Aufschlussmittel für Metallnitride. Graphitisches Kohlenstoffnitrid, g-C3N4, ist wohl eines der meistversprechendsten Materialien um Kohlenstoff in der Materialwissenschaft zu ergänzen. Es wurden bereits viele potentielle Syntheseansätze beschrieben. Eine durch Groenewolt M. erstellte Route ist die thermisch induzierte Polykondensation von Cyanamid (NCNH2) bei 550°C. Da g-C3N4 sich zwischen 600°C und 800°C vollständig in NH3 und CxNyH-Gase zersetzt, ist es eine geeignete Festkörper-Stickstoffquelle für die Herstellung von Metalnitriden. Daher boten sich nanostrukturierte graphitische Kohlenstoffnitride als geeignete reaktive Template oder Nanoreaktoren zur Herstellung von nano-strukturierten Metalnitriden an. Die Templatierung der g-C3N4-Matrix wurde über klassische Harttemplatierungsverfahren erreicht. So konnte eine 2 Vielzahl nano-strukturierter g-C3N4 Materialien synthetisiert werden wie zum Beispiel Nanostäbchen, Nanoröhren, mesoporöse oder makroporöse graphitische Kohlenstoffnitride. Diese haben sich interessanterweise, als metalfreie Katalysatoren für die Aktivierung von Benzol in Friedel-Crafts-Acylierung und -Alkylierung erwiesen. Durch die Infiltrierung der nano-strukturierten g-C3N4-Materialien mit diversen Metal-Präkursoren und nachfolgendem Tempern bei 800°C unter Schutzgas, konnten entsprechende nano-strukturierte Metalnitride, als Nanoabdrücke der vorgegebenen Kohlenstoffnitrid Nanostrukturen hergestellt werden. So konnten TiN, VN, GaN, AlGaN und TiVN Nanopartikel synthetisiert werden, macroporöse TiN/Kohlenstoff Komposite sowie TiN Hohlkugeln. Die so hergestellten Materialien erwiesen sich als effektive basische Katalysatoren für Aldol-Kondensations Reaktionen. 3 Table of Contents Table of Contents.......................................................................................................... 4 1 Introduction ........................................................................................................ 7 1.1 Metal Nitrides........................................................................................................... 7 1.2 Creation of nanostructures through hard templating............................................. 8 1.3 Graphitic carbon nitride or g-C3N4 ....................................................................... 10 1.3.1 Synthesis of bulk g-C3N4.......................................................................................... 13 2 Characterisation methods................................................................................. 19 2.1 Nitrogen sorption ................................................................................................... 19 2.1.1 Determination of the surface area............................................................................. 20 2.1.2 Determination of the pore size of mesoporous materials........................................... 21 2.2 Electron microscopy (EM) ..................................................................................... 22 2.2.1 Scanning electron microscopy (SEM)....................................................................... 23 2.2.2 Transmission electron microscopy (TEM) ................................................................ 25 2.3 X-Ray Diffraction................................................................................................... 26 3 Experimental Section ........................................................................................ 32 3.1 Synthesis of nanostructured graphitic carbon nitrides......................................... 32 3.1.1 Synthesis of mesoporous graphitic carbon nitrides (mpg-C3N4) ................................ 32 3.1.2 Synthesis of macroporous graphitic carbon nitrides.................................................. 33 3.1.3 Synthesis of bimodal graphitic carbon nitride (bmg-C3N4)........................................ 34 3.1.4 Synthesis of graphitic carbon nitrides nanorods and nanotubes................................. 34 3.1.5 Synthesis of graphitic carbon nitride coatings on mesoporous silica microspheres.... 35 3.2 Synthesis of nanostructured metal
Recommended publications
  • Sub-10 Nm Fabrication: Methods and Applications Yiqin Chen, Zhiwen Shu, Shi Zhang, Pei Zeng, Huikang Liang, Mengjie Zheng and Huigao Duan
    https://iopscience.org/ijem ESCI,EI, SCOPUS, INSPEC, CAS, DOAJ, etc. International Journal of Extreme Manufacturing Sub-10 nm fabrication: methods and applications Yiqin Chen, Zhiwen Shu, Shi Zhang, Pei Zeng, Huikang Liang, Mengjie Zheng and Huigao Duan oscopy ectr N sp an ed og Highlights: c ap an s h Smart pattern e n transfer BCP-based le e c s DSA t p ro a d g Tip-based e o s n nanofabrication ● The role and significance of sub-10 nm fabrication in basic a n c ods Templated i eth n m self-assembly y o h research and device applications are introduced. p m a s r M N a g a l High-energy beam e o c n P h h o direct writing t i Sub-10-nm a t Mechanical i L n ● The sub-10 nm fabrication methods are summarized. p i cracking s Fabrications c a f o l e r Q and n f i Photolithography a u e b a l d ● Several types of typical application examples of sub-10 nm applications l n i Post- n e t g assembling u m m i s fabrication are given out. d s e P i v o o s n Subtractive t t g ic rimmin Additive s e strategy o s strategy u r c ● The challenges and opportunities associated with sub-10 nm e G e ne fabrication topic are discussed. ti c s eq uen ips cing IC ch View online:https://iopscience.iop.org/article/10.1088/2631-7990/ac087c Article Download: https://iopscience.iop.org/article/10.1088/2631-7990/ac087c/pdf Citation: Chen Y Q, Shu Z W, Zhang S, Zeng P, Liang H K et al.
    [Show full text]
  • Effect of Nitrogen Pressure on the Structure of Cr-N, Ta-N, Mo-N, and WN Nanocrystals Synthesized by Arc Discharge
    Hindawi Publishing Corporation Journal of Nanomaterials Volume 2011, Article ID 781935, 5 pages doi:10.1155/2011/781935 Research Article Effect of Nitrogen Pressure on the Structure of Cr-N, Ta-N, Mo-N, and W-N Nanocrystals Synthesized by Arc Discharge Longhai Shen and Nan Wang School of Science, Shenyang Ligong University, Shenyang 110159, China Correspondence should be addressed to Longhai Shen, [email protected] Received 28 March 2011; Revised 10 June 2011; Accepted 5 July 2011 Academic Editor: Theodorian Borca-Tasciuc Copyright © 2011 L. Shen and N. Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The effect of nitrogen pressure on the structure of Ta-N, Cr-N, Mo-N, and W-N nanocrystals formed in arc discharge process was investigated. At the nitrogen pressure of 5 ∼ 20 kPa, the pure cubic-phase TaN and CrN nanocrystals were formed, whereas pure cubic phase of Mo2N and W2N cannot be obtained. A little of metal Mo and a mass of metal W were mixed with the products of Mo2N and W2N, respectively. At the nitrogen pressure of 30 ∼ 50 kPa, subnitride Ta2NandCr2N and metal Cr were gradually formed in the product; furthermore, the proportion of metal Mo and W increased in the product of Mo2N and W2N, respectively. It indicated that the low nitrogen pressure makes cubic mononitride formation favorable. We explain this experimental observation in terms of the evaporation rate of anode metal and the ionization of nitrogen.
    [Show full text]
  • 1 Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction Nikifar Lazouski,1 Zachary J Schiffer,1 Kindle Wi
    © 2019 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ doi: 10.1016/j.joule.2019.02.003 Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction Nikifar Lazouski,1 Zachary J Schiffer,1 Kindle Williams,1 and Karthish Manthiram1* 1Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge, MA 02139, USA *Corresponding Author: [email protected] 1 © 2019 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ doi: 10.1016/j.joule.2019.02.003 Summary Ammonia is a large-scale commodity chemical that is crucial for producing nitrogen- containing fertilizers. Electrochemical methods have been proposed as renewable and distributed alternatives to the incumbent Haber-Bosch process, which utilizes fossils for ammonia production. Herein, we report a mechanistic study of lithium-mediated electrochemical nitrogen reduction to ammonia in a non-aqueous system. The rate laws of the main reactions in the system were determined. At high current densities, nitrogen transport limitations begin to affect the nitrogen reduction process. Based on these observations, we developed a coupled kinetic-transport model of the process, which we used to optimize operating conditions for ammonia production. The highest Faradaic efficiency observed was 18.5 ± 2.9%, while the highest production rate obtained was (7.9 ± 1.6) × 10-9 mol cm-2 s-1. Our understanding of the reaction network and the influence of transport provides foundational knowledge for future improvements in continuous lithium- mediated ammonia synthesis.
    [Show full text]
  • Method for Producing Thick Ceramic Films by a Sol Gel
    Europäisches Patentamt *EP000815285B1* (19) European Patent Office Office européen des brevets (11) EP 0 815 285 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C23C 18/12 of the grant of the patent: // C04B41/87, C04B41/50 22.08.2001 Bulletin 2001/34 (86) International application number: (21) Application number: 96901675.7 PCT/CA96/00088 (22) Date of filing: 13.02.1996 (87) International publication number: WO 96/29447 (26.09.1996 Gazette 1996/43) (54) METHOD FOR PRODUCING THICK CERAMIC FILMS BY A SOL GEL COATING PROCESS VERFAHREN ZUR HERSTELLUNG DICKER KERAMIKFILMS DURCH SOL-GEL-BESCHICHTUNGSPROZESS PROCEDE DE FABRICATION DE FILMS DE CERAMIQUE EPAIS METTANT EN UVRE UN PROCESSUS DE REVETEMENT SOL-GEL (84) Designated Contracting States: (74) Representative: AT BE CH DE DK ES FR GB GR IE LI NL PT SE Simpson, Alison Elizabeth Fraser et al Urquhart-Dykes & Lord, (30) Priority: 22.03.1995 US 409127 30 Welbeck Street London W1G 8ER (GB) (43) Date of publication of application: 07.01.1998 Bulletin 1998/02 (56) References cited: EP-A- 0 433 915 EP-A- 0 482 659 (73) Proprietor: QUEEN’S UNIVERSITY AT KINGSTON EP-A- 0 564 866 WO-A-96/00198 Kingston Ontario K7L 3N6 (CA) US-A- 4 921 731 (72) Inventors: • TECHNICAL DISCLOSURE BULLETIN, vol. 37, • BARROW, David No 09, September 1994, "Low Leakage, Ajax, Ontario L1S 6Z4 (CA) Temperature Invariant, High Dielectric Constant • PETROFF, Edward, T. Films, using Multilayered Sol-Gel Fabrication", Scarborough, Ontario M1T 1V8 (CA) page 27 - page 28 • SAYER, Michael • PATENT ABSTRACTS OF JAPAN, vol.
    [Show full text]
  • A Modular DNA Origami-Based Enzyme Cascade Nanoreactor† Cite This: Chem
    ChemComm View Article Online COMMUNICATION View Journal | View Issue A modular DNA origami-based enzyme cascade nanoreactor† Cite this: Chem. Commun., 2015, 51,5351 ab ab a Veikko Linko,‡ Marika Eerika¨inen‡ and Mauri A. Kostiainen* Received 27th October 2014, Accepted 11th January 2015 DOI: 10.1039/c4cc08472a www.rsc.org/chemcomm In this communication, we present a nanoscale reactor assembled used method to fabricate arbitrary spatially well-controlled from tuneable and spatially addressable tubular DNA origami units. two- (2D)16 and three-dimensional (3D) nanostructures.17 The We can controllably combine separate origami units equipped with customized shapes and the nanoscale addressability of materials on glucose oxidase (GOx) and horseradish peroxidase (HRP), and demon- DNA structures through rational design have yielded various inter- Creative Commons Attribution-NonCommercial 3.0 Unported Licence. strate efficient GOx/HRP enzyme cascade reaction inside the tube. The esting bionanotechnological applications including sophisticated reactor could be utilized as a nanoscale diagnostic tool, and modularity drug delivery vehicles,18 artificial ion channels,19 gatekeepers of the proposed system would further enable more complex reactions. for solid-state nanopores20–22 molecular scale electronic circuit boards,23–25 and plasmonic devices.26,27 Nanoscale engineering has shown substantial potential to A DNA origami technique could be equally utilized in assembling revolutionize a wide range of scientific fields making e.g. novel enzyme systems
    [Show full text]
  • Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells † ‡ ‡ † † Noramalina Mansor, A
    Article pubs.acs.org/JPCC Terms of Use Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells † ‡ ‡ † † Noramalina Mansor, A. Belen Jorge, Furio Cora,̀Christopher Gibbs, Rhodri Jervis, ‡ ‡ † Paul F. McMillan, Xiaochen Wang, and Daniel J. L. Brett*, † Electrochemical Innovation Lab, University College London, London WC1E 7JE, United Kingdon ‡ Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom ABSTRACT: Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl−), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl− catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/ Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. 1. INTRODUCTION nanoparticles agglomerate into larger particles and/or detach Among the various types of fuel cells, polymer electrolyte fuel from the support material, consequently reducing the electro- chemical surface area (ECSA) and catalytic activity.5,6 cells (PEFCs) have attracted the most attention for trans- ff portation and portable applications. Advantages include the To solve this issue, much e ort has been directed toward the following: rapid start-up and shut down, low temperature development of alternative, chemically stable catalyst supports.
    [Show full text]
  • Enhancement of the Corrosion Resistance of 304 Stainless Steel by Cr–N and Cr(N,O) Coatings
    Article Enhancement of the Corrosion Resistance of 304 Stainless Steel by Cr–N and Cr(N,O) Coatings Mihaela Dinu 1, Emile S. Massima Mouele 2, Anca C. Parau 1, Alina Vladescu 1,3, Leslie F. Petrik 2 and Mariana Braic 1,* 1 National Institute for Optoelectronics, 409 Atomistilor St., 077125 Magurele, Romania; [email protected] (M.D.); [email protected] (A.C.P.); [email protected] (A.V.) 2 Department of Chemistry, Environmental and Nano Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa; [email protected] (E.S.M.M.); [email protected] (L.F.P.) 3 National Research Tomsk Polytechnic University, Lenin Avenue 43, Tomsk 634050, Russia * Correspondence: [email protected]; Tel.: +4-21-457-57-59 Received: 27 February 2018; Accepted: 2 April 2018; Published: 5 April 2018 Abstract: Chromium nitride and oxynitride coatings were deposited as monolayers ((Cr–N), Cr(N,O)) and bilayers (Cr–N/Cr(N,O), Cr(N,O)/Cr–N) on 304 steel substrates by reactive cathodic arc method. The coatings were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), surface profilometry, and scratch tester. The anticorrosive properties of the coatings were assessed by electrochemical tests in 0.10 M NaCl + 1.96 M H2O2, carried out at 24 °C. Cr2N, CrN, and Cr(N,O) phases were identified in the coatings by grazing incidence X-ray diffraction (GI-XRD) measurements. The measured adhesion values ranged from 19 N to 35 N, the highest value being obtained for the bilayer with Cr(N,O) on top.
    [Show full text]
  • Design and Test of Lead-Zirconate-Titanate Flexural Plate Wave Based Actuators
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 5-29-2005 Design and Test of Lead-Zirconate-Titanate Flexural Plate Wave Based Actuators Sriram Akella University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Akella, Sriram, "Design and Test of Lead-Zirconate-Titanate Flexural Plate Wave Based Actuators" (2005). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/2770 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Design and Test of Lead-Zirconate-Titanate Flexural Plate Wave Based Actuators by Sriram Akella A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering Department of Electrical Engineering College of Engineering University of South Florida Major Professor: Shekhar Bhansali, Ph.D. Tom Weller, Ph.D. John Bumgarner, Ph.D. Scott Samson, Ph.D. Date of Approval May 29, 2005 Keywords: FPW, PZT, Fabrication process, Sol-gel deposition, Piezoelectricity ©Copyright 2005, Sriram Akella Dedication To my Parents Acknowledgements I express my sincere gratitude to Dr. Shekhar Bhansali for all the help he has extended to me, both as my advisor and friend. For his guidance and time, for his faith and confidence in me, I thank him. I deeply appreciate and cherish all the times we have spent talking about so many things, academic and otherwise.
    [Show full text]
  • Compound - Physical Properties Density Melting Point G Cm-3 C
    Goodfellow Corporation 125 Hookstown Grade Road, Coraopolis, PA 15108-9302. USA Tel: 1-800-821-2870 : Fax 1-800-283-2020 Compound - Physical Properties Density Melting point g cm-3 C Aluminum Carbide 2.36 - Al C 4 3 Aluminum Nitride 3.26 - AlN Antimony Telluride 6.50 - Sb Te 2 3 Barium Titanate 5.8-6.0 - BaTiO3 Bismuth Telluride 7.7 - Bi Te 2 3 Boron Nitride 2.25 - BN Calcium Boride 2.3 - CaB6 Calcium Fluoride 3.18 1360-1400 CaF2 Calcium Titanate 4.10 1975 CaTiO3 Chromium Carbide 6.68 - Cr C 3 2 Chromium Diboride 4.36 - CrB2 Chromium Nitride 5.9 - Cr2N Chromium Silicide 5.5 - CrSi2 Cobalt (II) Oxide 6.45 1795 CoO Cobalt (III) Oxide 5.18 - Co O 3 4 Copper Selenide 5.99 - CuSe Cupric Oxide 6.39 - CuO Hafnium Carbide 12.2 approx. 3890 HfC Hafnium Diboride 10.5 3100 HfB2 Indium Oxide/Tin Oxide 7.16 - In O 90 /SnO2 10 2 3 All information and technical data are given as a guide only. Although every effort has been made to ensure that the information 1 is correct, no warranty is given as to its completeness or accuracy. September 17 2021 Goodfellow Corporation 125 Hookstown Grade Road, Coraopolis, PA 15108-9302. USA Tel: 1-800-821-2870 : Fax 1-800-283-2020 Compound - Physical Properties Density Melting point g cm-3 C Iron Silicide 6.1 - FeSi Lanthanum Hexaboride 2.61 - LaB6 Lead Selenide 8.10 - PbSe Magnesium Fluoride - 1396 MgF2 Magnesium Oxide 3.58 - MgO Molybdenum Carbide 8.9 - Mo2C Molybdenum Diboride 7.12 - MoB2 Molybdenum Disilicide 6.31 - MoSi2 Nickel Oxide 6.67 1984 NiO Niobium Boride 6.97 - NbB2 Niobium Carbide 7.6 - NbC Niobium Nitride 8.4 - NbN Niobium Pentoxide 4.47 - Nb O 2 5 Niobium Silicide 5.37 - NbSi2 Silicon Carbide 3.217 - SiC Silicon Monoxide 2.13 - SiO Silicon Nitride 3.44 - Si N 3 4 Silver Chloride 5.56 455 AgCl Sodium Chloride 2.16 - NaCl Tantalum Boride 11.15 approx.
    [Show full text]
  • Graphitic Carbon Nitride-Based Composite in Advanced Oxidation Processes for Aqueous Organic Pollutants Removal: a Review
    processes Review Graphitic Carbon Nitride-Based Composite in Advanced Oxidation Processes for Aqueous Organic Pollutants Removal: A Review Yu Shen, Antonio J. Dos santos-Garcia and María José Martín de Vidales * Department of Mechanical, Chemical and Industrial Design Engineering, ETSIDI, Universidad Politécnica de Madrid (UPM), 28012 Madrid, Spain; [email protected] (Y.S.); [email protected] (A.J.D.s.-G.) * Correspondence: [email protected]; Tel.: +34-91-067-7722 Abstract: In recent decades, a growing number of organic pollutants released have raised world- wide concern. Graphitic carbon nitride (g-C3N4) has drawn increasing attention in environmental pollutants removal thanks to its unique electronic band structure and excellent physicochemical stability. This paper reviews the recent progress of g-C3N4-based composites as catalysts in various advanced oxidation processes (AOPs), including chemical, photochemical, and electrochemical AOPs. Strategies for enhancing catalytic performance such as element-doping, nanostructure design, and heterojunction construction are summarized in detail. The catalytic degradation mechanisms are also discussed briefly. Keywords: graphitic carbon nitride; aqueous organic pollutants removal; advanced oxidation pro- cesses 1. Introduction In recent years, environmental pollution, especially water pollution, is increasingly Citation: Shen, Y.; Dos santos-Garcia, becoming a major concern worldwide. Many organic pollutions, such as pharmaceuticals and A.J.; Martín de Vidales, M.J. Graphitic personal care products (PPCPs), pesticides, and organic dyes are toxic and refractory [1–4]. Carbon Nitride-Based Composite in Various techniques have been developed to eliminate aqueous organic pollutants (e.g., Advanced Oxidation Processes for extraction, adsorption, biological treatment, and advanced oxidation processes) [5–9].
    [Show full text]
  • Graphitic Carbon Nitride: a Highly Electroactive Nanomaterial for Environmental and Clinical Sensing
    sensors Review Graphitic Carbon Nitride: A Highly Electroactive Nanomaterial for Environmental and Clinical Sensing Azeez O. Idris * , Ekemena O. Oseghe, Titus A. M. Msagati , Alex T. Kuvarega, Usisipho Feleni and Bhekie Mamba Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; [email protected] (E.O.O.); [email protected] (T.A.M.M.); [email protected] (A.T.K.); [email protected] (U.F.); [email protected] (B.M.) * Correspondence: [email protected] Received: 12 August 2020; Accepted: 23 September 2020; Published: 10 October 2020 Abstract: Graphitic carbon nitride (g-C3N4) is a two-dimensional conjugated polymer that has attracted the interest of researchers and industrial communities owing to its outstanding analytical merits such as low-cost synthesis, high stability, unique electronic properties, catalytic ability, high quantum yield, nontoxicity, metal-free, low bandgap energy, and electron-rich properties. Notably, graphitic carbon nitride (g-C3N4) is the most stable allotrope of carbon nitrides. It has been explored in various analytical fields due to its excellent biocompatibility properties, including ease of surface functionalization and hydrogen-bonding. Graphitic carbon nitride (g-C3N4) acts as a nanomediator and serves as an immobilization layer to detect various biomolecules. Numerous reports have been presented in the literature on applying graphitic carbon nitride (g-C3N4) for the construction of electrochemical sensors and biosensors. Different electrochemical techniques such as cyclic voltammetry, electrochemiluminescence, electrochemical impedance spectroscopy, square wave anodic stripping voltammetry, and amperometry techniques have been extensively used for the detection of biologic molecules and heavy metals, with high sensitivity and good selectivity.
    [Show full text]
  • PVD Material Listing
    P. O. Box 639 NL - 5550 AP Valkenswaard Tel: +31 (0)40 204 69 31 Fergutec Fax: +31 (0)40 201 39 81 E - mail: [email protected] PVD Material Listing Pure Metals Aluminum, Al Antimony, Sb Beryllium, Be Bismuth, Bi Boron, B Cadmium, Cd Calcium, Ca Carbon, C Cerium, Ce Chromium, Cr Cobalt, Co Copper, Cu Erbium, Er Gadolinium, Gd Gallium, Ga Germanium, Ge Gold, Au Hafnium, Hf Indium, In Iridium, Ir Iron, Fe Lanthanum, La Lead, Pb Magnesium, Mg Manganese, Mn Molybdenum, Mo Neodymium, Nd Nickel, Ni Niobium, Nb Osmium, Os Palladium, Pd Platinum, Pt Praseodymium, Pr Rhenium, Re Rhodium, Rh Ruthenium, Ru Samarium, Sm Selenium, Se Silicon, Si Silver, Ag Tantalum, Ta Fergutec b.v. P.O. Box 639, NL - 5550 AP Valkenswaard Heistraat 64, NL - 5554 ER Valkenswaard Bankaccount 45.80.36.714 ABN - AMRO Valkenswaard C.o.C. Eindhoven no. 17098554 VAT - ID NL8095.60.185.B01 The Standard Terms and Conditions, lodged at the Chamber of Commerce in Eindhoven, are applicable to all transactions. Tellurium, Te Terbium, Tb Tin, Sn Titanium, Ti Tungsten, W Vanadium, V Ytterbium, Yb Yttrium, Y Zinc, Zn Zirconium, Zr Precious Metals Gold Antimony, Au/Sb Gold Arsenic, Au/As Gold Boron, Au/B Gold Copper, Au/Cu Gold Germanium, Au/Ge Gold Nickel, Au/Ni Gold Nickel Indium, Au/Ni/In Gold Palladium, Au/Pd Gold Phosphorus, Au/P Gold Silicon, Au/Si Gold Silver Platinum, Au/Ag/Pt Gold Tantalum, Au/Ta Gold Tin, Au/Sn Gold Zinc, Au/Zn Palladium Lithium, Pd/Li Palladium Manganese, Pd/Mn Palladium Nickel, Pd/Ni Platinum Palladium, Pt/Pd Palladium Rhenium, Pd/Re Platinum Rhodium,
    [Show full text]