Expression Studies of Recombinant Camp-Specific Phosphodiesterase Type 4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Signal Transduction Guide
Signal Transduction Product Guide | 2007 NEW! Selective T-type Ca2+ channel blockers, NNC 55-0396 and Mibefradil ZM 447439 – Novel Aurora Kinase Inhibitor NEW! Antibodies for Cancer Research EGFR-Kinase Selective Inhibitors – BIBX 1382 and BIBU 1361 DRIVING RESEARCH FURTHER Calcium Signaling Agents ...................................2 G Protein Reagents ...........................................12 Cell Cycle and Apoptosis Reagents .....................3 Ion Channel Modulators ...................................13 Cyclic Nucleotide Related Tools ...........................7 Lipid Signaling Agents ......................................17 Cytokine Signaling Agents ..................................9 Nitric Oxide Tools .............................................19 Enzyme Inhibitors/Substrates/Activators ..............9 Protein Kinase Reagents....................................22 Glycobiology Agents .........................................12 Protein Phosphatase Reagents ..........................33 Neurochemicals | Signal Transduction Agents | Peptides | Biochemicals Signal Transduction Product Guide Calcium Signaling Agents ......................................................................................................................2 Calcium Binding Protein Modulators ...................................................................................................2 Calcium ATPase Modulators .................................................................................................................2 Calcium Sensitive Protease -
A Novel, Highly Potent and Selective Phosphodiesterase-9 Inhibitor for the Ferrata Storti Foundation Treatment of Sickle Cell Disease
Red Cell Biology & its Disorders ARTICLE A novel, highly potent and selective phosphodiesterase-9 inhibitor for the Ferrata Storti Foundation treatment of sickle cell disease James G. McArthur,1 Niels Svenstrup,2 Chunsheng Chen,3 Aurelie Fricot,4 Caroline Carvalho,4 Julia Nguyen,3 Phong Nguyen,3 Anna Parachikova,2 Fuad Abdulla,3 Gregory M. Vercellotti,3 Olivier Hermine,4 Dave Edwards,5 Jean-Antoine Ribeil,6 John D. Belcher3 and Thiago T. Maciel4 1Imara Inc., 2nd Floor, 700 Technology Square, Cambridge, MA, USA; 2H. Lundbeck A/S, 3 Haematologica 2020 Ottiliavej 9, 2500 Valby, Denmark; Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA; Volume 105(3):623-631 4INSERM UMR 1163, CNRS ERL 8254, Imagine Institute, Laboratory of Excellence GR-Ex, Paris Descartes - Sorbonne Paris Cité University, Paris, France; 5Kinexum, 8830 Glen Ferry Drive, Johns Creek, GA, USA and 6Departments of Biotherapy, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris Descartes- Sorbonne Paris Cité University, Paris, France ABSTRACT he most common treatment for patients with sickle cell disease (SCD) is the chemotherapeutic hydroxyurea, a therapy with Tpleiotropic effects, including increasing fetal hemoglobin (HbF) in red blood cells and reducing adhesion of white blood cells to the vascular endothelium. Hydroxyurea has been proposed to mediate these effects through a mechanism of increasing cellular cGMP levels. An alternative path to increasing cGMP levels in these cells is through the use of phospho- diesterase-9 inhibitors that selectively inhibit cGMP hydrolysis and increase cellular cGMP levels. We have developed a novel, potent and selective phosphodiesterase-9 inhibitor (IMR-687) specifically for the treatment of Correspondence: SCD. -
Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened. -
The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2. -
PDE6) by the Glutamic Acid- Rich Protein-2 (GARP2)
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Fall 2013 Regulation of the catalytic and allosteric properties of photoreceptor phosphodiesterase (PDE6) by the glutamic acid- rich protein-2 (GARP2) Wei Yao Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Yao, Wei, "Regulation of the catalytic and allosteric properties of photoreceptor phosphodiesterase (PDE6) by the glutamic acid-rich protein-2 (GARP2)" (2013). Doctoral Dissertations. 747. https://scholars.unh.edu/dissertation/747 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. REGULATION OF THE CATALYTIC AND ALLOSTERIC PROPERTIES OF PHOTORECEPTOR PHOSPHODIESTERASE (PDE6) BY THE GLUTAMIC ACID-RICH PROTEIN-2 (GARP2) BY WEI YAO B.S., Jinan University, 2007 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biochemistry September, 2013 UMI Number: 3575987 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Di!ss0?t&iori Piiblist’Mlg UMI 3575987 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. -
Supplementary Table 3: Calcineurin- and Aging-Sensitive Genes
Supplementary Table 3: Calcineurin- and Aging-Sensitive Genes Supplementary Table 3: Calcineurin up/ Aging up (pages 1 -2)- genes classified as Ad-aCaN up in the present study (see Supplementary Table 1), as well as reported as significantly increased in our prior aging study (Blalock et al., 2003, see supplementary tables 3, 4 and 5). Calcineurin Down/ Aging Down (page 2), Calcineurin Up/ Aging Down (pages 2-3),and Calcineurin Down/Aging Up (page 3)as above except for direction of change. - Columns: Probe Set- Affymetrix probe set identifier for RG-U34A microarray, Symbol and Title- annotated information for above probe set (annotation downloaded June, 2004), Calcineurin ANOVA- p-value for 1-way Analysis of Variance. Calcineurin Up/Aging Up Probe set Symbol Title CaN ANOVA rc_AI170268_at B2m beta-2 microglobulin 0.00000 rc_AI102299_s_at Bid3 BH3 interacting domain 3 0.00721 X52477_at C3 complement component 3 0.00000 X58294_at Ca2 carbonic anhydrase 2 0.00004 X76489cds_g_at Cd9 CD9 antigen 0.00000 L07736_at Cpt1a carnitine palmitoyltransferase 1, liver 0.00001 M55534mRNA_s_at Cryab crystallin, alpha B 0.00000 X60351cds_s_at Cryab crystallin, alpha B 0.00000 rc_AI234146_at Csrp1 cysteine and glycine-rich protein 1 0.00000 rc_AI176595_s_at Ctsl cathepsin L 0.00001 D00569_at Decr1 2,4-dienoyl CoA reductase 1, mitochondrial 0.00000 rc_AA924925_at Dri42 ER transmembrane protein Dri 42 0.00000 rc_AA848831_at Edg2 endothelial differentiation, lysophosphatidic acid GPCR, 2 0.00000 X14323cds_g_at Fcgrt Fc receptor, IgG, alpha chain transporter -
Challenges on Cyclic Nucleotide Phosphodiesterases Imaging with Positron Emission Tomography: Novel Radioligands and (Pre-)Clinical Insights Since 2016
International Journal of Molecular Sciences Review Challenges on Cyclic Nucleotide Phosphodiesterases Imaging with Positron Emission Tomography: Novel Radioligands and (Pre-)Clinical Insights since 2016 Susann Schröder 1,2,* , Matthias Scheunemann 2, Barbara Wenzel 2 and Peter Brust 2 1 Department of Research and Development, ROTOP Pharmaka Ltd., 01328 Dresden, Germany 2 Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; [email protected] (M.S.); [email protected] (B.W.); [email protected] (P.B.) * Correspondence: [email protected]; Tel.: +49-341-234-179-4631 Abstract: Cyclic nucleotide phosphodiesterases (PDEs) represent one of the key targets in the research field of intracellular signaling related to the second messenger molecules cyclic adenosine monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP). Hence, non-invasive imaging of this enzyme class by positron emission tomography (PET) using appropriate isoform- selective PDE radioligands is gaining importance. This methodology enables the in vivo diagnosis and staging of numerous diseases associated with altered PDE density or activity in the periphery and the central nervous system as well as the translational evaluation of novel PDE inhibitors as therapeutics. In this follow-up review, we summarize the efforts in the development of novel PDE radioligands and highlight (pre-)clinical insights from PET studies using already known PDE Citation: Schröder, S.; Scheunemann, radioligands since 2016. M.; Wenzel, B.; Brust, P. Challenges on Cyclic Nucleotide Keywords: positron emission tomography; cyclic nucleotide phosphodiesterases; PDE inhibitors; Phosphodiesterases Imaging with PDE radioligands; radiochemistry; imaging; recent (pre-)clinical insights Positron Emission Tomography: Novel Radioligands and (Pre-)Clinical Insights since 2016. -
Modulation of the Camp Levels with a Conserved Actinobacteria Phosphodiesterase 2 Enzyme Reduces Antimicrobial Tolerance in Mycobacteria
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.26.267864; this version posted August 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Modulation of the cAMP levels with a conserved actinobacteria phosphodiesterase 2 enzyme reduces antimicrobial tolerance in mycobacteria 3 4 Michael Thomson1, Kanokkan Nunta1, Ashleigh Cheyne1, Yi liu1, Acely Garza-Garcia2 and 5 Gerald Larrouy-Maumus1† 6 7 1MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, 8 Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK 9 2The Francis Crick Institute, London NW1 1AT, United Kingdom. 10 11 †Corresponding author: 12 13 Dr Gerald Larrouy-Maumus 14 MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty 15 of Natural Sciences, Imperial College London, London, SW7 2AZ, UK 16 Telephone: +44 (0) 2075 947463 17 E-mail: [email protected] 18 19 20 1 e ag P 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.26.267864; this version posted August 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 21 Abstract 22 Antimicrobial tolerance (AMT) is the gateway to the development of antimicrobial resistance 23 (AMR) and is therefore a major issue that needs to be addressed. 24 The second messenger cyclic-AMP (cAMP), which is conserved across all taxa, is involved 25 in propagating signals from environmental stimuli and converting these into a response. -
Development of Phosphodiesterase-Protein Kinase Complexes As Novel Targets for Discovery of Inhibitors with Enhanced Spec- Ificity
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 April 2021 doi:10.20944/preprints202104.0174.v1 Article Development of Phosphodiesterase-Protein Kinase complexes as novel targets for discovery of inhibitors with enhanced spec- ificity Nikhil K. Tulsian 1,2, Valerie Jia-En Sin 3, Hwee-Ling Koh 3,*, Ganesh S. Anand 1,4,* 1 Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore – 117543 2 Department of Biochemistry, 28 Medical Drive, National University of Singapore, Singapore – 117546 3 Department of Pharmacy, 18 Science Drive 4, National University of Singapore, Singapore – 117543 4 Department of Chemistry, The Pennsylvania State University, Philadelphia, United States of America - 16801 * Correspondence: KHL: [email protected]; Tel.: +6565167962; GSA: [email protected]; Tel.: 814-867-1944 Abstract: Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides to modulate multiple signaling events in cells. PDEs are recognized to actively associate with cyclic nucleotide receptors (Protein Kinases, PK) in larger macromolecular assemblies referred to as signalosomes. Complexation of PDEs with PK generates an expanded active site which enhances PDE activity. This facilitates signal- osome-associated PDEs to preferentially catalyze active hydrolysis of cyclic nucleotides bound to PK, and aid in signal termination. PDEs are important drug targets and current strategies for inhib- itor discovery are based entirely on targeting conserved PDE catalytic domains. This often results in inhibitors with cross-reactivity amongst closely related PDEs and attendant unwanted side ef- fects. Here, our approach targets PDE-PK complexes as they would occur in signalosomes, thereby offering greater specificity. Our developed fluorescence polarization assay has been adapted to identify inhibitors that block cyclic nucleotide pockets in PDE-PK complexes in one mode, and dis- rupt protein-protein interactions between PDEs and cyclic nucleotide activating protein kinases in a second mode. -
Soluble Epoxide Hydrolase Inhibition Protected Against Angiotensin II
www.nature.com/scientificreports OPEN Soluble Epoxide Hydrolase Inhibition Protected against Angiotensin II-induced Adventitial Received: 6 April 2017 Accepted: 29 June 2017 Remodeling Published online: 31 July 2017 Chi Zhou, Jin Huang, Qing Li, Jiali Nie, Xizhen Xu & Dao Wen Wang Epoxyeicosatrienoic acids (EETs), the metabolites of cytochrome P450 epoxygenases derived from arachidonic acid, exert important biological activities in maintaining cardiovascular homeostasis. Soluble epoxide hydrolase (sEH) hydrolyzes EETs to less biologically active dihydroxyeicosatrienoic acids. However, the efects of sEH inhibition on adventitial remodeling remain inconclusive. In this study, the adventitial remodeling model was established by continuous Ang II infusion for 2 weeks in C57BL/6 J mice, before which sEH inhibitor 1-trifuoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered by gavage. Adventitial remodeling was evaluated by histological analysis, western blot, immunofuorescent staining, calcium imaging, CCK-8 and transwell assay. Results showed that Ang II infusion signifcantly induced vessel wall thickening, collagen deposition, and overexpression of α-SMA and PCNA in aortic adventitia, respectively. Interestingly, these injuries were attenuated by TPPU administration. Additionally, TPPU pretreatment overtly prevented Ang II-induced primary adventitial fbroblasts activation, characterized by diferentiation, proliferation, migration, and collagen synthesis via Ca2+-calcineurin/NFATc3 signaling pathway in vitro. In summary, our results suggest that inhibition of sEH could be considered as a novel therapeutic strategy to treat adventitial remodeling related disorders. Aorta is composed of three tunicae: intima, media and adventitia. Te roles of intima and media on vascular functions have been extensively studied, while the contribution of adventitia to vascular functions was recently recognized. -
Phosphodiesterase Type 5 Inhibitors: a Biochemical and Clinical Correlation Survey
International Journal of Impotence Research (2003) 15, Suppl 5, S13–S19 & 2003 Nature Publishing Group All rights reserved 0955-9930/03 $25.00 www.nature.com/ijir Phosphodiesterase type 5 inhibitors: a biochemical and clinical correlation survey NN Kim1* 1Department of Urology, Institute for Sexual Medicine, Boston University School of Medicine, Boston, Massachusetts, USA Phosphodiesterase type 5 (PDE 5) is the major cGMP hydrolyzing enzyme in penile corpus cavernosum and is an important regulator of nitric oxide-mediated smooth muscle relaxation. The critical role of PDE 5 in penile erection and the recent availability of specific and potent inhibitors of PDE 5 have enabled the development of effective oral treatment strategies that have been widely accepted by both health-care professionals and the lay public. This article examines the correlation between the available biochemical and clinical data for the PDE 5 inhibitors sildenafil (Viagra), tadalafil (Cialis) and vardenafil (Levitra). International Journal of Impotence Research (2003) 15, Suppl 5, S13–S19. doi:10.1038/sj.ijir.3901067 Keywords: phosphodiesterase type 5 inhibitor; sildenafil; tadalafil; vardenafil; Viagra; Cialis; Levitra; potency; efficacy; safety Introduction differing substrate specificities based upon their ability to discriminate between cGMP and adeno- sine 30,50-cyclic monophosphate (cAMP). Further- Guanosine 30,50-cyclic monophosphate (cGMP) is an more, the activity of different phosphodiesterases important mediator of smooth muscle relaxation and may be modulated by varying mechanisms. Thus, has been shown to be a key molecular regulator of regulation of cyclic nucleotide metabolism depends penile tumescence. Intracellular cGMP concentra- on the specific expression profile of the various tions are strictly controlled by the action of guanylyl phosphodiesterase types in a given tissue. -
Characterization of the First Potent and Selective PDE9 Inhibitor Using A
Molecular Pharmacology Fast Forward. Published on September 8, 2005 as DOI: 10.1124/mol.105.017608 Molecular PharmacologyThis article Fasthas not Forward. been copyedited Published and formatted. on TheSeptember final version 8,may 2005 differ asfrom doi:10.1124/mol.105.017608 this version. MOL 17608 Characterization of the first potent and selective PDE9 inhibitor using a cGMP reporter cell line Frank Wunder, Adrian Tersteegen, Annegret Rebmann, Christina Erb, Thomas Fahrig, and Martin Hendrix Downloaded from molpharm.aspetjournals.org Cardiovascular Research (F.W., A.R.), Molecular Screening Technology (A.T.), CNS Research (C.E., T.F.) and Medicinal Chemistry (M.H.), Bayer HealthCare AG, Aprather Weg 18a, D-42096 Wuppertal, Germany at ASPET Journals on September 23, 2021 1 Copyright 2005 by the American Society for Pharmacology and Experimental Therapeutics. Molecular Pharmacology Fast Forward. Published on September 8, 2005 as DOI: 10.1124/mol.105.017608 This article has not been copyedited and formatted. The final version may differ from this version. MOL 17608 Running title: Characterization of the first selective PDE9 inhibitor Corresponding author: Dr. Frank Wunder Bayer HealthCare AG Cardiovascular Research Aprather Weg 18a D-42096 Wuppertal, Germany Downloaded from PHONE: ++ 49-202-364107 FAX: ++ 49-202-368009 E-MAIL: [email protected] molpharm.aspetjournals.org Number of text pages: 28 Number of tables: 1 Number of figures: 6 at ASPET Journals on September 23, 2021 Number of references: 26 Number of words in the abstract: 232 Number of words in the introduction: 658 Number of words in the discussion: 1407 Abbreviations: cGMP, guanosine 3'-5'-cyclic monophosphate; CNG, cyclic nucleotide-gated; IBMX, 3-isobutyl-1-methylxanthin; MTP, microtiter plate; NO, nitric oxide; PDE, cyclic nucleotide-specific phosphodiesterase; RLU, relative light unit; sGC, soluble guanylate cyclase; uHTS, ultra-high-throughput screening 2 Molecular Pharmacology Fast Forward.