Insights Into the Connectivity of the Human Brain Using DTI

Total Page:16

File Type:pdf, Size:1020Kb

Insights Into the Connectivity of the Human Brain Using DTI Educational Exhibit NJR 2011; 1(1):78 – 91;Available online at www.nranepal.org Insights into the Connectivity of the Human Brain Using DTI S Kollias Institute of Neuroradiology, University Hospital of Zurich, Switzerland. Abstract Diffusion tensor imaging (DTI) is a neuroimaging MR technique, which allows in vivo and non-destructive visualization of myeloarchitectonics in the neural tissue and provides quantitative estimates of WM integrity by measuring molecular diffusion. It is based on the phenomenon of diffusion anisotropy in the nerve tissue, in that water molecules diffuse faster along the neural fibre direction and slower in the fibre-transverse direction. On the basis of their topographic location, trajectory, and areas that interconnect the various fibre systems of the mammalian brain are divided into commissural, projectional and association fibre systems. DTI has opened an entirely new window on the white matter anatomy with both clinical and scientific applications. Its utility is found in both the localization and the quantitative assessment of specific neuronal pathways. The potential of this technique to address connectivity in the human brain is not without a few methodological limitations. A wide spectrum of diffusion imaging paradigms and computational tractography algorithms has been explored in recent years, which established DTI as promising new avenue, for the non-invasive in vivo mapping of structural connectivity at the macroscale level. Further improvements in the spatial resolution of DTI may allow this technique to be applied in the near future for mapping connectivity also at the mesoscale level. Key words: Diffusion Tensor Imaging, human brain, white matter anatomy Definitions diffusion coefficients for the cellular compartments. Diffusion tensor imaging (DTI) is a neuroimaging MR technique, which allows The anisotropic diffusion of coherently in vivo and non-destructive visualization of oriented axonal fibers can be exploited for myeloarchitectonics in the neural tissue and anatomic mapping and quantitative provides quantitative estimates of WM characterization of white matter tracts. This integrity by measuring molecular diffusion. is done by depicting and measuring the It is based in the phenomenon of diffusion diffusion tensor within the imaging voxels of anisotropy in the nerve tissue, in that water the diffusion acquisition. Provided that 6 molecules diffuse faster along the neural diffusion-encoded images sets are acquired fiber direction and slower in the fiber- along noncollinear directions, the diffusion transverse direction (Fig. 1) The hindrance of tensor can be calculated. Diffusion tensor, is water diffusion in white matter is putative ____________________________________ due to the diffusion barrier represented by Correspondence to: Prof. Dr. med. Spyros the cell membrane and the myelin sheath Kollias, Chief of MRI, Institute of however, it is governed by several other, yet Neuroradiology, University Hospital of not completely elucidated, parameters related Zurich, Switzerland to the diffusion physics and biophysical E-mail: [email protected] properties of the tissue such as, the cell membrane permeability and the free NJR I VOL 1 I No. 1 I ISSUE 1 I JULY-DEC, 2011 78 Page Kollias et al. Insights into the Connectivity of the Brain using DTI Figure 1: Schematic representation of water Figure 2: graphic representation of the diffusion proton anisotropic diffusion along the long axis of ellipsoid. The long axis of the ellipsoid indicates myelinated white mater fibers. The displacement the preferred direction of diffusion. Its value varies of the protons in the 3D space is faster along the from 0 (isotropic diffusion) up to maximum 1, direction of the fibers. Estimation of the direction indicating perfectly linear (anisotropic) diffusion of faster diffusion indicates the along the primary eigenvector. a mathematical model of the 3D pattern of The fiber orientation information inherent in diffusion trsjectories (a 3X3 matrix of the primary eigenvector can be visualized on vectors) within the white matter tracts. The 2D images by assigning a color to each of three principal axes of the diffusion tensor the 3 mutually orthogonal axes, typically red are termed the eigenvectors. The largest for left-right, green for anteroposterior and eigenvector is termed the primary blue for superior-inferior. The orientation of eigenvector and indicates the direction and the primary eigenvector within each voxel magnitude of greatest water diffusion. It is gives the color in the specific voxel (Fig. 3). important for fiber tractography because it This way, white matter tissue can be further indicates the orientation of axonal fiber parcellated into specific white matter tracts bundles. The degree of directionality of according to their orientation in the 3D space intravoxel diffusivity is measured by the (Fig. 4). fractional anisotropy (FA) index. When the The orientation information can also be used value of the primary eigenvector is higher for 3D fiber tracking of specific white matter than the values of the second and third tracts (Fig 5). The objective of fiber tracking eigenvectors the FA will be high, indicating is to determine intervoxel connectivity by diffusion along a preferred direction. The using the diffusion tensor of each voxel to graphic representation of the three follow an axonal tract in 3D from voxel to eigenvectors corresponds to a prolate shape voxel through the neural tissue. Several fiber of diffusion ellipsoid with the long axis of tracking algorithms have been developed the ellipsoid indicating the preferred over the last years for anatomical direction of diffusion (Fig. 2). Its value reconstruction and quantitative varies from 0 (isotropic diffusion) up to characterization of white matter tracts. maximum 1, indicating perfectly linear Grossly, these algorithms can be divided into diffusion along the primary eigenvector. deterministic and probabilistic methods. Deterministic, “streamline” tractography, Visualization of white matter architecture infers the continuity of fiber bunbles from using DTI voxel-to-voxel. User-defined regions of interest, as well as constrains on the maximum turning angle of the fiber NJR I VOL 1 I No. 1 I ISSUE 1 I JULY-DEC, 2011 79 Page Kollias et al. Insights into the Connectivity of the Brain using DTI trajectory between voxels and on the minimum FA within a voxel for propagation of the streamline, are applied to restrict the fiber tracts to a specific pathway based on prior anatomical knowledge and thus to create realistic representations of the white matter pathways. Probabilistic methods, incorporate the expected uncertainty into the tracking algorithm and can be used to produce a connectivity metric for each voxel. They focus on the connectivity probabilities rather the actual WM pathways between Figure 4: 2D DTI overlaid on a coronal inversion voxels. Definition of a “probability density recovery (IR) anatomical MR image. Large white function” allows estimation of the matter tracts of the projectional (blue), uncertaintity of both intravoxel orientation commissural (red) and association (green) fiber systems are distinguished from each other on the and its propagation. These algorithms have DT image. the potential to delineate a greater portion of a white matter tract. Figure 3: 2D DTI color-coded according the orientation in the 3D space of the primary eigenvector within each voxel of the image (red for left-right, green for anterior-posterior and blue for Figure 5: 3D reconstruction of fiber systems using superior-inferior). The direction of the main the Fiber Assignment by Continuous Tracking eigenvector indicates the fiber orientation within (FACT) algorithm. Based on the localization and the specific voxel. the specific main orientation we can virtually reconstruct individual fiber systems of the WM in great detail. We indentify the mediolaterally oriented commisural corpus callosum (red) the Methods to improve determination of the vertically oriented projectional systems of the diffusion tensor corona radiata and internal caspule (blue) and the anteroposterior oriented long association fiber Much progress has also been achieved over systems of the superior occipito-frontal fasciculus and arcuate fasciculus (green). the last years in improving the acquisition schemes of DTI data collection for better characterization of the water molecule (DSI) although, this approach is time diffusion. These include: a) increasing the consuming and difficult to transfer in the angular resolution of the diffusion- clinical setting, c) performing measurements sensitizing gradients, b) performing a direct at many directions but one gradient strength measurement of water diffusion in all only, referred as Q-ball imaging, with an directions and at different gradient strengths, acquisition time more compatible with referred to as Diffusion Spectrum Imaging clinical requirements. Certainly, the quality NJR I VOL 1 I No. 1 I ISSUE 1 I JULY-DEC, 2011 80 Page Kollias et al. Insights into the Connectivity of the Brain using DTI of the DTI is greatly facilitated by the use of information between the cerebral higher field strength magnets (3-7 T), the use hemispheres. It was demonstrated that of specialized surface coils and the anterior and body callosal connections are development of parallel imaging acquisition essential to perform temporally independent schemes. bimanual finger movements, whereas the The clinical and scientific utility of DTI fiber posterior
Recommended publications
  • Connectivity and Neurochemistry of the Commissura Anterior of the Pigeon (Columba Livia)
    RESEARCH ARTICLE Connectivity and Neurochemistry of the Commissura Anterior of the Pigeon (Columba livia) Sara Letzner,* Annika Simon, and Onur Gunt€ urk€ un€ Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany ABSTRACT pallial and amygdaloid projections were reciprocally The anterior commissure (AC) and the much smaller organized, and all AC projections originated within a hippocampal commissure constitute the only interhemi- rather small area of the arcopallium and the PoA. The spheric pathways at the telencephalic level in birds. commissural neurons were not GABA-positive, and thus Since the degeneration study from Zeier and Karten possibly not of an inhibitory nature. In sum, our neuroa- (1973), no detailed description of the topographic orga- natomical study demonstrates that a small group of nization of the AC has been performed. This information arcopallial and amygdaloid neurons constitute a wide is not only necessary for a better understanding of range of contralateral projections to sensorimotor and interhemispheric transfer in birds, but also for a com- limbic structures. Different from mammals, in birds the parative analysis of the evolution of commissural sys- neurons that project via the AC constitute mostly heter- tems in the vertebrate classes. We therefore examined otopically organized and unidirectional connections. In the fiber connections of the AC by using choleratoxin addition, the great majority of pallial areas do not par- subunit B (CTB) and biotinylated dextran amine (BDA). ticipate by themselves in interhemispheric exchange in Injections into subareas of the arcopallium and poste- birds. Instead, commissural exchange rests on a rather rior amygdala (PoA) demonstrated contralateral projec- small arcopallial and amygdaloid cluster of neurons.
    [Show full text]
  • Glutamate Transporter Mrna Expression in Proliferative Zones of the Developing and Adult Murine CNS
    The Journal of Neuroscience, April 1, 1996, 76(7):2191-2207 Glutamate Transporter mRNA Expression in Proliferative Zones of the Developing and Adult Murine CNS Margaret L. Sutherland,is2 Tracy A. Delaney,’ and Jeffrey L. Noebels’s2 1Division of Neuroscience, “Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030 Neuronal migration, differentiation, and synapse formation are transcript expression continued in the subventricular zone developmental processes within the CNS significantly influ- postnatally and persisted in this proliferative zone in the adult enced by ionotropic and metabotropic glutamate receptor ac- brain. From PO onward, mEAAT1 mRNA was present predom- tivity. Extracellular glutamate concentrations mediating this ac- inantly in the cerebellar Purkinje cell layer and at a much lower tivity are regulated by transport proteins localized in neuronal abundance in the cortex, hippocampus, basal nuclei, and sep- and glial cell membranes. We have used in situ hybridization tum, whereas from P7 onward, mEAAT2 mRNA expression analysis with subtype-specific antisense-oligonucleotides to increased throughout most of the neuraxis. Postnatally, tran- study the distribution of glia-specific excitatory amino acid scripts for mEAAT1 and mEAAT2 were found in cell bodies, transporter (mEAAT1 and mEAAT2) mRNAs during the later processes, and commissural white matter tracts of the CNS. stages of embryogenesis and postnatal CNS development. The divergent temporal and spatial expression
    [Show full text]
  • Morphological Evidence for the Sprouting of Inhibitory Commissural Fibers in Response to the Lesion of the Excitatory Entorhinal Input to the Rat Dentate Gyrus
    The Journal of Neuroscience, October 1995, 75(10): 6868-6878 Morphological Evidence for the Sprouting of Inhibitory Commissural Fibers in Response to the Lesion of the Excitatory Entorhinal Input to the Rat Dentate Gyrus T. Deller,’ M. Frotscher,’ and R. Nitsch2 ‘Institute of Anatomy, University of Freiburg, D-79001 Freiburg, Germany and ‘Institute of Anatomy, Humboldt University Berlin (Charitb), D-l 0098 Berlin, Germany Recently a commissural fiber projection that terminates in missural and associational fibers to the inner molecular layer the outer molecular layer of the fascia dentata was de- expand their termination zone (e.g., Lynch et al., 1973, 1976; scribed in normal rats (Deller et al., 1995). In the present Zimmer et al., 1973; Goldowitz and Cotman, 1980; Lynch et article, Phaseolus vu/g&s leucoagglutinin (PHAL) tracing al., 1982; West et al., 1984); (2) septohippocampal fibers, known was used to analyze the contribution of this previously un- to terminate throughout the molecular layer of the dentate gyms, known projection to the commissural sprouting response form a dense fiber plexus in the denervated zone (Lynch et al., after entorhinal cortex lesion. Rats 4-9 weeks after unilat- 1972; Nadler et al., 1977; Nyakas et al., 1988); and (3) axons eral entorhinal lesion received a single PHAL deposit into of the crossed temporo-dentate pathway participate in the rein- the hilus of the fascia dentata contralateral to the lesion nervation of the denervated septal portion of the hippocampal side. Unlesioned control animals received a similar PHAL formation (Steward et al., 1974; Goldowitz et al., 1975; Deller deposit. The degree of axonal arborization and the bouton et al., 1995b).
    [Show full text]
  • A Pan-Mammalian Map of Interhemispheric Brain Connections Predates the Evolution of the Corpus Callosum
    A pan-mammalian map of interhemispheric brain connections predates the evolution of the corpus callosum Rodrigo Suáreza,1, Annalisa Paolinoa, Laura R. Fenlona, Laura R. Morcoma, Peter Kozulina, Nyoman D. Kurniawanb, and Linda J. Richardsa,c,1 aQueensland Brain Institute, The University of Queensland, Brisbane, QLD 4070, Australia; bCentre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4070, Australia; and cSchool of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4070, Australia Edited by Jon H. Kaas, Vanderbilt University, Nashville, TN, and approved August 1, 2018 (received for review May 14, 2018) The brain of mammals differs from that of all other vertebrates, in embryonic astroglia (13), which is exclusively present in euthe- having a six-layered neocortex that is extensively interconnected rians (14). The evolution of the corpus callosum as a distinct within and between hemispheres. Interhemispheric connections are tract allowed a significant expansion of the number of inter- conveyed through the anterior commissure in egg-laying mono- hemispheric neocortical connections in species with large brains tremes and marsupials, whereas eutherians evolved a separate (15). The corpus callosum carries fibers topographically arranged commissural tract, the corpus callosum. Although the pattern of according to the position of their cell bodies (16–18) and con- interhemispheric connectivity via the corpus callosum is broadly nects mostly similar (homotopic) but also different (heterotopic) shared across eutherian species, it is not known whether this pattern regions in each hemisphere (Fig. 1B). However, although the arose as a consequence of callosal evolution or instead corresponds map of callosal fibers in eutherians is well-established, and in- to a more ancient feature of mammalian brain organization.
    [Show full text]
  • Neuronal Basic Helix–Loop–Helix Proteins Neurod2/6 Regulate Cortical Commissure Formation Before Midline Interactions
    The Journal of Neuroscience, January 9, 2013 • 33(2):641–651 • 641 Development/Plasticity/Repair Neuronal Basic Helix–Loop–Helix Proteins Neurod2/6 Regulate Cortical Commissure Formation before Midline Interactions Ingo Bormuth,1,2* Kuo Yan,2* Tomoko Yonemasu,1 Maike Gummert,1 Mingyue Zhang,3 Sven Wichert,1 Olga Grishina,2* Alexander Pieper,1 Weiqi Zhang,3 Sandra Goebbels,1 Victor Tarabykin,2 Klaus-Armin Nave,1 and Markus H. Schwab1 1Max Planck Institute of Experimental Medicine, Department of Neurogenetics, D-37075 Go¨ttingen, Germany, 2Charite´–Universita¨tsmedizin Berlin, Institute of Cell Biology and Neurobiology, NeuroCure Cluster of Excellence, D-10115 Berlin, Germany, and 3University of Mu¨nster, Department of Psychiatry, Laboratory of Molecular Psychiatry, D-48149 Mu¨nster, Germany Establishment of long-range fiber tracts by neocortical projection neurons is fundamental for higher brain functions. The molecular control of axon tract formation, however, is still poorly understood. Here, we have identified basic helix–loop–helix (bHLH) transcrip- tion factors Neurod2 and Neurod6 as key regulators of fasciculation and targeted axogenesis in the mouse neocortex. In Neurod2/6 double-mutant mice, callosal axons lack expression of the cell adhesion molecule Contactin2, defasciculate in the subventricular zone, and fail to grow toward the midline without forming Probst bundles. Instead, mutant axons overexpress Robo1 and follow random trajectoriesintotheipsilateralcortex.Incontrasttolong-rangeaxogenesis,generationandmaintenanceofpyramidalneuronsandinitial axon outgrowth are grossly normal, suggesting that these processes are under distinct transcriptional control. Our findings define a new stage in corpus callosum development and demonstrate that neocortical projection neurons require transcriptional specification by neuronal bHLH proteins to execute an intrinsic program of remote connectivity.
    [Show full text]
  • The Brain of the Remipedia (Crustacea) and an Alternative Hypothesis on Their Phylogenetic Relationships
    The brain of the Remipedia (Crustacea) and an alternative hypothesis on their phylogenetic relationships Martin Fanenbruck*†, Steffen Harzsch†‡§, and Johann Wolfgang Wa¨ gele* *Fakulta¨t Biologie, Ruhr-Universita¨t Bochum, Lehrstuhl fu¨r Spezielle Zoologie, 44780 Bochum, Germany; and ‡Sektion Biosystematische Dokumentation and Abteilung Neurobiologie, Universita¨t Ulm, D-89081 Ulm, Germany Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved December 16, 2003 (received for review September 26, 2003) Remipedia are rare and ancient mandibulate arthropods inhabiting ical study and reconstruction of the brain anatomy of Godzil- almost inaccessible submerged cave systems. Their phylogenetic liognomus frondosus Yager, 1989, (Remipedia, Godzilliidae) position is still enigmatic and the subject of extremely controver- from the Grand Bahama Island (12) followed by a discussion of sial debates. To contribute arguments to this discussion, we ana- ecological and phylogenetic implications. lyzed the brain of Godzilliognomus frondosus Yager, 1989 (Remi- pedia, Godzilliidae) and provide a detailed 3D reconstruction of its Methods anatomy. This reconstruction yielded the surprising finding that in The cephalothorax of a formalin-fixed Godzilliognomus frondo- comparison with the brain of other crustaceans such as represen- sus Yager, 1989, (Remipedia, Godzilliidae) specimen was em- tatives of the Branchiopoda and Maxillopoda the brain of G. bedded in Unicryl (British Biocell International, Cardiff, U.K.). frondosus is highly organized and well differentiated. It is matched Slices of 2.5 ␮m were sectioned by using a Reichert-Jung in complexity only by the brain of ‘‘higher’’ crustaceans (Malacos- 2050-supercut. After toluidine-blue staining, digital images were traca) and Hexapoda.
    [Show full text]
  • Comparative Neuroanatomy Within the Context of Deep Metazoan Phylogeny
    Comparative Neuroanatomy within the Context of Deep Metazoan Phylogeny Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologe Carsten Michael Heuer aus Düsseldorf Berichter: Herr Universitätsprofessor Dr. Peter Bräunig Herr Privatdozent Dr. Rudolf Loesel Tag der mündlichen Prüfung: 08.03.2010 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Summary Comparative invertebrate neuroanatomy has seen a renaissance in recent years. Highly conserved neuroarchitectural traits offer a wealth of hitherto largely unexploited characters that can make valuable contributions in inferring phylogenetic relationships in cases where phylogenetic analyses of molecular or morphological data sets yield trees with conflicting or weakly supported topologies. Conversely, in those cases where robust phylogenetic trees exist, neuroanatomical features can be mapped onto the trees, helping to shed light on the evolution of the central nervous system. This thesis aims to provide detailed neuroanatomical data for a hitherto poorly studied invertebrate taxon, the segmented worms (Annelida). Drawing on the wealth of investigations into the architecture of the brain in different arthropods, the study focuses on the identification and description of possibly homologous brain centers (i.e. neuropils) in annelids. The thesis presents an extensive survey of the internal architecture of the brain of the ragworm Nereis diversicolor (Polychaeta, Annelida). Based upon confocal laser scanning microscope analyses, the distribution of neuroactive substances in the brain is described and the architecture of two major brain compartments, namely the paired mushroom bodies and the central optic neuropil, is characterized in detail.
    [Show full text]
  • Fiber Tracts Anomalies in Appxps1 Transgenic Mice Modeling Alzheimer’S Disease
    SAGE-Hindawi Access to Research Journal of Aging Research Volume 2011, Article ID 281274, 12 pages doi:10.4061/2011/281274 Research Article Fiber Tracts Anomalies in APPxPS1 Transgenic Mice Modeling Alzheimer’s Disease H. Chen,1, 2 S. Epelbaum,3 and B. Delatour1, 3 1 CNRS, Laboratoire NAMC, UMR 8620, Universit´e Paris-Sud 11, 91405 Orsay, France 2 Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013, China 3 “Alzheimer’s and Prion Diseases” Team, ICM Brain & Spine Institute, UPMC/Inserm UMR-S 975, CNRS UMR 7225, Piti´e-Salpˆetri`ere Hospital, 47 Boulevard de l’Hopital,ˆ 75013 Paris, France CorrespondenceshouldbeaddressedtoB.Delatour,[email protected] Received 13 March 2011; Revised 30 May 2011; Accepted 28 June 2011 Academic Editor: Sofia Madureira Copyright © 2011 H. Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Amyloid beta (Aβ) peptides are known to accumulate in the brain of patients with Alzheimer’s disease (AD). However, the link between brain amyloidosis and clinical symptoms has not been elucidated and could be mediated by secondary neuropathological alterations such as fiber tracts anomalies. In the present study, we have investigated the impact of Aβ overproduction in APPxPS1 transgenic mice on the integrity of forebrain axonal bundles (corpus callosum and anterior commissure). We found evidence of fiber tract volume reductions in APPxPS1 mice that were associated with an accelerated age-related loss of axonal neurofilaments and a myelin breakdown.
    [Show full text]
  • The Relationship Between Axon Density, Myelination, and Fractional
    Cerebral Cortex, 2020;00: 1–15 doi: 10.1093/cercor/bhz221 Original Article Downloaded from https://academic.oup.com/cercor/advance-article-abstract/doi/10.1093/cercor/bhz221/5652191 by guest on 10 February 2020 ORIGINAL ARTICLE The Relationship Between Axon Density, Myelination, and Fractional Anisotropy in the Human Corpus Callosum Patrick Friedrich 1,2,*, Christoph Fraenz 1, Caroline Schlüter 1, Sebastian Ocklenburg1, Burkhard Mädler 3, Onur Güntürkün1 and Erhan Genç1 1Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, 44801 Bochum, Germany 2Brain Connectivity and Behaviour Laboratory (BCBLab), Sorbonne Universities, 75013 Paris, France 3Health Systems Department, Philips GmBH, 22335 Hamburg, Germany. Address correspondence to Patrick Friedrich, Fakultät für Psychologie, Abteilung Biopsychologie, Institut für Kognitive Neurowissenschaft, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany. Email: [email protected] Abstract The corpus callosum serves the functional integration and interaction between the two hemispheres. Many studies investigate callosal microstructure via diffusion tensor imaging (DTI) fractional anisotropy (FA) in geometrically parcellated segments. However, FA is influenced by several different microstructural properties such as myelination and axon density, hindering a neurobiological interpretation. This study explores the relationship between FA and more specific measures of microstructure within the corpus callosum in a sample of 271 healthy participants. DTI tractography was used to assess 11 callosal segments and gain estimates of FA. We quantified axon density and myelination via neurite orientation dispersion and density imaging (NODDI) to assess intra-neurite volume fraction and a multiecho gradient spin-echo sequence estimating myelin water fraction. The results indicate three common factors in the distribution of FA, myelin content and axon density, indicating potentially shared rules of topographical distribution.
    [Show full text]
  • Neurite Orientation Dispersion and Density Imaging Reveals White
    Andica et al. Molecular Autism (2021) 12:48 https://doi.org/10.1186/s13229-021-00456-4 RESEARCH Open Access Neurite orientation dispersion and density imaging reveals white matter microstructural alterations in adults with autism Christina Andica1* , Koji Kamagata1, Eiji Kirino2,3, Wataru Uchida1, Ryusuke Irie1, Syo Murata1,4 and Shigeki Aoki1 Abstract Background: Evidences suggesting the association between behavioral anomalies in autism and white matter (WM) microstructural alterations are increasing. Difusion tensor imaging (DTI) is widely used to infer tissue microstructure. However, due to its lack of specifcity, the underlying pathology of reported diferences in DTI measures in autism remains poorly understood. Herein, we applied neurite orientation dispersion and density imaging (NODDI) to quan- tify and defne more specifc causes of WM microstructural changes associated with autism in adults. Methods: NODDI (neurite density index [NDI], orientation dispersion index, and isotropic volume fraction [ISOVF]) and DTI (fractional anisotropy [FA], mean difusivity [MD], axial difusivity, and radial difusivity [RD]) measures were compared between autism (N 26; 19 males and 7 females; 32.93 9.24 years old) and age- and sex-matched typi- cally developing (TD; N 25; 17= males and 8 females; 34.43 9.02 ±years old) groups using tract-based spatial statistics and region-of-interest analyses.= Linear discriminant analysis ±using leave-one-out cross-validation (LDA-LOOCV) was also performed to assess the discriminative power of difusion measures in autism and TD. Results: Signifcantly lower NDI and higher ISOVF, suggestive of decreased neurite density and increased extracellular free-water, respectively, were demonstrated in the autism group compared with the TD group, mainly in commissural and long-range association tracts, but with distinct predominant sides.
    [Show full text]
  • White Matter Structure in Older Adults Moderates the Benefit of Sleep Spindles on Motor Memory Consolidation
    The Journal of Neuroscience, November 29, 2017 • 37(48):11675–11687 • 11675 Behavioral/Cognitive White Matter Structure in Older Adults Moderates the Benefit of Sleep Spindles on Motor Memory Consolidation X Bryce A. Mander,1,8 Alyssa H. Zhu,1 John R. Lindquist,1 Sylvia Villeneuve,4 Vikram Rao,1 Brandon Lu,5 X Jared M. Saletin,7 Sonia Ancoli-Israel,6 XWilliam J. Jagust,2,3 and Matthew P. Walker1,2 1Sleep and Neuroimaging Laboratory, Department of Psychology, University of California, Berkeley, 2Helen Wills Neuroscience Institute, and 3Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, 4Department of Psychiatry, McGill University, Montreal, Quebec, Canada, 5Division of Pulmonary and Critical Care Medicine, California Pacific Medical Center, San Francisco, California 94115, 6Department of Psychiatry, University of California, San Diego, La Jolla, California 92093, 7Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island 02903, and 8Department of Psychiatry and Human Behavior, University of California, Irvine, Orange, California 92868 Sleep spindles promote the consolidation of motor skill memory in young adults. Older adults, however, exhibit impoverished sleep- dependent motor memory consolidation. The underlying pathophysiological mechanism(s) explaining why motor memory consolida- tion in older adults fails to benefit from sleep remains unclear. Here, we demonstrate that male and female older adults show impoverished overnight motor skill memory consolidation relative to young adults, with the extent of impairment being associated with the degree of reduced frontal fast sleep spindle density. The magnitude of the loss of frontal fast sleep spindles in older adults was predicted by the degree of reduced white matter integrity throughout multiple white matter tracts known to connect subcortical and cortical brain regions.
    [Show full text]
  • Fiber Tracts Anomalies in Appxps1 Transgenic Mice Modeling Alzheimer’S Disease
    SAGE-Hindawi Access to Research Journal of Aging Research Volume 2011, Article ID 281274, 12 pages doi:10.4061/2011/281274 Research Article Fiber Tracts Anomalies in APPxPS1 Transgenic Mice Modeling Alzheimer’s Disease H. Chen,1, 2 S. Epelbaum,3 and B. Delatour1, 3 1 CNRS, Laboratoire NAMC, UMR 8620, Universit´e Paris-Sud 11, 91405 Orsay, France 2 Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013, China 3 “Alzheimer’s and Prion Diseases” Team, ICM Brain & Spine Institute, UPMC/Inserm UMR-S 975, CNRS UMR 7225, Piti´e-Salpˆetri`ere Hospital, 47 Boulevard de l’Hopital,ˆ 75013 Paris, France CorrespondenceshouldbeaddressedtoB.Delatour,[email protected] Received 13 March 2011; Revised 30 May 2011; Accepted 28 June 2011 Academic Editor: Sofia Madureira Copyright © 2011 H. Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Amyloid beta (Aβ) peptides are known to accumulate in the brain of patients with Alzheimer’s disease (AD). However, the link between brain amyloidosis and clinical symptoms has not been elucidated and could be mediated by secondary neuropathological alterations such as fiber tracts anomalies. In the present study, we have investigated the impact of Aβ overproduction in APPxPS1 transgenic mice on the integrity of forebrain axonal bundles (corpus callosum and anterior commissure). We found evidence of fiber tract volume reductions in APPxPS1 mice that were associated with an accelerated age-related loss of axonal neurofilaments and a myelin breakdown.
    [Show full text]