Kings Bowl Lava Field, Snake River Plain

Total Page:16

File Type:pdf, Size:1020Kb

Kings Bowl Lava Field, Snake River Plain Journal of Volcanology and Geothermal Research 351 (2018) 89–104 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Phreatic explosions during basaltic fissure eruptions: Kings Bowl lava field, Snake River Plain, USA Scott S. Hughes a,⁎, Shannon E. Kobs Nawotniak a, Derek W.G. Sears b,c, Christian Borg a, William Brent Garry d, Eric H. Christiansen e, Christopher W. Haberle f, Darlene S.S. Lim b, Jennifer L. Heldmann b a Department of Geosciences, Idaho State University, 921 South 8th Avenue, Stop 8072, Pocatello, ID 83209, United States b NASA Ames Research Center, Mountain View, CA 94035, United States c Bay Area Environmental Research Institute, Petaluma, CA 94952, United States d NASA Goddard Space Flight Center, Geology, Geophysics and Geochemistry Lab, Greenbelt, MD 20771, United States e Department of Geological Sciences, Brigham Young University, Provo, UT 84602, United States f Mars Space Flight Facility, Arizona State University, Tempe, AZ 85287, United States article info abstract Article history: Physical and compositional measurements are made at the ~7 km-long (~2200 years B.P.) Kings Bowl basaltic Received 22 May 2017 fissure system and surrounding lava field in order to further understand the interaction of fissure-fed lavas Received in revised form 30 December 2017 with phreatic explosive events. These assessments are intended to elucidate the cause and potential for hazards Accepted 2 January 2018 associated with phreatic phases that occur during basaltic fissure eruptions. In the present paper we focus on a Available online 04 January 2018 general understanding of the geological history of the site. We utilize geospatial analysis of lava surfaces, litho- fl Keywords: logic and geochemical signatures of lava ows and explosively ejected blocks, and surveys via ground observa- Phreatic explosions tion and remote sensing. Pit craters Lithologic and geochemical signatures readily distinguish between Kings Bowl and underlying pre-Kings Bowl Fissure eruptions lava flows, both of which comprise phreatic ejecta from the Kings Bowl fissure. These basalt types, as well as Lava lake neighboring lava flows from the contemporaneous Wapi lava field and the older Inferno Chasm vent and outflow channel, fall compositionally within the framework of eastern Snake River Plain olivine tholeiites. Total volume of lava in the Kings Bowl field is estimated to be ~0.0125 km3, compared to a previous estimate of 0.005 km3.The main (central) lava lake lost a total of ~0.0018 km3 of magma by either drain-back into the fissure system or breakout flows from breached levees. Phreatic explosions along the Kings Bowl fissure system occurred after magma supply was cut off, leading to fissure evacuation, and were triggered by magma withdrawal. The fissure system produced multiple phreatic explosions and the main pit is accompanied by others that occur as subordi- nate pits and linear blast corridors along the fissure. The drop in magma supply and the concomitant influx of groundwater were necessary processes that led to the formation of Kings Bowl and other pits along the fissure. A conceptual model is presented that has relevance to the broader range of low-volume, monogenetic basaltic fissure eruptions on Earth, the Moon and other planetary bodies. © 2018 Elsevier B.V. All rights reserved. 1. Introduction such as Kamoamoa, Hawai'i in 2011 (Orr et al., 2012) to several tens of km such as Laki Craters, Iceland in 1783 (Thordarson and Self, Phreatic deposits are rarely preserved among fissure eruptions that 1993), and may extend for 100 s of km during flood basalt eruptions produce lava outflow lobes, but may play a more important role than (White and McKenzie, 1989). what is currently recognized. Because phreatic explosions often create Often occurring within larger volcanic fields on the flanks of large documented hazards in non-fissure-fed eruptions, such as the Kīlauea shields, along rift zones, or within calderas, individual fissure eruptions caldera eruption in 1924, phreatic activity could enhance the hazards present opportunities to examine processes related to dike injection posed by even small fissure eruptions. Basaltic fissure vent eruptions, and magma supply, both of which may be dependent on tectonic influ- often related to lateral dike propagation, are ubiquitous in both oceanic ences. Regardless of tectonic setting, nearly all basaltic fissure eruptions and continental settings. Historic fissure lengths range from a few km produce spatter ramparts and small cones, self-impounded lava ponds, individual lava outflow lobes, lava coatings on fissure walls, and lava fi ⁎ Corresponding author. drain-back into the ssure system during short-lived eruptive cycles. E-mail address: [email protected] (S.S. Hughes). However, few involve a strictly phreatic explosive phase. Kings Bowl https://doi.org/10.1016/j.jvolgeores.2018.01.001 0377-0273/© 2018 Elsevier B.V. All rights reserved. 90 S.S. Hughes et al. / Journal of Volcanology and Geothermal Research 351 (2018) 89–104 (a.k.a. Crystal Ice Cave) lava field on the eastern Snake River Plain of to the water table was unique at Kings Bowl during the eruption, or a Idaho, USA (Fig. 1) offers a unique environment to examine features unique mechanism was a significant factor in ESRP and other late- that may be associated with similar volcanic fissures. stage phreatic explosions at basaltic fissure vents. The lava field, including a partially drained central lava lake, encom- This paper presents the physical, geospatial, and geochemical attri- passes the namesake phreatic explosion pit within a relatively small, butes in order to develop a quantified conceptual model of the eruptive ~7 km-long, monogenetic eruptive fissure system. The Kings Bowl fis- sequence. It provides a baseline for future work that outlines myriad an- sure system, accentuated by the main central pit, a less-accessible ex- alog features on the Moon and Mars, as well as near-Earth asteroids, to plosion pit near the north end of the fissure, and numerous elucidate potential volcanic mechanisms that can be interpreted from subordinate explosion pits, provides evidence for such variation in remotely-sensed datasets. In this context, we consider Kings Bowl to eruptive style over a short time-frame (e.g. King, 1977; Greeley and be an analog for lunar rille and graben formation, Floor-Fractured Cra- Schultz, 1977; Kuntz et al., 1992; Hughes et al., 1999). The culminating ters (FFCs), volcanic constructs along eruptive and non-eruptive fis- phreatic explosions at Kings Bowl, a rare occurrence on the ESRP, raise sures, and ejecta deposits from explosive processes on the Moon, the question of why evidence for phreatic explosions during the waning Mars, and perhaps on near-Earth asteroids. Companion studies (Sears stages of fissure eruptions, as opposed to early vulcanian phreatic and et al., 2014, 2015; Kobs Nawotniak et al., 2014, 2016) focus on energy syn-eruptive phreatomagmatic blasts, is scarce. requirements of ejecta blocks and the explosive parameters of the phre- This study aims to determine the mechanisms involved in the culmi- atic steam blasts that occurred during the Kings Bowl eruptive cycles. nating phreatic explosions and how they are associated with effusive eruption and emplacement of fissure-fed lava flows. We determine 1.1. Geologic setting the origin of ejecta blocks blasted from the fissure and the sequence of events that occurred during the purportedly monogenetic eruption. Situated along the Great Rift of the eastern Snake River Plain (ESRP), Our primary hypothesis is that phreatic steam generation required Kings Bowl is one of several basaltic fields in the region (Fig. 1), includ- magma withdrawal from the fissure system, which provided residual ing Wapi, Hells Half Acre, and Craters of the Moon, that erupted within heat for explosive interaction with groundwater. This paper outlines the last ~5000 years. Radiocarbon ages for these features provided by the important mechanisms that produced the culminating explosions, Kuntz et al. (1992, 2007) in years B.P. are: Kings Bowl = 2220 ± 100; following the effusive emplacements of several lava flows, and evalu- Wapi = 2270 ± 50; Hells Half Acre = 5200 ± 150; and the Blue Dragon ates the nature and importance of lava drain-back from the lava lake flow at Craters of the Moon (a polygenetic system active since as a factor in hydro-volcanic explosions. ~ 15 ky ago) = 2076 ± 75. Other recent lava flows at Craters of the Our analysis of the eruptive processes at Kings Bowl builds on exten- Moon have essentially the same ~2100 years B.P. age (Kuntz et al., sive previous work in order to decipher the eruptive mechanisms and 2007), indicating several contemporaneous eruptions along the north- understand the history of the fissure system. Data collected using ern and southern segments of the Great Rift. A series of older (late Pleis- field- and lab-based methods enable a wide–scale (mm to km) charac- tocene) aligned eruptive vents, previously referred to as the Inferno terization of the Kings Bowl region. Specifically, ground investigations, Chasm rift zone (Greeley et al., 1977), make up a topographic ridge remote sensing imagery, geochemical analyses, petrographic analyses, ~3 km east of Kings Bowl that roughly parallels the Great Rift. Wapi ejecta distribution, differential GPS (dGPS) topographic profiles and lava field is thus considered to lie directly on the Great Rift and is con- high-resolution aerial (UAV-borne) scans of key geologic features are temporaneous with Kings Bowl; whereas, Inferno Chasm is significantly used to develop the conceptual model. We also examined possible older (based on loess and vegetation cover) and is considered to belong mechanisms that might explain why phreatic deposits are scarce within to a separate, but older volcanic rift zone (Greeley and Schultz, 1977; basaltic fissure eruptions. Simple explanations include: ejecta deposits Greeley et al., 1977). Lava from the Inferno Chasm eruption likely from explosive eruptions were buried by subsequent lavas, the depth flowed into the topographically lower Kings Bowl region, thus Fig.
Recommended publications
  • Volcanic Landforms: the Landform Which Is Formed from the Material Thrown out to the Surface During Volcanic Activity Is Called Extrusive Landform
    Download Testbook App Volcanic Geography NCERT Notes Landforms For UPSC ABOUT VOLCANIC LANDFORM: Volcanic landform is categorised into two types they are:extrusive and intrusive landforms. This division is done based on whether magma cools within the crust or above the crust. By the cooling process of magma different types of rock are formed. Like: Plutonic rock, it is a rock which is magma within the crust whereas Igneous rock is formed by the cooling of lava above the surface. Along with that “igneous rock” term is also used to refer to all rocks of volcanic origin. Extrusive Volcanic Landforms: The landform which is formed from the material thrown out to the surface during volcanic activity is called extrusive landform. The materials which are thrown out during volcanic activity are: lava flows, pyroclastic debris, volcanic bombs, ash, dust and gases such as nitrogen compounds, sulphur compounds and minor amounts of chlorine, hydrogen and argon. Conical Vent and Fissure Vent: Conical Vent: It is a narrow cylindrical vent through which magma flows out violently. Such vents are commonly seen in andesitic volcanism. Fissure vent: Such vent is a narrow, linear through which lava erupts with any kind of explosive events. Such vents are usually seen in basaltic volcanism. Mid-Ocean Ridges: The volcanoes which are found in oceanic areas are called mid-ocean ridges. In them there is a system of mid-ocean ridges stretching for over 70000 km all through the ocean basins. And the central part of such a ridge usually gets frequent eruptions. Composite Type Volcanic Landforms: Such volcanic landforms are also called stratovolcanoes.
    [Show full text]
  • Magma Emplacement and Deformation in Rhyolitic Dykes: Insight Into Magmatic Outgassing
    MAGMA EMPLACEMENT AND DEFORMATION IN RHYOLITIC DYKES: INSIGHT INTO MAGMATIC OUTGASSING Presented for the degree of Ph.D. by Ellen Marie McGowan MGeol (The University of Leicester, 2011) Initial submission January 2016 Final submission September 2016 Lancaster Environment Centre, Lancaster University Declaration I, Ellen Marie McGowan, hereby declare that the content of this thesis is the result of my own work, and that no part of the work has been submitted in substantially the same form for the award of a higher degree elsewhere. This thesis is dedicated to Nan-Nar, who sadly passed away in 2015. Nan, you taught our family the importance and meaning of love, we love you. Abstract Exposed rhyolitic dykes at eroded volcanoes arguably provide in situ records of conduit processes during rhyolitic eruptions, thus bridging the gap between surface and sub-surface processes. This study involved micro- to macro-scale analysis of the textures and water content within shallow (emplacement depths <500 m) rhyolitic dykes at two Icelandic central volcanoes. It is demonstrated that dyke propagation commenced with the intrusion of gas- charged currents that were laden with particles, and that the distribution of intruded particles and degree of magmatic overpressure required for dyke propagation were governed by the country rock permeability and strength, with pre-existing fractures playing a pivotal governing role. During this stage of dyke evolution significant amounts of exsolved gas may have escaped. Furthermore, during later magma emplacement within the dyke interiors, particles that were intruded and deposited during the initial phase were sometimes preserved at the dyke margins, forming dyke- marginal external tuffisite veins, which would have been capable of facilitating persistent outgassing during dyke growth.
    [Show full text]
  • Video Monitoring Reveals Pulsating Vents and Propagation Path of Fissure Eruption During the March 2011 Pu'u
    Journal of Volcanology and Geothermal Research 330 (2017) 43–55 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Video monitoring reveals pulsating vents and propagation path of fissure eruption during the March 2011 Pu'u 'Ō'ō eruption, Kilauea volcano Tanja Witt ⁎,ThomasR.Walter GFZ German Research Centre for Geosciences, Section 2.1: Physics of Earthquakes and Volcanoes, Telegrafenberg, 14473 Potsdam, Germany article info abstract Article history: Lava fountains are a common eruptive feature of basaltic volcanoes. Many lava fountains result from fissure erup- Received 12 April 2016 tions and are associated with the alignment of active vents and rising gas bubbles in the conduit. Visual reports Received in revised form 18 November 2016 suggest that lava fountain pulses may occur in chorus at adjacent vents. The mechanisms behind such a chorus of Accepted 18 November 2016 lava fountains and the underlying processes are, however, not fully understood. Available online 5 December 2016 The March 2011 eruption at Pu'u 'Ō'ō (Kilauea volcano) was an exceptional fissure eruption that was well mon- fi fi Keywords: itored and could be closely approached by eld geologists. The ssure eruption occurred along groups of individ- Kilauea volcano ual vents aligned above the feeding dyke. We investigate video data acquired during the early stages of the Fissure eruption eruption to measure the height, width and velocity of the ejecta leaving eight vents. Using a Sobel edge-detection Vent migration algorithm, the activity level of the lava fountains at the vents was determined, revealing a similarity in the erup- Bubbling magma tion height and frequency.
    [Show full text]
  • LERZ) Eruption of Kīlauea Volcano: Fissure 8 Prognosis and Ongoing Hazards
    COOPERATOR REPORT TO HAWAII COUNTY CIVIL DEFENSE Preliminary Analysis of the ongoing Lower East Rift Zone (LERZ) eruption of Kīlauea Volcano: Fissure 8 Prognosis and Ongoing Hazards Prepared by the U.S. Geological Survey Hawaiian Volcano Observatory July 15, 2018 (V 1.1) Introduction In late April 2018, the long-lived Puʻu ʻŌʻō vent collapsed, setting off a chain of events that would result in a vigorous eruption in the lower East Rift Zone of Kīlauea Volcano, as well as the draining of the summit lava lake and magmatic system and the subsequent collapse of much of the floor of the Kīlauea caldera. Both events originated in Lava Flow Hazard Zone (LFHZ) 1 (Wright et al, 1992), which encompasses the part of the volcano that is most frequently affected by volcanic activity. We examine here the possible and potential impacts of the ongoing eruptive activity in the lower East Rift Zone (LERZ) of Kīlauea Volcano, and specifically that from fissure 8 (fig. 1). Fissure 8 has been the dominant lava producer during the 2018 LERZ eruption, which began on May 3, 2018, in Leilani Estates, following intrusion of magma from the middle and upper East Rift Zone, as well as the volcano’s summit, into the LERZ. The onset of downrift intrusion was accompanied by collapse of the Puʻu ʻŌʻō vent, which started on April 30 and lasted several days. Kīlauea Volcano's shallow summit magma reservoir began deflating on about May 2, illustrating the magmatic connection between the LERZ and the summit. Early LERZ fissures erupted cooler lava that had likely been stored within the East Rift Zone, but was pushed out in front of hotter magma arriving from farther uprift.
    [Show full text]
  • Lunar Crater Volcanic Field (Reveille and Pancake Ranges, Basin and Range Province, Nevada, USA)
    Research Paper GEOSPHERE Lunar Crater volcanic field (Reveille and Pancake Ranges, Basin and Range Province, Nevada, USA) 1 2,3 4 5 4 5 1 GEOSPHERE; v. 13, no. 2 Greg A. Valentine , Joaquín A. Cortés , Elisabeth Widom , Eugene I. Smith , Christine Rasoazanamparany , Racheal Johnsen , Jason P. Briner , Andrew G. Harp1, and Brent Turrin6 doi:10.1130/GES01428.1 1Department of Geology, 126 Cooke Hall, University at Buffalo, Buffalo, New York 14260, USA 2School of Geosciences, The Grant Institute, The Kings Buildings, James Hutton Road, University of Edinburgh, Edinburgh, EH 3FE, UK 3School of Civil Engineering and Geosciences, Newcastle University, Newcastle, NE1 7RU, UK 31 figures; 3 tables; 3 supplemental files 4Department of Geology and Environmental Earth Science, Shideler Hall, Miami University, Oxford, Ohio 45056, USA 5Department of Geoscience, 4505 S. Maryland Parkway, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA CORRESPONDENCE: gav4@ buffalo .edu 6Department of Earth and Planetary Sciences, 610 Taylor Road, Rutgers University, Piscataway, New Jersey 08854-8066, USA CITATION: Valentine, G.A., Cortés, J.A., Widom, ABSTRACT some of the erupted magmas. The LCVF exhibits clustering in the form of E., Smith, E.I., Rasoazanamparany, C., Johnsen, R., Briner, J.P., Harp, A.G., and Turrin, B., 2017, overlapping and colocated monogenetic volcanoes that were separated by Lunar Crater volcanic field (Reveille and Pancake The Lunar Crater volcanic field (LCVF) in central Nevada (USA) is domi­ variable amounts of time to as much as several hundred thousand years, but Ranges, Basin and Range Province, Nevada, USA): nated by monogenetic mafic volcanoes spanning the late Miocene to Pleisto­ without sustained crustal reservoirs between the episodes.
    [Show full text]
  • Assessing Eruption Column Height in Ancient Flood Basalt Eruptions
    This is a repository copy of Assessing eruption column height in ancient flood basalt eruptions. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/109782/ Version: Accepted Version Article: Glaze, LS, Self, S, Schmidt, A orcid.org/0000-0001-8759-2843 et al. (1 more author) (2017) Assessing eruption column height in ancient flood basalt eruptions. Earth and Planetary Science Letters, 457. pp. 263-270. ISSN 0012-821X https://doi.org/10.1016/j.epsl.2014.07.043 © 2016 Elsevier B.V. and United States Government as represented by the Administrator of the National Aeronautics and Space Administration. Published by Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.
    [Show full text]
  • Controls on Lunar Basaltic Volcanic Eruption Structure and Morphology: 2 Gas Release Patterns in Sequential Eruption Phases 3 L
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lancaster E-Prints 1 Controls on Lunar Basaltic Volcanic Eruption Structure and Morphology: 2 Gas Release Patterns in Sequential Eruption Phases 3 L. Wilson1,2 and J. W. Head2 4 1Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK 5 2Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 6 02912 USA 7 8 Key Points: 9 Relationships between a diverse array of lunar mare effusive and explosive volcanic 10 deposits and landforms have previously been poorly understood. 11 Four stages in the generation, ascent and eruption of magma and gas release patterns are 12 identified and characterized. 13 Specific effusive, explosive volcanic deposits and landforms are linked to these four 14 stages in lunar mare basalt eruptions in a predictive and integrated manner. 15 16 Abstract 17 Assessment of mare basalt gas release patterns during individual eruptions provides the basis for 18 predicting the effect of vesiculation processes on the structure and morphology of associated 19 features. We subdivide typical lunar eruptions into four phases: Phase 1, dike penetrates to the 20 surface, transient gas release phase; Phase 2, dike base still rising, high flux hawaiian eruptive 21 phase; Phase 3, dike equilibration, lower flux hawaiian to strombolian transition phase; Phase 4, 22 dike closing, strombolian vesicular flow phase. We show how these four phases of mare basalt 23 volatile release, together with total dike volumes, initial magma volatile content, vent 24 configuration and magma discharge rate, can help relate the wide range of apparently disparate 25 lunar volcanic features (pyroclastic mantles, small shield volcanoes, compound flow fields, 26 sinuous rilles, long lava flows, pyroclastic cones, summit pit craters, irregular mare patches 27 (IMPs) and ring moat dome structures (RMDSs)) to a common set of eruption processes.
    [Show full text]
  • Episodic Triggering of the Rise of Resident Small-Scale Basaltic Magmas from the Mantle
    IAVCEI 2013 Scientific Assembly - July 20 - 24, Kagoshima, Japan Forecasting Volcanic Activity - Reading and translating the messages of nature for society 1A1_3B-O1 Room A5 Date/Time: July 21 8:45-9:00 Episodic triggering of the rise of resident small-scale basaltic magmas from the mantle Ian E M Smith1, Lucy E McGee1, Shane J Cronin2, Jan M Lindsay1 1Geology-School of Environment, University of Auckland, New Zealand, 2Institute of Natural Resources, Massey University, New Zealand E-mail: [email protected] Small scale basaltic magmatic systems are expressed at the Earth’s surface as fields of individual volcanoes, each representing a discrete batch of magma erupted within a defined period of time (weeks to years). Characteristically each volcano shows chemical compositions that are distinct from that of other volcanoes in the field and this can be explained in terms of variation in the parameters of magma generation, specifically depth and proportion of melting. Fundamental to an understanding of the behaviour of such systems is the behaviour of their mantle source. The scale of these systems precludes large scale plume related processes such as those implicated in the origin of large igneous provinces. Rather, adiabatic melting linked to small scale mantle convection can explain both the size and longevity (up to 10 Ma) of these systems. However, the important questions are does each volcano in a field represent a single melting event and what triggers each event? To address these questions we investigate the Quaternary Auckland Volcanic Field (AVF) in northern New Zealand. The field exhibits the common volcanological and chemical behaviour of classic monogenetic volcanic systems.
    [Show full text]
  • Oregon Geology
    OREGOM GEOLOGY published by the Oregon Department of Geology and Mineral Industries VOLUME 44 , NUMBER 11 NOVEMBER 19B2 '" ;. OREGON GEOLOGY OIL AND GAS NEWS (ISSN 0164-3304) Columbia County VOLUME 44, NUMBER 11 NOVEMBER 1982 Reichhold Energy Corporation drilled Adams 34-28 to a total depth of 2,572 ft. The well, in sec. 28, T. 7 N., R. 5 W., Published monthly by the State of Oregon Department of was abandoned as a dry hole in September. Geology and Mineral Industries (Volumes I through 40 were en­ The company will soon spud Libel 12-14 in the Mist gas titled The Ore Bin). field. The proposed 2,900-ft well is to be located in sec. 14, T. 6 N., R. 5 W .. The location is half a mile from the recently Governing Board completed redrill of Columbia County 4. C. Stanley Rasmussen ........................... Baker Allen P. Stinchfield ........................ North Bend Clatsop County Donald A. Haagensen. .. Portland Oregon Natural Gas Development Company's Patton 32-9 in sec. 9, T. 7 N., R. 5 W., is idle pending the decision State Geologist .. .. Donald A. Hull whether to redrill. Deputy State Geologist ..................... John D. Beaulieu Douglas County Editor .... .. Beverly F. Vogt Florida Exploration Company has abandoned the 1-4 well near Drain. It is not known whether the company will drill Main Ollice: 1005 State Office Building, Portland 97201, other locations. phone (503) 229-5580. Yamhill County Baker Field Office: 2033 First Street, Baker 97814, phone (503) Nahama and Weagant Energy Company recently drilled 523-3133. Klohs 1 in sec. 6, T.
    [Show full text]
  • A Geologic Study of the Capulin Volcano National Monument and Surrounding Areas, Union and Colfax Counties, New Mexico
    A Geologic Study of the Capulin Volcano National Monument and surrounding areas, Union and Colfax Counties, New Mexico by William O. Sayre and Michael H. Ort New Mexico Bureau of Geology and Mineral Resources, New Mexico Tech Socorro, New Mexico 87801 Open-file Report 541 August, 2011 A geologic study of Capulin Volcano National Monument and surrounding areas Final Report Cooperative Agreement CA7029-2-0017 December 4, 1999 Submitted to: Capulin Volcano National Monument P. O. Box 80 Capulin, New Mexico 88414 Submitted by: William O. Sayre, Ph.D., P.G. College of Santa Fe 1600 St. Michael’s Drive Santa Fe, New Mexico 87505-7634 and Michael H. Ort, Ph.D. Department of Geology PO Box 4099 Northern Arizona University Flagstaff, Arizona 86011 Table of Contents Executive Summary ........................................................................................................ 2 Introduction ..................................................................................................................... 2 Body of Report .............................................................................................................. 17 Discussion and Conclusions ......................................................................................... 22 Recommendations for Future Work .............................................................................. 64 References .................................................................................................................... 65 Appendices…………………………………………………………………………………….
    [Show full text]
  • Volcano ­ Accessscience from Mcgraw­Hill Education
    10/3/2016 Volcano ­ AccessScience from McGraw­Hill Education (http://www.accessscience.com/) Volcano Article by: Tilling, Robert I. Branch of Igneous and Geothermal Processes, U.S. Geological Survey, Menlo Park, California. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097­8542.735200 (http://dx.doi.org/10.1036/1097­8542.735200) Content Volcanic vents Volcanic products Volcanic landforms Submarine volcanism Fumaroles and hot springs Distribution of volcanoes Bibliography Additional Readings A mountain or hill, generally steep­sided, formed by accumulation of magma (molten rock with associated gas and crystals) erupted through openings or volcanic vents in the Earth's crust; the term volcano also refers to the vent itself. During the evolution of a long­lived volcano, a permanent shift in the locus of principal vent activity can produce a satellitic volcanic accumulation as large as or larger than the parent volcano, in effect forming a new volcano on the flanks of the old. Planetary exploration has revealed dramatic evidence of volcanoes and their products on extra­terrestrial bodies, such as the Earth's Moon, Mars, Mercury, Venus, and the moons of Jupiter (Fig. 1), Neptune, and Uranus on a scale much more vast than on Earth. For example, Olympus Mons, a gigantic shield volcano on Mars about 600 km (375 mi) in diameter, is larger across than the length of the Hawaiian Islands. However, only the products and landforms of terrestrial volcanic activity are described here. See also: Mars (/content/mars/407700); Mercury (planet) (/content/mercury­ planet/415700); Moon (/content/moon/434600); Neptune (/content/neptune/449000); Uranus (/content/uranus/722800); Venus (/content/venus/730100); Volcanology (/content/volcanology/735300) http://www.accessscience.com/content/volcano/735200 1/17 10/3/2016 Volcano ­ AccessScience from McGraw­Hill Education Fig.
    [Show full text]
  • Pre-Eruptive Storage Conditions and Eruption Dynamics of a Small Rhyolite Dome: Douglas Knob, Yellowstone Volcanic Field, USA
    Bull Volcanol (2014) 76:808 DOI 10.1007/s00445-014-0808-8 RESEARCH ARTICLE Pre-eruptive storage conditions and eruption dynamics of a small rhyolite dome: Douglas Knob, Yellowstone volcanic field, USA Kenneth S. Befus & Robert W.Zinke & Jacob S. Jordan & Michael Manga & James E. Gardner Received: 14 May 2013 /Accepted: 5 February 2014 # Springer-Verlag Berlin Heidelberg 2014 Abstract The properties and processes that control the size, ranging from 0.03 to 0.11 MPa h−1 (∼0.4–1.3 mm s−1 ascent duration, and style of eruption of rhyolite magma are poorly rates). Such slow ascent would allow time for passive constrained because of a paucity of direct observations. Here, degassing at depth in the conduit, thus resulting in an effusive we investigate the small-volume, nonexplosive end-member. eruption. Using calculated melt viscosity, we infer that the In particular, we determine the pre-eruptive storage conditions dike that fed the eruption was 4–8 m in width. Magma flux and eruption dynamics of Douglas Knob, a 0.011-km3 obsid- through this dike, assuming fissure dimensions at the surface ian dome that erupted from a 500-m-long fissure in the represent its geometry at depth, implies an eruption duration Yellowstone volcanic system. To determine pre-eruptive stor- of 17–210 days. That duration is also consistent with the shape age conditions, we analyzed compositions of phenocrysts, of the dome if produced by gravitational spreading, as well as matrix glass, and quartz-hosted glass inclusions by electron the ascent time of magma from its storage depth.
    [Show full text]