Elementary Mathematics from a Higher Standpoint

Total Page:16

File Type:pdf, Size:1020Kb

Elementary Mathematics from a Higher Standpoint Felix Klein Elementary Mathematics from a Higher Standpoint Volume III: Precision Mathematics and Approximation Mathematics Elementary Mathematics from a Higher Standpoint Felix Klein Elementary Mathematics from a Higher Standpoint Volume III: Precision Mathematics and Approximation Mathematics Translated by Marta Menghini in collaboration with Anna Baccaglini-Frank Mathematical advisor for the English translation: Gert Schubring Felix Klein Translated by: Marta Menghini Mathematical advisor for the English translation: Gert Schubring ISBN 978-3-662-49437-0 ISBN 978-3-662-49439-4 (eBook) DOI 10.1007/978-3-662-49439-4 Library of Congress Control Number: 2016943431 Translation of the 3rd German edition „Elementarmathematik vom höheren Standpunkte aus“, vol. 3 by Felix Klein, Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Band 16, Verlag von Julius Springer, Berlin 1928. © Springer-Verlag Berlin Heidelberg 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publica- tion does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Cover Illustration: The publisher could not determine a copyright holder and believes this picture to be in the public domain. If the copyright holder can prove ownership, the publisher will pay the customary fee. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer-Verlag GmbH Berlin Heidelberg Preface to the 2016 Edition The present volume contains the translation of Felix Klein’s “Präzisions- und Approximationsmathematik”, which appeared in 1928 as volume III of the series Elementarmathematik von einem höheren Standpunkte aus1 (Elementary mathe- matics from a higher standpoint). In turn, the 1928 edition was a re-edition of the lecture course delivered by Felix Klein in 1901 with the title “Anwendung der Differential- und Integralrechnung auf die Geometrie: eine Revision der Prinzi- pien”, published in 1902 in lithographic form2 (a reprint of 1908, edited by Conrad Heinrich Müller, left the text essentially unchanged). Klein participated, together with Fritz Seyfarth, in the whole project of re-editing the three volumes on Elementary mathematics from a higher standpoint, but he died in 1925, after the first two volumes had appeared. The third volume was, therefore, edited only by Seyfarth; changes and insertions had been nevertheless discussed with Klein, as Seyfarth writes in his preface. The notes added are probably only by Seyfarth. We left, as in the 1928 edition, the notes by Seyfarth in square brackets, and labelled “translator’s note” the notes added in the present edition. Of course, the notes by Klein himself are included without any additional marks. In the text the reader will find, again in square brackets, the page numbering of the original edition. Cross references in notes and in the text refer to this numbering, as well as the name index and the subject index (that is, the original text has not been changed to this respect). Similarly for the references to Volume 1 and 2 of 1924/25, whose original layout is marked in the current new edition. Moreover, we left, as in the German edition, the comma to separate the integer part from the fractional part of a decimal number. 1 Felix Klein, 1928. Elementarmathematik vom höheren Standpunkte aus, 3: Präzisions- und Approximationsmathematik; ausgearbeitet von C. H. Müller; für den Druck fertig gemacht und mit Zusätzen versehen von Fr. Seyfarth. 3. Aufl., Berlin: J. Springer, 1928 Series: Die Grundlehren der mathematischen Wissenschaften, 16. Reprint in 1968. 2 Felix Klein, 1902. Anwendung der Differential- und Integralrechnung auf die Geometrie: eine Revision der Prinzipien: Vorlesung gehalten während des Sommersemesters 1901; ausgearbeitet von C. Müller, Leipzig: Teubner. v vi Preface to the 2016 Edition In the present translation we have added, when possible, the first names of the persons mentioned. In the German edition, as it was customary at that time, the first names were indicated only with the initials. The bibliographic references in the notes have also been completed, when needed. “Präzisions- und Approximationsmathematik” was never translated into English, unlike the first two volumes; although the translators of the first two volumes were aware of the existence of volume III, they gave no reason for not having translated it. While the Spanish, the Russian and the Japanese translations also did not include volume III3, there is a complete translation of all the three volumes into Chinese – first published in 1989 by Hubei Educational Press, Beijing, and published again by Chiu Chan Publishing (Republic of China, Taipei) in 1996. On the occasion of the 13th International Congress on Mathematics Education (ICME-13, Hamburg 2016), the will of the International Commission on Mathe- matical Instruction (ICMI), together with Springer, is of closing this gap in the English version. We also proudly note that Felix Klein was the first president of ICMI, which was founded in Rome in 1908. A translation after nearly a century, joined with a new edition of the two first volumes, might seem strange. Undoubtedly, this translation has an historical value, since Klein is one of the greatest mathematicians of history4. It also has a math- ematical value – because of the interesting approaches and the links with the ap- plications. But, above all, it has a didactical value, concerning the training of mathematics teachers. The volumes on Elementary Mathematics from a higher standpoint are still apt to this aim, for the simple reason that today’s school math- ematics is not very different from the school mathematics proposed at the time of Klein. Even if today we can find some snapshots of the mathematics of the 20th cen- tury (which is indeed too specialised) and also contents of probability and statistics, the remaining curricular contents have been developed well before the 20th cen- tury. The higher mathematics for these contents is mainly found in the period of the systematization of the mathematical theories, which corresponds to the period of Klein’s writings. And, indeed, most of the contents of Klein’s volumes are still offered in the many courses (which often bear the same name of Elementary math- ematics from a higher standpoint) that all over the world are devoted to pre-service training of mathematics teachers. For this third volume in particular, the motivations for the kind of study it pro- poses are given by Klein himself during his lifelong career. The third volume focuses on those properties that applied mathematicians take for granted when studying certain phenomena from a mathematical point of view. These properties must be seen as supplementary conditions (and constraints) to be required for the ideal objects of pure mathematics. However, in the meantime, these very proper- 3 There is a recent translation of Volumes I and II into Portuguese and it might be extended to volume III. 4 Books by Felix Klein are still in use today: Klein’s Nicht-euklidische Geometrie has been re- edited in 2006, the English version of the Lectures on the Ikosahedron re-edited in 2007, and his Development of mathematics in the nineteenth century was translated in 1979. Preface to the 2016 Edition vii ties prove to be the more intuitive ones. Therefore the comparison moves towards another field: it is a comparison between properties that can be considered only in the theoretical field of abstract mathematics and properties that can be grasped by intuition. Here the problem proves to become pertinent for mathematics teaching. Klein had always been convinced of the importance of maintaining the link of mathematics with its applications and had manifested this interest ever since his initial work at the university of Erlangen, in 1872. The necessary link between pure and applied mathematics has been aptly characterised by Klein, in the 6th of his American Conferences (The Evanston Colloquium, 1894, p. 46): I should lay particular stress on the heuristic value of the applied sciences as an aid to discovering new truths in mathematics. Thus I have shown (in my little book on Riemann’s theories) that the Abelian integrals can best be un- derstood and illustrated by considering electric currents on closed surfaces. In an analogous way, theorems concerning differential equations can be de- rived from the consideration of sound-vibrations; and so on. In this way Klein stresses the importance of the connection of mathematics with other disciplines that can foster intuition; and, in particular, the importance of main- taining
Recommended publications
  • Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E
    BOOK REVIEW Einstein’s Italian Mathematicians: Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E. Rowe Einstein’s Italian modern Italy. Nor does the author shy away from topics Mathematicians: like how Ricci developed his absolute differential calculus Ricci, Levi-Civita, and the as a generalization of E. B. Christoffel’s (1829–1900) work Birth of General Relativity on quadratic differential forms or why it served as a key By Judith R. Goodstein tool for Einstein in his efforts to generalize the special theory of relativity in order to incorporate gravitation. In This delightful little book re- like manner, she describes how Levi-Civita was able to sulted from the author’s long- give a clear geometric interpretation of curvature effects standing enchantment with Tul- in Einstein’s theory by appealing to his concept of parallel lio Levi-Civita (1873–1941), his displacement of vectors (see below). For these and other mentor Gregorio Ricci Curbastro topics, Goodstein draws on and cites a great deal of the (1853–1925), and the special AMS, 2018, 211 pp. 211 AMS, 2018, vast secondary literature produced in recent decades by the world that these and other Ital- “Einstein industry,” in particular the ongoing project that ian mathematicians occupied and helped to shape. The has produced the first 15 volumes of The Collected Papers importance of their work for Einstein’s general theory of of Albert Einstein [CPAE 1–15, 1987–2018]. relativity is one of the more celebrated topics in the history Her account proceeds in three parts spread out over of modern mathematical physics; this is told, for example, twelve chapters, the first seven of which cover episodes in [Pais 1982], the standard biography of Einstein.
    [Show full text]
  • Baire One Functions
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA Volume 31, Number 2, June 2003 BAIRE ONE FUNCTIONS BY D. N. SARKHEL Abstract. We obtain a new set of characterizations of Baire one functions and use it to show that finite one-sided pre- ponderant limits and derivatives are in the Baire class one. 1. Introduction and definitions. In current literature, a function is called Baire one if it is the pointwise limit of a sequence of continuous functions. Several useful characterizations of Baire one functions are known; see Natanson [5], Gleyzal [3], Preiss [7]. In this paper, Section 2, we obtain a new set of characterizations of Baire one finite functions and show some of its applications. Denjoy [2] showed that an approximately continuous function is Baire one; and its one-sided version and other generalizations appear in Sinharoy [11], Bruckner et al [1] and Sarkhel and Seth [10]. Tolstoff [13] showed that a finite approximate derivative is Baire one, but the proof is complicated. Various other proofs of this result and its generalizations appear in Goffman and Neugebauer [4], Snyder [12], Preiss [7], O’Malley [6], Bruckner et al [1] and Sarkhel and Seth [10]. Zajiˇcek [14, Theorem 3, p.558] proved that a finite one-sided approximate derivative is also Baire one, and Sinharoy [11, Theorem 3, p.319] proved a more general result (here, the finiteness condition is essential [14, Example 1, p.559]). In [1, p.113], it is indicated Received by the editors August 20, 2001 and in revised form March 15, 2002. AMS 1991 Subject Classification: 26A21, 26A24.
    [Show full text]
  • On a Generalization of Henstock-Kurzweil Integrals
    144 (2019) MATHEMATICA BOHEMICA No. 4, 393–422 ON A GENERALIZATION OF HENSTOCK-KURZWEIL INTEGRALS Jan Malý, Kristýna Kuncová, Praha Received March 12, 2019. Published online June 26, 2019. Communicated by Dagmar Medková Cordially dedicated to the memory of Štefan Schwabik Abstract. We study a scale of integrals on the real line motivated by the MCα integral by Ball and Preiss and some recent multidimensional constructions of integral. These integrals are non-absolutely convergent and contain the Henstock-Kurzweil integral. Most of the results are of comparison nature. Further, we show that our indefinite integrals are a.e. approximately differentiable. An example of approximate discontinuity of an indefinite integral is also presented. Keywords: Henstock-Kurzweil integral MSC 2010 : 26A39 1. Introduction The Riemann approach to integration of a function f : I → R is based on limits of sums m f(xi)(bi − ai), i=1 X m where {[ai,bi], xi}i=1 is a complete tagged partition of the interval I. By this we mean that the intervals [ai,bi] are nonoverlapping, their union is I and xi ∈ [ai,bi]. The improvement by Henstock and Kurzweil consists in the requirement that the partitions are δ-fine for some gage δ. This trick makes the class of integrable func- tions much wider, in particular, the Henstock-Kurzweil integral extends the Lebesgue integral and integrates all derivatives. The authors are supported by the grant GA ČR P201/18-07996S of the Czech Science Foundation. DOI: 10.21136/MB.2019.0038-19 393 c The author(s) 2019. This is an open access article under the CC BY-NC-ND licence cbnd By the Saks-Henstock lemma, the corresponding indefinite integral F of f is char- acterized by smallness of the sums m |F (bi) − F (ai) − f(xi)(bi − ai)|, i=1 X m for this {[ai,bi], xi}i=1 can be an “incomplete” partition, we omit the requirement concerning the union of the intervals [ai,bi].
    [Show full text]
  • Lecture Notes for Felix Klein Lectures
    Preprint typeset in JHEP style - HYPER VERSION Lecture Notes for Felix Klein Lectures Gregory W. Moore Abstract: These are lecture notes for a series of talks at the Hausdorff Mathematical Institute, Bonn, Oct. 1-11, 2012 December 5, 2012 Contents 1. Prologue 7 2. Lecture 1, Monday Oct. 1: Introduction: (2,0) Theory and Physical Mathematics 7 2.1 Quantum Field Theory 8 2.1.1 Extended QFT, defects, and bordism categories 9 2.1.2 Traditional Wilsonian Viewpoint 12 2.2 Compactification, Low Energy Limit, and Reduction 13 2.3 Relations between theories 15 3. Background material on superconformal and super-Poincar´ealgebras 18 3.1 Why study these? 18 3.2 Poincar´eand conformal symmetry 18 3.3 Super-Poincar´ealgebras 19 3.4 Superconformal algebras 20 3.5 Six-dimensional superconformal algebras 21 3.5.1 Some group theory 21 3.5.2 The (2, 0) superconformal algebra SC(M1,5|32) 23 3.6 d = 6 (2, 0) super-Poincar´e SP(M1,5|16) and the central charge extensions 24 3.7 Compactification and preserved supersymmetries 25 3.7.1 Emergent symmetries 26 3.7.2 Partial Topological Twisting 26 3.7.3 Embedded Four-dimensional = 2 algebras and defects 28 N 3.8 Unitary Representations of the (2, 0) algebra 29 3.9 List of topological twists of the (2, 0) algebra 29 4. Four-dimensional BPS States and (primitive) Wall-Crossing 30 4.1 The d = 4, = 2 super-Poincar´ealgebra SP(M1,3|8). 30 N 4.2 BPS particle representations of four-dimensional = 2 superpoincar´eal- N gebras 31 4.2.1 Particle representations 31 4.2.2 The half-hypermultiplet 33 4.2.3 Long representations 34
    [Show full text]
  • Felix Klein and His Erlanger Programm D
    WDS'07 Proceedings of Contributed Papers, Part I, 251–256, 2007. ISBN 978-80-7378-023-4 © MATFYZPRESS Felix Klein and his Erlanger Programm D. Trkovsk´a Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic. Abstract. The present paper is dedicated to Felix Klein (1849–1925), one of the leading German mathematicians in the second half of the 19th century. It gives a brief account of his professional life. Some of his activities connected with the reform of mathematics teaching at German schools are mentioned as well. In the following text, we describe fundamental ideas of his Erlanger Programm in more detail. References containing selected papers relevant to this theme are attached. Introduction The Erlanger Programm plays an important role in the development of mathematics in the 19th century. It is the title of Klein’s famous lecture Vergleichende Betrachtungen ¨uber neuere geometrische Forschungen [A Comparative Review of Recent Researches in Geometry] which was presented on the occasion of his admission as a professor at the Philosophical Faculty of the University of Erlangen in October 1872. In this lecture, Felix Klein elucidated the importance of the term group for the classification of various geometries and presented his unified way of looking at various geometries. Klein’s basic idea is that each geometry can be characterized by a group of transformations which preserve elementary properties of the given geometry. Professional Life of Felix Klein Felix Klein was born on April 25, 1849 in D¨usseldorf,Prussia. Having finished his study at the grammar school in D¨usseldorf,he entered the University of Bonn in 1865 to study natural sciences.
    [Show full text]
  • A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
    Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge­ bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe­ maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe­ matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members.
    [Show full text]
  • The “Geometrical Equations:” Forgotten Premises of Felix Klein's
    The “Geometrical Equations:” Forgotten Premises of Felix Klein’s Erlanger Programm François Lê October 2013 Abstract Felix Klein’s Erlanger Programm (1872) has been extensively studied by historians. If the early geometrical works in Klein’s career are now well-known, his links to the theory of algebraic equations before 1872 remain only evoked in the historiography. The aim of this paper is precisely to study this algebraic background, centered around particular equations arising from geometry, and participating on the elaboration of the Erlanger Programm. An- other result of the investigation is to complete the historiography of the theory of general algebraic equations, in which those “geometrical equations” do not appear. 1 Introduction Felix Klein’s Erlanger Programm1 is one of those famous mathematical works that are often invoked by current mathematicians, most of the time in a condensed and modernized form: doing geometry comes down to studying (transformation) group actions on various sets, while taking particular care of invariant objects.2 As rough and anachronistic this description may be, it does represent Klein’s motto to praise the importance of transformation groups and their invariants to unify and classify geometries. The Erlanger Programm has been abundantly studied by historians.3 In particular, [Hawkins 1984] questioned the commonly believed revolutionary character of the Programm, giving evi- dence of both a relative ignorance of it by mathematicians from its date of publication (1872) to 1890 and the importance of Sophus Lie’s ideas4 about continuous transformations for its elabora- tion. These ideas are only a part of the many facets of the Programm’s geometrical background of which other parts (non-Euclidean geometries, line geometry) have been studied in detail in [Rowe 1989b].
    [Show full text]
  • A General Chain Rule for Distributional Derivatives
    proceedings of the american mathematical society Volume 108, Number 3, March 1990 A GENERAL CHAIN RULE FOR DISTRIBUTIONAL DERIVATIVES L. AMBROSIO AND G. DAL MASO (Communicated by Barbara L. Keyfitz) Abstract. We prove a general chain rule for the distribution derivatives of the composite function v(x) = f(u(x)), where u: R" —>Rm has bounded variation and /: Rm —>R* is Lipschitz continuous. Introduction The aim of the present paper is to prove a chain rule for the distributional derivative of the composite function v(x) = f(u(x)), where u: Q —>Rm has bounded variation in the open set ilcR" and /: Rw —>R is uniformly Lip- schitz continuous. Under these hypotheses it is easy to prove that the function v has locally bounded variation in Q, hence its distributional derivative Dv is a Radon measure in Q with values in the vector space Jz? m of all linear maps from R" to Rm . The problem is to give an explicit formula for Dv in terms of the gradient Vf of / and of the distributional derivative Du . To illustrate our formula, we begin with the simpler case, studied by A. I. Vol pert, where / is continuously differentiable. Let us denote by Su the set of all jump points of u, defined as the set of all xef! where the approximate limit u(x) does not exist at x. Then the following identities hold in the sense of measures (see [19] and [20]): (0.1) Dv = Vf(ü)-Du onß\SH, and (0.2) Dv = (f(u+)-f(u-))®vu-rn_x onSu, where vu denotes the measure theoretical unit normal to Su, u+ , u~ are the approximate limits of u from both sides of Su, and %?n_x denotes the (n - l)-dimensional Hausdorff measure.
    [Show full text]
  • Letters from William Burnside to Robert Fricke: Automorphic Functions, and the Emergence of the Burnside Problem
    LETTERS FROM WILLIAM BURNSIDE TO ROBERT FRICKE: AUTOMORPHIC FUNCTIONS, AND THE EMERGENCE OF THE BURNSIDE PROBLEM CLEMENS ADELMANN AND EBERHARD H.-A. GERBRACHT Abstract. Two letters from William Burnside have recently been found in the Nachlass of Robert Fricke that contain instances of Burnside's Problem prior to its first publication. We present these letters as a whole to the public for the first time. We draw a picture of these two mathematicians and describe their activities leading to their correspondence. We thus gain an insight into their respective motivations, reactions, and attitudes, which may sharpen the current understanding of professional and social interactions of the mathemat- ical community at the turn of the 20th century. 1. The simple group of order 504 { a first meeting of minds Until 1902, when the publication list of the then fifty-year-old William Burnside already encompassed 90 papers, only one of these had appeared in a non-British journal: a three-page article [5] entitled \Note on the simple group of order 504" in volume 52 of Mathematische Annalen in 1898. In this paper Burnside deduced a presentation of that group in terms of generators and relations,1 which is based on the fact that it is isomorphic to the group of linear fractional transformations with coefficients in the finite field with 8 elements. The proof presented is very concise and terse, consisting only of a succession of algebraic identities, while calculations in the concrete group of transformations are omitted. In the very same volume of Mathematische Annalen, only one issue later, there can be found a paper [18] by Robert Fricke entitled \Ueber eine einfache Gruppe von 504 Operationen" (On a simple group of 504 operations), which is on exactly the same subject.
    [Show full text]
  • The Felix Klein Protocols
    THE FELIX KLEIN PROTOCOLS EUGENE CHISLENKO AND YURI TSCHINKEL 1 2 EUGENE CHISLENKO AND YURI TSCHINKEL 1. The Gottingen¨ Archive Two plain shelves in G¨ottingen,in the entrance room of the Mathe- matisches Institut library, hold an astounding collection of mathemat- ical manuscripts and rare books. In this locked Giftschrank, or poi- son cabinet, stand several hundred volumes, largely handwritten and mostly unique, that form an extensive archive documenting the de- velopment of one of the world's most important mathematical centers { the home of Gauss, Riemann, Dirichlet, Klein, Hilbert, Minkowski, Courant, Weyl, and other leading mathematicians and physicists of the 19th and early 20th centuries. A recent Report on the G¨ottingen Mathematical Institute Archive [2] cites \a range of material unrivalled in quantity and quality": \No single archive is even remotely compa- rable", not only because G¨ottingenwas \the leading place for mathe- matics in the world", but also because \no other community has left such a detailed record of its activity ... usually we are lucky to have lecture lists, with no indication of the contents." The collection runs from early handwritten lectures by Dirichlet, Rie- mann and Clebsch through almost 100 volumes by Hilbert to volumes of Minkowski, Hasse and Siegel on number theory, Noether on algebra, and Max Born on quantum mechanics. But the largest and most im- pressive of its centerpieces is the Seminar-Protokolle of Felix Klein: a detailed handwritten registry, spanning over 8000 pages in 29 volumes, of 40 years of seminar lectures by him, his colleagues and students, and distinguished visitors.
    [Show full text]
  • A Chain Rule Formula in Bv and Applications to Conservation Laws
    A CHAIN RULE FORMULA IN BV AND APPLICATIONS TO CONSERVATION LAWS GRAZIANO CRASTA∗ AND VIRGINIA DE CICCOy Abstract. In this paper we prove a new chain rule formula for the distributional derivative d of the composite function v(x) = B(x; u(x)), where u :]a; b[! R has bounded variation, B(x; ·) is continuously differentiable and B(·; u) has bounded variation. We propose an application of this formula in order to deal in an intrinsic way with the discontinuous flux appearing in conservation laws in one space variable. Key words. Chain rule, BV functions, conservation laws with discontinuous flux AMS subject classifications. Primary: 26A45, 35L65; Secondary: 26A24, 46F10 1. Introduction. In 1967, A.I. Vol'pert in [23] (see also [24]), in view of ap- plications in the study of quasilinear hyperbolic equations, established a chain rule formula for distributional derivatives of the composite function v(x) = B(u(x)) , where u :Ω ! R has bounded variation in the open subset Ω of RN and B : R ! R is con- tinuously differentiable. He proved that v has bounded variation and its distributional derivative Dv (which is a Radon measure on Ω) admits an explicit representation in terms of the gradient rB and of the distributional derivative Du . More precisely, the following identity holds in the sense of measures: N c + − N−1 Dv = rB(u)ru L + rB(ue)D u + [B(u ) − B(u )] νu H bJu ; (1.1) where N c N−1 Du = ru L + D u + νu H bJu (1.2) is the usual decomposition of Du in its absolutely continuous part ru with respect to the Lebesgue measure LN , its Cantor part Dcu and its jumping part, which is represented by the restriction of the (N − 1)-dimensional Hausdorff measure to the jump set Ju .
    [Show full text]
  • Keynote Address : the International Society for Photogrammetry And
    Keynote Address The International Society for Photogrammetry and Remote Sensing-75 Years Old, or 75 Years Young GOTTFRIEDKONECNY, Uniuersity c$ Hnnnooer, F.R. Ger~nany ADIES AND GENTLEMEN.I am grateful for the dis- sphere, and he determined its average radius within L tinction of having been asked to prepare the 1% of accuracy. He thus became the first geodesist. keynote speech for the 1985 Annual Meeting of the Mathematical thought and survey practices American Society of Photogrammetry and the spread from Mesopotamia and the Nile to the areas American Congress on Surveying and Mapping. of Greek and Roman culture. Roman land surveys As a photogrammetrist, I am naturally concerned were a highly developed technique. Its practice was about matters dear to me and therefore I have interrupted by the fall of the Roman Empire be- chosen as the title of my talk "The International cause of invasion from the North and the introduc- Society for Photogrammetry and Remote Sensing- tion of Christianity with its upcoming mysticism. 75 years old, or 75 years young." I have done this Therefore the oriental cultures then became re- for two reasons. Last year I became successor to sponsible for the further development of our disci- Fred Doyle, who ably represented the American plines. In the Arab world, astronomy and navigation Society of Photogrammetry as President of ISPRS became highly developed. Cartography, as a de- for four years from 1980 to 1984. Secondly, our or- scription of the earth's features on its surface, flour- ganization celebrates this year its 75th Anniversary. ished in China, long before this was the case in We photogrammetrists are officially in our third Europe.
    [Show full text]