Coconino County Wildlife Connectivity Assessment: Detailed Linkages San Francisco Peaks to Mogollon Rim Linkage Design

Total Page:16

File Type:pdf, Size:1020Kb

Coconino County Wildlife Connectivity Assessment: Detailed Linkages San Francisco Peaks to Mogollon Rim Linkage Design 1 August 2013 Coconino County Wildlife Connectivity Assessment: Detailed Linkages San Francisco Peaks to Mogollon Rim Linkage Design Arizona Game and Fish Department Coconino County ii SAN FRANCISCO PEAKS – MOGOLLON RIM LINKAGE DESIGN Prepared by Jessica Gist and Mark Ogonowski 22 August 2013 iii ACKNOWLEDGEMENTS This project would not have been possible without the help of many individuals: The models and report developed by Jessica Gist and Mark Ogonowski followed closely the methodology, terminology, and reporting format of Arizona’s Missing Linkages (AML), a project funded by the Arizona Game and Fish Department (AGFD) and undertaken by Dr. Paul Beier and colleagues at Northern Arizona University (www.corridordesign.org). Much of the material presented herein including text and many figures is taken directly from previous AML linkage reports by permission of the authors, for which we are most grateful. Paul Beier, Emily Garding, Jeff Jenness, and Dan Majka provided guidance on GIS analyses. Erika Nowak, Janet Lynn, Jeff Gagnon, and Scott Sprague reviewed portions of the results and provided empirical data for model validation, and Sue Boe generously shared the results of AGFD telemetry studies. Jeff Gagnon generously shared his I-40 crossing recommendations. We thank Sylvester Allred, Melissa Amarello, Terry Arundel, Thomas Brennan, Jeff Corcoran, Charles Drost, Andrew Edelman, Shaula Hedwall, Holly Hicks, Carrie King, Chad Loberger, Lee Luedeker, Carl Lutch, Susi MacVean, Tom McCall, Emily Nelson, Erika Nowak, Justin Schofer, and Mike Sredl for parameterizing focal species models and suggesting focal species. Sarah Reif, Fenner Yarborough, Janet Lynn, Andi Rogers, Jeff Gagnon, and Larry Phoenix helped identify focal species and provided species expertise. Bill Noble provided both recommendation and inspiration for a future Interstate Highway 40 wildlife overpass. Bill Knowles, Shea Meyer, Julie Mikolajczyk, Dean Pokrajac, Dana Warnecke, and Kelly Wolff- Krauter provided technical, planning, editing, and implementation support. John Aber, Tiffany Antol, Sue Pratt, and Bill Towler of the Coconino County Department of Community Development helped prioritize linkages for modeling, and the County provided necessary financial support through partial funding of Mr. Ogonowski’s position. RECOMMENDED CITATION Arizona Game and Fish Department. 2013. Coconino County Wildlife Connectivity Assessment: Detailed Linkages. San Francisco Peaks – Mogollon Rim Linkage Design. Phoenix, Arizona. GIS DATA Accompanying GIS data for this linkage design are available from the Arizona Game and Fish Department’s Habitat Branch by request. San Francisco Peaks – Mogollon Rim Linkage Design iv TABLE OF CONTENTS LIST OF TABLES ............................................................................................................. vi LIST OF FIGURES .......................................................................................................... vii TERMINOLOGY ............................................................................................................ viii EXECUTIVE SUMMARY .................................................................................................1 INTRODUCTION ...............................................................................................................3 Habitat connectivity matters ........................................................................................................ 3 A statewide-to-local approach for conserving habitat connectivity in Arizona ........................... 4 STUDY AREA AND METHODS ......................................................................................6 Study area ..................................................................................................................................... 6 Delineation of wildland blocks .................................................................................................... 6 Focal species selection ................................................................................................................. 9 Modeling methods and field investigations ............................................................................... 10 RESULTS: LINKAGE DESIGN AND MODEL VALIDATION ....................................11 Linkage design ........................................................................................................................... 11 Model validation ........................................................................................................................ 13 Non-modeled areas important to wildlife movement ................................................................. 16 MANAGEMENT RECOMMENDATIONS ....................................................................17 Impacts of roads and railways on wildlife ................................................................................. 17 Types of roadway mitigation structures ..................................................................................... 18 Guidelines for implementing wildlife crossing structures ......................................................... 21 Existing roads affecting the linkage design ............................................................................... 23 Recommendations for crossing structures in the linkage design ............................................... 23 Urban and rural development as a barrier to wildlife movement ............................................... 27 Guidelines for mitigating impacts of urban and rural development ........................................... 29 Mitigating barriers from urban and rural development in the linkage planning area ................. 30 Summary: Using the linkage design as a planning tool ............................................................. 31 San Francisco Peaks – Mogollon Rim Linkage Design v APPENDIX A: LINKAGE DESIGN METHODS ............................................................33 Focal species selection ............................................................................................................... 33 Habitat suitability models .......................................................................................................... 34 Identifying potential breeding patches and potential population cores ...................................... 36 Identifying biologically best corridors ....................................................................................... 37 Patch configuration analysis ...................................................................................................... 39 Minimum linkage width ............................................................................................................. 40 Field investigations and empirical validation ............................................................................ 40 Creating a final linkage design ................................................................................................... 41 APPENDIX B: INDIVIDUAL SPECIES ANALYSES ....................................................42 APPENDIX C: NON-MODELED SPECIES WITHIN LINKAGE DESIGN ..................80 APPENDIX D: DESCRIPTION OF LAND COVER CLASSES .....................................81 APPENDIX E: CREATING A PERENNIAL WATERS DATASET ..............................86 APPENDIX F: LITERATURE CITED .............................................................................88 San Francisco Peaks – Mogollon Rim Linkage Design vi LIST OF TABLES Table 1: Focal species selected for San Francisco Peaks – Mogollon Rim linkage design Table 2: Characteristics which make species vulnerable to the three major direct effects of roads Table 3: Habitat suitability scores and factor weights for each focal species Table 4: Non-modeled species occurring in the linkage design which are of conservation concern to state and federal management agencies San Francisco Peaks – Mogollon Rim Linkage Design vii LIST OF FIGURES Figure 1: Land ownership within the linkage planning area Figure 2: Land cover within the linkage planning area Figure 3: The linkage design between the San Francisco Peaks and Mogollon Rim wildland blocks Figure 4: Mule deer telemetry data validate modeled mule deer corridor Figure 5: Relation of elk-vehicle collisions on Interstate Route 40 to elk corridor model Figure 6: Non-modeled areas important to wildlife movement in the linkage planning area Figure 7: Road mitigation structures Figure 8: Desert bighorn sheep overpasses in northwestern Arizona Figure 9: Highway underpasses linked by ungulate-proof fencing near Payson, Arizona Figure 10: Linkage design and biologically-best corridor for elk in relation to Interstate Highway 40 mileposts Figure 11: Recommended crossing locations on Interstate Highway 40 Figure 12: Location photo and possible design of wildlife overpass near milepost 174 on Interstate Highway 40 Figure 13: Elk crossings of U.S. Highway 180 northwest of Flagstaff, Arizona Figure 14: Percent natural vegetation declines rapidly at housing densities greater than 1 dwelling unit per 40 acres Figure 15: Habitat factors used to create habitat suitability models Figure 16: Example moving window analysis used to calculate the average habitat suitability surrounding a pixel Figure 17: Creation of biologically best corridors Figure 18: Modeled habitat suitability for Abert’s squirrel in the San Francisco Peaks – Mogollon Rim Linkage Figure 19: Modeled habitat suitability for Arizona
Recommended publications
  • Arizona Forest Action Plan 2015 Status Report and Addendum
    Arizona Forest Action Plan 2015 Status Report and Addendum A report on the strategic plan to address forest-related conditions, trends, threats, and opportunities as identified in the 2010 Arizona Forest Resource Assessment and Strategy. November 20, 2015 Arizona State Forestry Acknowledgements: Arizona State Forestry would like to thank the USDA Forest Service for their ongoing support of cooperative forestry and fire programs in the State of Arizona, and for specific funding to support creation of this report. We would also like to thank the many individuals and organizations who contributed to drafting the original 2010 Forest Resource Assessment and Resource Strategy (Arizona Forest Action Plan) and to the numerous organizations and individuals who provided input for this 2015 status report and addendum. Special thanks go to Arizona State Forestry staff who graciously contributed many hours to collect information and data from partner organizations – and to writing, editing, and proofreading this document. Jeff Whitney Arizona State Forester Granite Mountain Hotshots Memorial On the second anniversary of the Yarnell Hill Fire, the State of Arizona purchased 320 acres of land near the site where the 19 Granite Mountain Hotshots sacrificed their lives while battling one of the most devastating fires in Arizona’s history. This site is now the Granite Mountain Hotshots Memorial State Park. “This site will serve as a lasting memorial to the brave hotshots who gave their lives to protect their community,” said Governor Ducey. “While we can never truly repay our debt to these heroes, we can – and should – honor them every day. Arizona is proud to offer the public a space where we can pay tribute to them, their families and all of our firefighters and first responders for generations to come.” Arizona Forest Action Plan – 2015 Status Report and Addendum Background Contents The 2010 Forest Action Plan The development of Arizona’s Forest Resource Assessment and Strategy (now known as Arizona’s “Forest Action Plan”) was prompted by federal legislative requirements.
    [Show full text]
  • Historical Fire Regime Patterns in the Southwestern United States Since AD 1700
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Historical Fire Regime Patterns in the Southwestern United States Since AD 1700 Thomas W. Swetnam and Christopher H. Baisan1 Abstract.-Fire-scar chronologies from a network of 63 sites in the South­ western United States are listed and described. These data characterize the natural range and variability of fire regimes from low elevation pine forests to higher elevation mixed-conifer forests since AD 1700. A general pattern of increasing length of intervals between low intensity surface fires was observed along gradients of low to high elevations, and from the rela­ tively drier pine sites to the wetter mixed-conifer sites. However, large vari­ ability in the measures of central tendency and higher moments of the fire interval distributions suggest that elevation and forest type were often weak determinants of fire frequency. Some of the variations in fire interval distri­ butions between similar elevation or forest types were probably due to unique site characteristics, such as landscape connectivity (Le., ability of fires to spread into the sites), and land-use history. Differences in the sizes of sampled areas and fire-scar collections among the sites also limited our ability to compare and interpret fire interval summary statistics. Comparison of both the fire-scar network data (1700 to 1900) and docu­ mentary records of area burned on all Southwestern Region National For­ ests (1920 to 1978) with a Palmer Drought Severity Index time series clearly shows the association between severe droughts and large fire years, and wet periods and small fire years.
    [Show full text]
  • Forest Insect and Disease Conditions in the Southwestern Region, 2008
    United States Department of Forest Insect and Agriculture Forest Disease Conditions in Service Southwestern the Southwestern Region Forestry and Forest Health Region, 2008 July 2009 PR-R3-16-5 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720- 2600 (voice and TTY). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TTY). USDA is an equal opportunity provider and employer. Cover photo: Pandora moth caterpillar collected on the North Kaibab Ranger District, Kaibab National Forest. Forest Insect and Disease Conditions in the Southwestern Region, 2008 Southwestern Region Forestry and Forest Health Regional Office Salomon Ramirez, Director Allen White, Pesticide Specialist Forest Health Zones Offices Arizona Zone John Anhold, Zone Leader Mary Lou Fairweather, Pathologist Roberta Fitzgibbon, Entomologist Joel McMillin, Entomologist
    [Show full text]
  • Hygroscopic Weight Gain of Pollen Grains from Juniperus Species
    Int J Biometeorol (2015) 59:533–540 DOI 10.1007/s00484-014-0866-9 ORIGINAL PAPER Hygroscopic weight gain of pollen grains from Juniperus species Landon D. Bunderson & Estelle Levetin Received: 12 June 2013 /Revised: 26 June 2014 /Accepted: 27 June 2014 /Published online: 10 July 2014 # ISB 2014 Abstract Juniperus pollen is highly allergenic and is pro- Introduction duced in large quantities across Texas, Oklahoma, and New Mexico. The pollen negatively affects human populations ad- The Cupressaceae is a significant source of airborne allergens, and jacent to the trees, and since it can be transported hundreds of the genus Juniperus is a major component of many ecosystems kilometers by the wind, it also affects people who are far from across the northern hemisphere (Mao et al. 2010; Pettyjohn and the source. Predicting and tracking long-distance transport of Levetin 1997). New Mexico, Texas, and Oklahoma are home to pollen is difficult and complex. One parameter that has been many species of juniper. Three species that represent a significant understudied is the hygroscopic weight gain of pollen. It is allergy contribution are Juniperus ashei, Juniperus monosperma, believed that juniper pollen gains weight as humidity increases and Juniperus pinchotii. J. ashei pollen is considered the most which could affect settling rate of pollen and thus affect pollen allergenic species of Cupressaceae in North America (Rogers and transport. This study was undertaken to examine how changes Levetin 1998). This species is distributed throughout central in relative humidity affect pollen weight, diameter, and settling Texas, Northern Mexico, the Arbuckle Mountains of south central rate.
    [Show full text]
  • Spatial Patterns in a Prosopis – Juniperus Savannah
    The Texas Journal of Agriculture and Natural Resources 30:63-77 (2017) 63 © Agricultural Consortium of Texas Spatial Patterns in a Prosopis – Juniperus Savannah Steven Dowhower Richard Teague*1 Department of Ecosystem Science and Management, Texas A&M University System, Texas A&M AgriLife Research Center, P.O. Box 1658, Vernon, TX, USA. ABSTRACT We determined the distribution patterns and distance to nearest neighbor for Prosopis glandulosa and Juniperus pinchotii trees and saplings in west Texas to examine the intra- and interspecific spacing patterns of juvenile and mature trees to relate these patterns to their establishment dynamics on deep and shallow soils. Ordination was used to compare microsite vegetation associated with open grassland habitat and habitat proximal to big and small Prosopis and Juniperus plants. Analysis of similarities provided a multivariate index and probability of differences of vegetation between and among groups. Big Juniperus trees were randomly distributed on both soils, while the big Prosopis trees were random on the deep soil but aggregated on the shallow soil. Saplings of both species were strongly aggregated on both soils. Big and small Juniperus plants were positively associated with the dominant, established Prosopis trees and with litter cover but were negatively associated with bare soil and C4 grasses. In contrast, small Prosopis plants were negatively associated with both Juniperus and Prosopis trees on either soil and were positively associated with bare soil and C4 grasses. Prosopis trees facilitate establishment of Juniperus on deep or shallow soils, but Prosopis presence is probably not necessary for Juniperus establishment on either soil. The presence of big and small Juniperus plants close to and under the canopies of Prosopis trees and the inability of Prosopis seedlings to establish near Prosopis or Juniperus plants indicates that Juniperus trees would eventually dominate on the deep as well as the shallow soils.
    [Show full text]
  • Common Conifers in New Mexico Landscapes
    Ornamental Horticulture Common Conifers in New Mexico Landscapes Bob Cain, Extension Forest Entomologist One-Seed Juniper (Juniperus monosperma) Description: One-seed juniper grows 20-30 feet high and is multistemmed. Its leaves are scalelike with finely toothed margins. One-seed cones are 1/4-1/2 inch long berrylike structures with a reddish brown to bluish hue. The cones or “berries” mature in one year and occur only on female trees. Male trees produce Alligator Juniper (Juniperus deppeana) pollen and appear brown in the late winter and spring compared to female trees. Description: The alligator juniper can grow up to 65 feet tall, and may grow to 5 feet in diameter. It resembles the one-seed juniper with its 1/4-1/2 inch long, berrylike structures and typical juniper foliage. Its most distinguishing feature is its bark, which is divided into squares that resemble alligator skin. Other Characteristics: • Ranges throughout the semiarid regions of the southern two-thirds of New Mexico, southeastern and central Arizona, and south into Mexico. Other Characteristics: • An American Forestry Association Champion • Scattered distribution through the southern recently burned in Tonto National Forest, Arizona. Rockies (mostly Arizona and New Mexico) It was 29 feet 7 inches in circumference, 57 feet • Usually a bushy appearance tall, and had a 57-foot crown. • Likes semiarid, rocky slopes • If cut down, this juniper can sprout from the stump. Uses: Uses: • Birds use the berries of the one-seed juniper as a • Alligator juniper is valuable to wildlife, but has source of winter food, while wildlife browse its only localized commercial value.
    [Show full text]
  • 236 Pinaleño Mountains in the Twentieth Century Atalanta Hoyt
    Pinaleño Mountains in the Twentieth Century Atalanta Hoyt Throughout the twentieth century, a few major events dominated the history of the Forest Service. First, the founding of the National Forest Service in 1905 replaced the Bureau of Forestry and led to the creation of modern National Forests. The new service was created under the jurisdiction of the Department of Agriculture with the purpose of securing a long term supply of timber for the American people.1 Second, the great depression of the 1930s, Franklin Roosevelt’s creation of the Civilian Conservation Corps (CCC) and the expansion of the Forest Service changed the shape of National Forests.2 This time period featured a major transition from timber management to hands on putting resources into the forest. The Forest Service and CCC planted trees, carved trails, built roads, and conducted research; actively molding forests and applying the latest forestry techniques instead of letting the forest take its course.3 A third period of great change came in the 1970s during the environmental era.4 The emphasis changed from conceptualizing the forests as resources to be converted into marketable goods to seeing them as wilderness in need of preservation. While conservation has always been an important part of the Forest Service - advocated by both those who saw an intrinsic value in wilderness and by those who used the wilderness for recreational purposes - increased urbanization highlighted the uniqueness of forests. Efforts to catalog and protect the environments of forests became a main priority while ecologists and conservationists gained status.5 These three main shifts defined the Forest Service in the twentieth century.
    [Show full text]
  • Phylogenetic Analyses of Juniperus Species in Turkey and Their Relations with Other Juniperus Based on Cpdna Supervisor: Prof
    MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY AYSUN DEMET GÜVENDİREN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGY APRIL 2015 Approval of the thesis MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA submitted by AYSUN DEMET GÜVENDİREN in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Department of Biological Sciences, Middle East Technical University by, Prof. Dr. Gülbin Dural Ünver Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Orhan Adalı Head of the Department, Biological Sciences Prof. Dr. Zeki Kaya Supervisor, Dept. of Biological Sciences METU Examining Committee Members Prof. Dr. Musa Doğan Dept. Biological Sciences, METU Prof. Dr. Zeki Kaya Dept. Biological Sciences, METU Prof.Dr. Hayri Duman Biology Dept., Gazi University Prof. Dr. İrfan Kandemir Biology Dept., Ankara University Assoc. Prof. Dr. Sertaç Önde Dept. Biological Sciences, METU Date: iii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Aysun Demet GÜVENDİREN Signature : iv ABSTRACT MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA Güvendiren, Aysun Demet Ph.D., Department of Biological Sciences Supervisor: Prof.
    [Show full text]
  • Songbird Ecology in Southwestern Ponderosa
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Chapter 1 Ecology of Southwestern Ponderosa Pine Forests William H. Moir, Brian Geils, Mary Ann Benoit, and Dan Scurlock describes natural and human induced changes in the com- What Is Ponderosa Pine Forest position and structure of these forests. and Why Is It Important? Forests dominated by ponderosa pine (Pinus ponderosa Paleoecology var. scopulorurn) are a major forest type of western North America (figure 1; Steele 1988; Daubenmire 1978; Oliver and Ryker 1990). In this publication, a ponderosa pine The oldest remains of ponderosa pine in the Western forest has an overstory, regardless of successional stage, United States are 600,000 year old fossils found in west dominated by ponderosa pine. This definition corresponds central Nevada. Examination of pack rat middens in New to the interior ponderosa pine cover type of the Society of Mexico and Texas, shows that ponderosa pine was absent American Foresters (Eyre1980). At lower elevations in the during the Wisconsin period (about 10,400 to 43,000 years mountainous West, ponderosa pine forests are generally ago), although pinyon-juniper woodlands and mixed co- bordered by grasslands, pinyon-juniper woodlands, or nifer forests were extensive (Betancourt 1990). From the chaparral (shrublands). The ecotone may be wide or nar- late Pleistocene epoch (24,000 years ago) to the end of the row, and a ponderosa pine forest is recognized when the last ice age (about 10,400 years ago), the vegetation of the overstory contains at least 5 percent ponderosa pine (USFS Colorado Plateau moved southward or northward with 1986).
    [Show full text]
  • Coconino National Forest Draft Land Management Plan – February 2011 Iii
    United States Coconino National Department of Agriculture Forest Forest Draft Land Service Southwestern Region Management Plan February 2011 Notes for reviewers: • This document is an initial draft of the Coconino National Forest’s revised land management plan. It was made available for public review in February 2011. • Language highlighted in gray is incomplete or needs further attention. Draft Revised Land Management Plan Prepared for: The Coconino National Forest 1824 S. Thompson St. Flagstaff, AZ 86001 and USDA Forest Service Southwestern Region 333 Broadway SE Albuquerque, New Mexico 87102 Submitted by: Plan Revision Team Coconino National Forest Contents Draft Revised Land Management Plan ........... i Chapter 1. Background ................................................................................................................. 1 Introduction ............................................................................................................................... 1 Purpose of the Land Management Plan .................................................................................... 1 Summary of the Analysis of the Management Situation ........................................................... 1 Plan Content .............................................................................................................................. 2 Plan Decisions ..................................................................................................................... 2 Other Content .....................................................................................................................
    [Show full text]
  • The Tectonic Evolution of the Madrean Archipelago and Its Impact on the Geoecology of the Sky Islands
    The Tectonic Evolution of the Madrean Archipelago and Its Impact on the Geoecology of the Sky Islands David Coblentz Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM Abstract—While the unique geographic location of the Sky Islands is well recognized as a primary factor for the elevated biodiversity of the region, its unique tectonic history is often overlooked. The mixing of tectonic environments is an important supplement to the mixing of flora and faunal regimes in contributing to the biodiversity of the Madrean Archipelago. The Sky Islands region is located near the actively deforming plate margin of the Western United States that has seen active and diverse tectonics spanning more than 300 million years, many aspects of which are preserved in the present-day geology. This tectonic history has played a fundamental role in the development and nature of the topography, bedrock geology, and soil distribution through the region that in turn are important factors for understanding the biodiversity. Consideration of the geologic and tectonic history of the Sky Islands also provides important insights into the “deep time” factors contributing to present-day biodiversity that fall outside the normal realm of human perception. in the North American Cordillera between the Sierra Madre Introduction Occidental and the Colorado Plateau – Southern Rocky The “Sky Island” region of the Madrean Archipelago (lo- Mountains (figure 1). This part of the Cordillera has been cre- cated between the northern Sierra Madre Occidental in Mexico ated by the interactions between the Pacific, North American, and the Colorado Plateau/Rocky Mountains in the Southwest- Farallon (now entirely subducted under North America) and ern United States) is an area of exceptional biodiversity and has Juan de Fuca plates and is rich in geology features, including become an important study area for geoecology, biology, and major plateaus (The Colorado Plateau), large elevated areas conservation management.
    [Show full text]
  • Historical Stand-Replacing Fire in Upper Montane Forests of the Madrean Sky Islands and Mogollon Plateau, Southwestern USA
    Fire Ecology Volume 7, Issue 3, 2011 Margolis et al.: Historical Stand-Replacing Fire doi: 10.4996/fireecology.0703088 Page 88 RESEARCH ARTICLE HISTORICAL STAND-REPLACING FIRE IN UPPER MONTANE FORESTS OF THE MADREAN SKY ISLANDS AND MOGOLLON PLATEAU, SOUTHWESTERN USA Ellis Q. Margolis1*, Thomas W. Swetnam1, and Craig D. Allen2 1University of Arizona Laboratory of Tree-Ring Research, 105 W. Stadium, Tucson, Arizona 85721, USA 2US Geological Survey Jemez Mountains Field Station, HCR 1, Box 1, Number 15, Los Alamos, New Mexico 87544, USA *Corresponding author: Tel.: 001-520-626-2733; e-mail: [email protected] ABSTRACT The recent occurrence of large fires with a substantial stand-replacing component in the southwestern United States (e.g., Cerro Grande, 2000; Rodeo-Chedeski, 2002; Aspen, 2003; Horseshoe 2, Las Conchas, and Wallow, 2011) has raised questions about the his- torical role of stand-replacing fire in the region. We reconstructed fire dates and stand-re- placing fire patch sizes using four lines of tree-ring evidence at four upper montane forest sites (>2600 m) in the Madrean Sky Islands and Mogollon Plateau of Arizona and New Mexico, USA. The four lines of tree-ring evidence include: (1) quaking aspen (Populus tremuloides) and spruce-fir age structure, (2) conifer death dates, (3) traumatic resin ducts and ring-width changes, and (4) conifer fire scars. Pre-1905 fire regimes in the upper montane forest sites were variable, with drier, south-facing portions of some sites record- ing frequent, low-severity fire (mean fire interval of all fires ranging from 5 yr to 11 yr among sites), others burning with stand-replacing severity, and others with no evidence of fire for >300 yr.
    [Show full text]