Roles of Bhlh Transcription Factors Neurod1, Neurod2 and Neurod6 in Cerebral Cortex Development and Commissure Formation

Total Page:16

File Type:pdf, Size:1020Kb

Roles of Bhlh Transcription Factors Neurod1, Neurod2 and Neurod6 in Cerebral Cortex Development and Commissure Formation Aus der Abteilung für Neurogenetik (Prof. Klaus-Armin Nave, Ph. D.) des Max-Planck-Instituts für Experimentelle Medizin in Göttingen Roles of bHLH Transcription Factors Neurod1, Neurod2 and Neurod6 in Cerebral Cortex Development and Commissure Formation INAUGURAL - DISSERTATION zur Erlangung des Doktorgrades der Medizinischen Fakultät der Georg-August-Universität zu Göttingen vorgelegt von Ingo Bormuth aus Offenbach am Main Göttingen 2015 D e k a n: Prof. Dr. rer. nat. Heyo Klaus Kroemer I. Berichterstatter: Prof. Dr. med. Mikael Simons II. Berichterstatter: Prof. Dr. rer. nat. Jörg Großhans III. Berichterstatter: Prof. Dr. mult. Thomas Meyer Tag der mündlichen Prüfung: 7. April 2016 Contents Summary 1 1 Introduction 3 1.1 Short History of Neurosciences....................4 1.2 Cerebral Cortex Development.....................6 1.2.1 Axis Specification......................6 1.2.2 Arealization.........................7 1.2.3 Radial Migration......................9 1.2.4 Neuronal Identity...................... 11 1.2.5 Axon Growth........................ 11 1.2.6 Connectivity......................... 13 1.3 bHLH Transcription Factors...................... 14 1.3.1 bHLH Domain........................ 14 1.3.2 Classification........................ 15 1.3.3 Functions.......................... 16 1.3.4 Neuronal bHLH Proteins.................. 17 1.4 The NeuroD-Family........................... 18 1.4.1 Neurod1........................... 18 1.4.2 Neurod2 and Neurod6................... 19 1.4.3 Neurod4........................... 20 1.5 Genetic Inactivation Studies...................... 20 1.5.1 Inactivation of Neurod1.................. 21 1.5.2 Inactivation of Neurod2.................. 22 1.5.3 Inactivation of Neurod6.................. 23 1.6 Functional Redundancy........................ 24 1.7 The Cre-LoxP System.......................... 25 2 Results 27 2.1 The Neurod6-Lineage of Cells..................... 28 2.2 Inactivation of Neurod6......................... 30 2.3 Inactivation of Neurod2......................... 31 2.3.1 Lethality........................... 31 2.3.2 Cortical Connectivity.................... 32 2.4 Simultaneous Inactivation of Neurod2/6.............. 33 2.4.1 Brain Anatomy....................... 34 2.4.2 Cortex Development.................... 35 2.4.2.1 Overview................... 36 2.4.2.2 Radial Migration............... 37 2.4.2.3 Subplate.................... 39 2.4.2.4 Upper Layers................. 40 2.4.2.5 Deeper Layers................ 41 i Contents 2.4.3 Adult Brain......................... 43 2.4.4 Cortical Connectivity.................... 44 2.4.4.1 Callosal Projections............. 44 2.4.4.2 Axon Growth................. 45 2.4.4.3 Fasciculation................. 46 2.4.4.4 Midline Glia.................. 47 2.4.4.5 Midline Crossing............... 49 2.4.4.6 Subcortical Projections........... 51 2.4.5 Synaptic Function..................... 52 2.4.6 Arealization of the Neocortex............... 54 2.4.7 Upregulation of Neurod1.................. 55 2.5 Simultaneous Inactivation of Neurod1/2/6............. 56 2.5.1 Breeding........................... 57 2.5.2 Brain Anatomy....................... 58 2.5.3 Hippocampus........................ 59 2.5.3.1 Granule Neuron Differentiation...... 59 2.5.3.2 Pyramidal Neuron Differentiation..... 60 2.5.4 Neocortex.......................... 61 2.5.4.1 Radial Migration and Laminarization... 63 2.5.4.2 Determination and Early Differentiation. 64 2.5.4.3 Terminal Differentiation and Identity... 65 2.5.5 Developmental Cell Death................. 66 2.5.6 Cortical Connectivity.................... 67 2.5.6.1 Intracortical Projections........... 67 2.5.6.2 Subcortical Projections........... 68 2.5.6.3 Thalamocortical Handshake........ 70 2.6 Other Observations........................... 72 3 Discussion 73 3.1 Determination.............................. 74 3.2 Differentiation.............................. 76 3.2.1 Ventricular Zone...................... 76 3.2.2 Subventricular Zone.................... 77 3.2.3 Intermediate Zone..................... 78 3.2.4 Cortical Plate........................ 78 3.3 Migration................................. 80 3.4 Arealization............................... 81 3.5 Axon Growth............................... 83 3.6 Apoptosis................................. 85 3.7 Genetic Background.......................... 87 3.8 Adult Functions............................. 87 3.9 Outlook.................................. 89 3.9.1 Inducible Neurod6-Cre Mice................ 89 3.9.2 Neurod6 Overexpression.................. 90 3.10 Closing Words.............................. 91 4 Material and Methods 93 4.1 Transgenic Mice............................. 93 4.2 Genotyping................................ 93 4.2.1 Tissue Lysis......................... 94 4.2.2 Polymerase Chain Reaction................ 94 ii Contents 4.2.3 Gel Electrophoresis..................... 95 4.2.4 Neurod1-Flox PCR..................... 95 4.2.5 Neurod2-Null PCR..................... 96 4.2.6 Neurod6-Cre PCR...................... 97 4.3 Cell Culture............................... 97 4.4 In Utero Electroporation........................ 99 4.5 Electrophysiology............................ 99 4.6 qRT-PCR................................. 100 4.7 Histology................................. 101 4.7.1 Tissue Preparation and Fixation............. 101 4.7.2 Tissue Sectioning...................... 101 4.7.2.1 Vibratome................... 101 4.7.2.2 Cryostat.................... 101 4.7.2.3 Paraffin.................... 102 4.7.3 X-gal Histochemistry.................... 102 4.7.4 Myelin Staining....................... 102 4.7.5 Immunohistochemistry.................. 103 4.7.6 In Situ Hybridization.................... 104 4.8 Software................................. 105 4.8.1 Statistical Analysis..................... 106 4.8.2 Sequence Alignment.................... 107 4.8.3 Genetic Modeling...................... 107 4.8.4 Image Processing...................... 107 4.8.5 Manuscript Preparation.................. 108 Bibliography 109 Appendix 128 Acknowledgments............................... 129 Abbreviations................................. 131 List of Figures................................. 134 List of Tables.................................. 135 Index...................................... 136 Zusammenfassung (German Summary).................. 140 CC-BY iii Summary The brain is deeper than the sea, For, hold them, blue to blue, The one the other will absorb, As sponges, buckets do. E. Dickison1 ASIC HELIX-LOOP-HELIX (bHLH) proteins constitute a diverse group of evolutionary well-conserved transcription factors. Many transactivating B bHLH proteins follow cell type- or tissue-specific expression patterns and act as key regulators of cellular determination and differentiation processes. The closely related neuronal bHLH genes Neurod1, Neurod2 and Neurod6 are expressed by differentiating pyramidal neurons in the developing cerebral cortex and have long been suspected to regulate the maturation of these cells. Each of the three genes was genetically inactivated in mice, but studies of single-deficient animals failed to identify important functions in embryonic pyramidal neurons. Considering high sequence similarity and overlapping expression patterns, most authors suggested functional redundancy amongst the NeuroD-family. To test this, I bred transgenic mice lacking the two most similarly expressed NeuroD genes, Neurod2/6; and analyzed cerebral cortex development with an emphasis on pyramidal neuron identity and neocortical connectivity. Neurod2 and Neurod6 indeed share several hitherto unknown functions and compensate for each other’s loss. At least one of the two genes is necessary for: (1) the control of radial migration in a subset of pyramidal neurons; (2) area determination in the neocortex; and (3) the formation of fiber tracts connecting the neocortex to the striatum, to the thalamus, and to the contralateral hemi- sphere. In Neurod2/6 double-deficient mice, callosal axons form fasciculated fiber bundles that grow tangentially into the medial neocortex, but stall and defasciculate before reaching the ipsilateral cingulum or any midline associated structure. This new variant of callosal agenesis implies the presence of a not yet identified axon guidance mechanism in the medial neocortex. Neocortical Neurod1 expression, which is normally restricted to the subventric- ular zone, persists in the intermediate zone and cortical plate of Neurod2/6 double-deficient embryos. Ectopically upregulated Neurod1 can provide redun- dant functionality to compensate for the loss of Neurod2/6. I went further and bred conditional Neurod1/2/6 triple-deficient mice, in which the Neurod1 gene is specifically inactivated in cells with Neurod6-promoter activity. 1Dickinson 2013, CXXVI, verse 2 1 Summary As hypothesized, Neurod1 shares additional functions with Neurod2 and Neurod6. At least one of the three genes is necessary for hippocampal pyramidal neuron differentiation and the prevention of developmental cell death in the medial cortex. While the simultaneous inactivation of Neurod1/2/6 results in the complete loss of archicortical pyramidal neurons, many neocortical pyramidal cells survive, migrate radially and settle in the cortical plate. However, terminal pyramidal neuron differentiation is incomplete and neocortical connectivity is dramatically reduced in the triple-deficient mice. Taken together, this work shows that NeuroD-family transcription factors coopera- tively regulate pyramidal neuron differentiation, survival,
Recommended publications
  • Connectivity and Neurochemistry of the Commissura Anterior of the Pigeon (Columba Livia)
    RESEARCH ARTICLE Connectivity and Neurochemistry of the Commissura Anterior of the Pigeon (Columba livia) Sara Letzner,* Annika Simon, and Onur Gunt€ urk€ un€ Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany ABSTRACT pallial and amygdaloid projections were reciprocally The anterior commissure (AC) and the much smaller organized, and all AC projections originated within a hippocampal commissure constitute the only interhemi- rather small area of the arcopallium and the PoA. The spheric pathways at the telencephalic level in birds. commissural neurons were not GABA-positive, and thus Since the degeneration study from Zeier and Karten possibly not of an inhibitory nature. In sum, our neuroa- (1973), no detailed description of the topographic orga- natomical study demonstrates that a small group of nization of the AC has been performed. This information arcopallial and amygdaloid neurons constitute a wide is not only necessary for a better understanding of range of contralateral projections to sensorimotor and interhemispheric transfer in birds, but also for a com- limbic structures. Different from mammals, in birds the parative analysis of the evolution of commissural sys- neurons that project via the AC constitute mostly heter- tems in the vertebrate classes. We therefore examined otopically organized and unidirectional connections. In the fiber connections of the AC by using choleratoxin addition, the great majority of pallial areas do not par- subunit B (CTB) and biotinylated dextran amine (BDA). ticipate by themselves in interhemispheric exchange in Injections into subareas of the arcopallium and poste- birds. Instead, commissural exchange rests on a rather rior amygdala (PoA) demonstrated contralateral projec- small arcopallial and amygdaloid cluster of neurons.
    [Show full text]
  • Cell Cycle Regulation of Proliferation Versus Differentiation in the Central Nervous System
    Cell Tissue Res DOI 10.1007/s00441-014-1895-8 REVIEW Cell cycle regulation of proliferation versus differentiation in the central nervous system Laura J. A. Hardwick & Fahad R. Ali & Roberta Azzarelli & Anna Philpott Received: 4 February 2014 /Accepted: 10 April 2014 # The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Formation of the central nervous system requires a precise coordination and the ultimate division versus differenti- period of extensive progenitor cell proliferation, accompanied ation decision. or closely followed by differentiation; the balance between these two processes in various regions of the central nervous system Keywords Cell cycle . Differentiation . Neurogenesis . gives rise to differential growth and cellular diversity. The Proneural . Central nervous system correlation between cell cycle lengthening and differentiation has been reported across several types of cell lineage and from diverse model organisms, both in vivo and in vitro. Introduction Furthermore, different cell fates might be determined during different phases of the preceding cell cycle, indicating direct cell During development of the central nervous system (CNS), a cycle influences on both early lineage commitment and terminal period of extensive proliferation is needed to generate the re- cell fate decisions. Significant advances have been made in the quired number of progenitor cells for correct tissue and organ last decade and have revealed multi-directional interactions formation. This must be accompanied or closely followed by cell between the molecular machinery regulating the processes of differentiation, in order to generate the range of functional neu- cell proliferation and neuronal differentiation. Here, we first rons and glial cells at the correct time and place.
    [Show full text]
  • Neurod1 Regulates Survival and Migration of Neuroendocrine Lung Carcinomas Via Signaling Molecules Trkb and NCAM
    NeuroD1 regulates survival and migration of neuroendocrine lung carcinomas via signaling molecules TrkB and NCAM Jihan K. Osbornea, Jill E. Larsenb, Misty D. Shieldsb, Joshua X. Gonzalesa, David S. Shamesb,1, Mitsuo Satob,2, Ashwinikumar Kulkarnia,3, Ignacio I. Wistubac, Luc Girarda,b, John D. Minnaa,b, and Melanie H. Cobba,4 aDepartment of Pharmacology and bHamon Cancer Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041; and cDepartment of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030 Contributed by Melanie H. Cobb, March 4, 2013 (sent for review February 8, 2013) Small-cell lung cancer and other aggressive neuroendocrine can- and prostate cancers, and pituitary adenomas (10–16). To charac- cers are often associated with early dissemination and frequent terize the mechanisms of NeuroD1 action in lung tumor patho- metastases. We demonstrate that neurogenic differentiation genesis, we analyzed a panel of lung cell lines. HBEC cell lines, 1 (NeuroD1) is a regulatory hub securing cross talk among survival assigned a number to distinguish lines from different individuals, and migratory-inducing signaling pathways in neuroendocrine are immortalized by overexpression of cyclin-dependent kinase 4, lung carcinomas. We find that NeuroD1 promotes tumor cell and human telomerase reverse transcriptase (e.g., HBEC3KT) (17). survival and metastasis in aggressive neuroendocrine lung tumors The immortalized HBEC3KT cell line was sequentially trans- through regulation of the receptor tyrosine kinase tropomyosin- formed by knockdown of the tumor suppressor p53 and expression related kinase B (TrkB). Like TrkB, the prometastatic signaling of K-RasV12 (HBEC3KTRL53) (Table S1) (18, 19).
    [Show full text]
  • Glutamate Transporter Mrna Expression in Proliferative Zones of the Developing and Adult Murine CNS
    The Journal of Neuroscience, April 1, 1996, 76(7):2191-2207 Glutamate Transporter mRNA Expression in Proliferative Zones of the Developing and Adult Murine CNS Margaret L. Sutherland,is2 Tracy A. Delaney,’ and Jeffrey L. Noebels’s2 1Division of Neuroscience, “Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030 Neuronal migration, differentiation, and synapse formation are transcript expression continued in the subventricular zone developmental processes within the CNS significantly influ- postnatally and persisted in this proliferative zone in the adult enced by ionotropic and metabotropic glutamate receptor ac- brain. From PO onward, mEAAT1 mRNA was present predom- tivity. Extracellular glutamate concentrations mediating this ac- inantly in the cerebellar Purkinje cell layer and at a much lower tivity are regulated by transport proteins localized in neuronal abundance in the cortex, hippocampus, basal nuclei, and sep- and glial cell membranes. We have used in situ hybridization tum, whereas from P7 onward, mEAAT2 mRNA expression analysis with subtype-specific antisense-oligonucleotides to increased throughout most of the neuraxis. Postnatally, tran- study the distribution of glia-specific excitatory amino acid scripts for mEAAT1 and mEAAT2 were found in cell bodies, transporter (mEAAT1 and mEAAT2) mRNAs during the later processes, and commissural white matter tracts of the CNS. stages of embryogenesis and postnatal CNS development. The divergent temporal and spatial expression
    [Show full text]
  • Role of Bmp4 in Female Reproductive Tract
    MECHANISMS OF STRUCTURAL PLASTICITY IN MATURE SENSORY AXONS: ROLE OF BMP4 IN FEMALE REPRODUCTIVE TRACT By Aritra Bhattacherjee Submitted to the graduate degree program in Molecular and Integrative Physiology and the Graduate Faculty of the University of Kansas in partial fulfillment of requirements for the degree of Doctor of Philosophy. ________________________________ Peter G. Smith, Ph.D., Chairman ________________________________ Nancy Berman, Ph.D. ________________________________ Kenneth E. McCarson, Ph.D. ________________________________ Hiroshi Nishimune, Ph.D. ________________________________ Douglas Wright, Ph.D. Date Defended: 03/01/13 The Dissertation Committee for Aritra Bhattacherjee certifies that this is the approved version of the following dissertation: MECHANISMS OF STRUCTURAL PLASTICITY IN MATURE SENSORY AXONS: ROLE OF BMP4 IN FEMALE REPRODUCTIVE TRACT ________________________________ Peter G. Smith, PhD., Chairperson. Date approved: 03/01/13 ii ABSTRACT Structural changes in sensory axons are associated with many peripheral nerve disorders. Degenerative loss or excessive sprouting of axons are hallmarks of sensory neuropathies or hyperinnervating pain syndromes respectively. While much is known about mechanisms of developmental axon growth or regenerative outgrowth following nerve injury, there is little information about mechanisms that can induce plasticity in intact adult axons. Lack of model systems, where extensive plasticity can be predictably induced under physiological conditions, has been a fundamental impediment in studying sensory neuroplasticity mechanisms in adult. The female reproductive tract presents a highly tractable model where sensory axons cyclically undergo extensive plasticity under the influence of estrogen. In rat, high estrogen levels induce reduction in vaginal sensory nerve density, and low estrogen conditions promote sprouting leading to hyperinnervation. We used this model to explore potential factors that can initiate spontaneous plasticity in intact sensory axons.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Modeling the Phenotype of Spinal Muscular Atrophy by the Direct Conversion of Human Fibroblasts to Motor Neurons
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 7), pp: 10945-10953 Research Paper Modeling the phenotype of spinal muscular atrophy by the direct conversion of human fibroblasts to motor neurons Qi-Jie Zhang1,*, Jin-Jing Li1,*, Xiang Lin1, Ying-Qian Lu1, Xin-Xin Guo1, En-Lin Dong1, Miao Zhao1, Jin He1, Ning Wang1,2 and Wan-Jin Chen1,2 1 Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China 2 Fujian Key Laboratory of Molecular Neurology, Fuzhou, China * These authors have contributed equally to this work Correspondence to: Wan-Jin Chen, email: [email protected] Keywords: direct reprogramming; fibroblast; induced motor neuron; spinal muscular atrophy Received: June 08, 2016 Accepted: November 22, 2016 Published: January 13, 2017 ABSTRACT Spinal muscular atrophy (SMA) is a lethal autosomal recessive neurological disease characterized by selective degeneration of motor neurons in the spinal cord. In recent years, the development of cellular reprogramming technology has provided an alternative and effective method for obtaining patient-specific neuronsin vitro. In the present study, we applied this technology to the field of SMA to acquire patient- specific induced motor neurons that were directly converted from fibroblasts via the forced expression of 8 defined transcription factors. The infected fibroblasts began to grow in a dipolar manner, and the nuclei gradually enlarged. Typical Tuj1-positive neurons were generated at day 23. After day 35, induced neurons with multiple neurites were observed, and these neurons also expressed the hallmarks of Tuj1, HB9, ISL1 and CHAT. The conversion efficiencies were approximately 5.8% and 5.5% in the SMA and control groups, respectively.
    [Show full text]
  • Molecular Mechanisms Regulating Mammalian Forebrain Development
    Molecular Mechanisms Regulating Mammalian Forebrain Development By David Chun Cheong Tsui A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Medical Science University of Toronto © Copyright by David Chun Cheong Tsui (2013) Title: Molecular Mechanisms Regulating Mammalian Forebrain Development Name: David Chun Cheong Tsui Degree: Doctor of Philosophy, 2013 Department: Institute of Medical Sciences, University of Toronto ABSTRACT While the extrinsic factors regulating neurogenesis in the developing forebrain have been widely studied, the mechanisms downstream of the various signaling pathways are relatively ill-defined. In particular, we focused on proteins that have been implicated in cognitive dysfunction. Here, we ask what role two cell intrinsic factors play in the development of two different neurogenic compartments in the forebrain. In the first part of the thesis, the transcription factor FoxP2, which is mutated in individuals who have specific language deficits, was identified to regulate neurogenesis in the developing cortex, in part by regulating the transition from the radial precursors to the transit amplifying intermediate progenitors. Moreover, we found that ectopic expression of the human homologue of the protein promotes neurogenesis in the murine cortex, thereby acting as a gain-of-function isoform. In the second part of the thesis, the histone acetyltransferase CREB-binding protein (CBP) was identified as regulating the generation of neurons from medial ganglionic eminence precursors, similar to its role in the developing cortex. But CBP also plays a more substantial role in the expression of late interneuron markers, suggesting that it is continuously required for the various stages of neurogenesis at least in the ventral neurogenic niche.
    [Show full text]
  • Regulation of Adult Neurogenesis in Mammalian Brain
    International Journal of Molecular Sciences Review Regulation of Adult Neurogenesis in Mammalian Brain 1,2, 3, 3,4 Maria Victoria Niklison-Chirou y, Massimiliano Agostini y, Ivano Amelio and Gerry Melino 3,* 1 Centre for Therapeutic Innovation (CTI-Bath), Department of Pharmacy & Pharmacology, University of Bath, Bath BA2 7AY, UK; [email protected] 2 Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK 3 Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; [email protected] (M.A.); [email protected] (I.A.) 4 School of Life Sciences, University of Nottingham, Nottingham NG7 2HU, UK * Correspondence: [email protected] These authors contributed equally to this work. y Received: 18 May 2020; Accepted: 7 July 2020; Published: 9 July 2020 Abstract: Adult neurogenesis is a multistage process by which neurons are generated and integrated into existing neuronal circuits. In the adult brain, neurogenesis is mainly localized in two specialized niches, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) adjacent to the lateral ventricles. Neurogenesis plays a fundamental role in postnatal brain, where it is required for neuronal plasticity. Moreover, perturbation of adult neurogenesis contributes to several human diseases, including cognitive impairment and neurodegenerative diseases. The interplay between extrinsic and intrinsic factors is fundamental in regulating neurogenesis. Over the past decades, several studies on intrinsic pathways, including transcription factors, have highlighted their fundamental role in regulating every stage of neurogenesis. However, it is likely that transcriptional regulation is part of a more sophisticated regulatory network, which includes epigenetic modifications, non-coding RNAs and metabolic pathways.
    [Show full text]
  • Growth and Molecular Profile of Lung Cancer Cells Expressing Ectopic LKB1: Down-Regulation of the Phosphatidylinositol 3؅-Phosphate Kinase/PTEN Pathway1
    [CANCER RESEARCH 63, 1382–1388, March 15, 2003] Growth and Molecular Profile of Lung Cancer Cells Expressing Ectopic LKB1: Down-Regulation of the Phosphatidylinositol 3؅-Phosphate Kinase/PTEN Pathway1 Ana I. Jimenez, Paloma Fernandez, Orlando Dominguez, Ana Dopazo, and Montserrat Sanchez-Cespedes2 Molecular Pathology Program [A. I. J., P. F., M. S-C.], Genomics Unit [O. D.], and Microarray Analysis Unit [A. D.], Spanish National Cancer Center, 28029 Madrid, Spain ABSTRACT the cell cycle in G1 (8, 9). However, the intrinsic mechanism by which LKB1 activity is regulated in cells and how it leads to the suppression Germ-line mutations in LKB1 gene cause the Peutz-Jeghers syndrome of cell growth is still unknown. It has been proposed that growth (PJS), a genetic disease with increased risk of malignancies. Recently, suppression by LKB1 is mediated through p21 in a p53-dependent LKB1-inactivating mutations have been identified in one-third of sporadic lung adenocarcinomas, indicating that LKB1 gene inactivation is critical in mechanism (7). In addition, it has been observed that LKB1 binds to tumors other than those of the PJS syndrome. However, the in vivo brahma-related gene 1 protein (BRG1) and this interaction is required substrates of LKB1 and its role in cancer development have not been for BRG1-induced growth arrest (10). Similar to what happens in the completely elucidated. Here we show that overexpression of wild-type PJS, Lkb1 heterozygous knockout mice show gastrointestinal hamar- LKB1 protein in A549 lung adenocarcinomas cells leads to cell-growth tomatous polyposis and frequent hepatocellular carcinomas (11, 12). suppression. To examine changes in gene expression profiles subsequent to Interestingly, the hamartomas, but not the malignant tumors, arising in exogenous wild-type LKB1 in A549 cells, we used cDNA microarrays.
    [Show full text]
  • A Spontaneous Mutation in Contactin 1 in the Mouse
    A Spontaneous Mutation in Contactin 1 in the Mouse Muriel T. Davisson1*, Roderick T. Bronson1, Abigail L. D. Tadenev1, William W. Motley1, Arjun Krishnaswamy2, Kevin L. Seburn1, Robert W. Burgess1 1 The Jackson Laboratory, Bar Harbor, Maine, United States of America, 2 Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America Abstract Mutations in the gene encoding the immunoglobulin-superfamily member cell adhesion molecule contactin1 (CNTN1) cause lethal congenital myopathy in human patients and neurodevelopmental phenotypes in knockout mice. Whether the mutant mice provide an accurate model of the human disease is unclear; resolving this will require additional functional tests of the neuromuscular system and examination of Cntn1 mutations on different genetic backgrounds that may influence the phenotype. Toward these ends, we have analyzed a new, spontaneous mutation in the mouse Cntn1 gene that arose in a BALB/c genetic background. The overt phenotype is very similar to the knockout of Cntn1, with affected animals having reduced body weight, a failure to thrive, locomotor abnormalities, and a lifespan of 2–3 weeks. Mice homozygous for the new allele have CNTN1 protein undetectable by western blotting, suggesting that it is a null or very severe hypomorph. In an analysis of neuromuscular function, neuromuscular junctions had normal morphology, consistent with previous studies in knockout mice, and the muscles were able to generate appropriate force when normalized for their reduced size in late stage animals. Therefore, the Cntn1 mutant mice do not show evidence for a myopathy, but instead the phenotype is likely to be caused by dysfunction in the nervous system.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]