Nuclear and Emerging Technologies for Space the Von Braun Center Huntsville, Alabama February 22-26, 2016

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear and Emerging Technologies for Space the Von Braun Center Huntsville, Alabama February 22-26, 2016 Proceedings of 6 NETS-201Nuclear and Emerging Technologies for Space The Von Braun Center Huntsville, Alabama February 22-26, 2016 ANS Aerospace Nuclear Science and Technology Division Universities Space Research Association About the Meeting In February 2016, The Aerospace Nuclear Science and Technology Division (ANSTD) of the American Nuclear Society (ANS) held the 2016 Nuclear and Emerging Technologies for Space (NETS 2016) topical meeting at the Von Braun Center in Huntsville, Alabama. NETS is the premier conference for landed- and in-space applications in 2016. With authors from universities, national laboratories, NASA facilities and industry, NETS 2016 provided an excellent communication network and forum for information exchange. Topic Areas NASA is currently considering capabilities for robotic and crewed missions to the Moon, Mars, and beyond. Strategies that implement advanced power and propulsion technologies, as well as radiation protection, will be important to accomplishing these missions in the future. NETS serves as a major communications network and forum for professionals and students working in the area of space nuclear and management personnel from international government, industry, academia, and national laboratory systems. To this end, the NETS 2016 meeting addressed topics ranging from overviews of current programs to methods of meeting the challenges of future endeavors. Conference Organizers Omar Mireles, PhD Lee Mason Mike Houts, PhD General Chair Honorary Chair Honorary Chair NASA Marshall Space Flight Center NASA Glenn Research Center NASA Marshall Space Flight Center [email protected] [email protected] [email protected] Patrick McClure Daniel Cavender Sal Oriti Technical Chair, FSP Technical Chair, NTP Technical Chair, RPS Los Alamos National Laboratory NASA Marshall Space Flight Center NASA Glenn Research Center [email protected] [email protected] [email protected] i Nathan Jerred Margaret Marshall Delisa Rogers Publications Publications Logistics and Finance Center for Space Nuclear Research, Idaho National Laboratory Center for Space Nuclear Research, USRA [email protected] USRA [email protected] [email protected] Wesley Deason Chis Morrison Jarvis Caffrey Publications Webmaster A/V Coordinator International Atomic Energy Agency Rensselaer Polytechnic Institute NASA Marshall Space Flight Center [email protected] [email protected] [email protected] Session Chairs Track I: Radioisotope Power Systems Technical Chair: Sal Oriti, NASA Glenn Research Center June Sakrajsek NASA-Glenn Research Center Ed Lewandowski NASA-Glenn Research Center Steve Johnson, PhD Idaho National Laboratory Wayne Wong NASA-Glenn Research Center Becky Onuschak DOE-NE 75 Richard Ambrosi, PhD University of Leicester Carl Sandifer NASA-Glenn Research Center Robert Wham Oak Ridge National Laboratory Jean-Pierre Fleurial Jet Propulsion Laboratory Tom Sutliff NASA-Glenn Research Center ii Track II: Fission Surface Power Technical Chair: Patrick McClure, Los Alamos National Laboratory Susan Voss Global Nuclear Network Analysis Tom Godfrey NASA-Marshall Space Flight Center Max Briggs NASA-Glenn Research Center Steve Clement Los Alamos National Laboratory Track III: Nuclear Thermal Propulsion Technical Chair: Daniel Cavender, NASA Marshall Space Flight Center Harold Gerrish NASA-Marshall Space Flight Center Chance Garcia, PhD NASA-Marshall Space Flight Center Michael Eades The Ohio State University Glen Doughty NASA-Marshall Space Flight Center Jarvis Caffrey NASA-Marshall Space Flight Center Jim Werner Idaho National Laboratory Vishal Patel Center for Space Nuclear Research Sponsor Aerojet Rocketdyne is a world-recognized aerospace and defense leader providing propulsion and energetics to the domestic and international space, missile defense and strategic systems, tactical systems and armaments areas, and transformational energy technology solutions to address the world’s energy needs. GenCorp is a diversified company providing innovative solutions to its customers in the aerospace and defense, energy and real estate markets. Additional information about Aerojet Rocketdyne and GenCrop can be obtained by visiting the companies’ websites at www.Rocket.com and www.GenCorp.com. iii TABLE OF CONTENTS Paper 6004 – Mass Optimization of a Supercritical CO2 Brayton Cycle Power Conversion System for a Mars Surface Fission Power Reactor ............................................................................................................. 1 Paper 6005 – Re-Inventing the Light Bulb .................................................................................................. 11 Paper 6018 – Nuclear Thermal Propulsion Integrated Injector-Manifold Development ............................ 22 Paper 6019 – Aluminum-Beryllium Composite Trade Study for Space Nuclear Applications ..................... 33 Paper 6024 – Multi-Mission Radioisotope Thermoelectric Generator Experience on Mars ...................... 41 Paper 6028 – DEMOCRITOS: Development Logic for a Demonstrator Preparing Nuclear-Electric Spacecraft ................................................................................................................................................... 50 Paper 6037 – Space Propulsion Optimization Code Benchmark Case: SNRE Model................................... 61 Paper 6040 – Development of a Sliding and Compliant Cold Side Thermal Interface for a Thermopile Inside a Terrestrial Mini-RTG ...................................................................................................................... 69 Paper 6042 – Pyroshock Dynamic Loading Impacts on Thermoelectric Module Assemblies and Bi-Couples in Multi-Mission Radioisotope Thermoelectric Generators (MMRTGs) ...................................................... 80 Paper 6044 – Preliminary Analysis of Low Enriched Uranium (LEU) Ultra High Temperature Nuclear Thermal Rockets Capable of 1100s Specific Impulse .................................................................................. 93 Paper 6056 – A Six Component Model for Dusty Plasma Nuclear Fission Fragment Propulsion ............. 103 Paper 6060 – A Half-Gigawatt Space Power System using Dusty Plasma Fission Fragment Reactor ...... 114 Paper 6067 – Status of the Development of Low Cost Radiator for Surface Fission Power - II ................ 118 Paper 6069 – Multiphysics Analysis of Liquid Metal Annular Linear Induction Pumps: A Project Overview .................................................................................................................................................................. 128 Paper 6072 – A Point Design for a LEU Composite NTP system: Superb Use of Low Enriched Uranium (SULEU) ..................................................................................................................................................... 139 Paper 6085 – Effect of Sub-Sized Specimen Geometry and Orientation on High Strain-Rate Tensile Impact Ductilities of DOP-26 Iridium ..................................................................................................................... 147 iv Proceedings of Nuclear & Emerging Technologies for Space Paper 6004 (NETS) 2016 Huntsville, AL February 22-25, 2016 Mass Optimization of a Supercritical CO2 Brayton Cycle Power Conversion System for a Mars Surface Fission Power Reactor Kurt E. Harris1, Yayu M. Hew2, Kevin J. Schillo3, Akansha Kumar4, Steven D. Howe5 1Department of Mechanical & Aerospace Engineering, Utah State University, Logan, UT 84322 2Department of Aeronautics and Astronautics Engineering, Stanford University, Stanford, CA 94305 3Department of Mechanical & Aerospace Engineering, University of Alabama in Huntsville, Huntsville, AL 35899 4Center for Space Nuclear Research, Idaho National Laboratory, Idaho Falls, ID 83401 5Talos Power LLC, Idaho Falls, ID 83402 435-535-1414; [email protected] Abstract. In NASA’s Design Reference Architecture 5.0 (DRA 5.0), fission surface power systems (FSPS) are described as “enabling for the human exploration of Mars”. This study investigates the design of a power conversion system (PCS) based on supercritical CO2 (S-CO2) Brayton configurations for a growing Martian colony. Various configurations utilizing regeneration, intercooling, and reheating are analyzed. A model to estimate the mass of the PCS is developed and used to obtain a realistic mass-optimized configuration. This mass model is conservative, being based on simple concentric tube counterflow heat exchangers and published data regarding turbomachinery masses. For load following and redundancy purposes, the FSPS consists of three 333 kWe reactors and PCS to provide a total of 1MWe for 15 years. The optimal configuration is a S-CO2 Brayton cycle with 60% regeneration and two stages of intercooling. Analyses are mostly performed in MATLAB, with certain data provided by a COMSOL model of part of a low-enriched uranium (LEU) ceramic metallic (CERMET) reactor core. Keywords: Mars, FSP, CO2, Brayton, mass INTRODUCTION In 2009, the National Aeronautics and Space Administration (NASA) published their Design Reference Architecture 5.0 (DRA 5.0) and stated that surface power on Mars would ideally be through fission power [1]. Their study indicated that nuclear power, over any other technology, would best allow for in-situ resource utilization (ISRU) strategies, reduce power system mass, provide continuous high power generation, and have lower overall cost assuming a complementary
Recommended publications
  • Distinguished Property in Tensor Products and Weak* Dual Spaces
    axioms Article Distinguished Property in Tensor Products and Weak* Dual Spaces Salvador López-Alfonso 1 , Manuel López-Pellicer 2,* and Santiago Moll-López 3 1 Department of Architectural Constructions, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] 2 Emeritus and IUMPA, Universitat Politècnica de València, 46022 Valencia, Spain 3 Department of Applied Mathematics, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] * Correspondence: [email protected] 0 Abstract: A local convex space E is said to be distinguished if its strong dual Eb has the topology 0 0 0 0 b(E , (Eb) ), i.e., if Eb is barrelled. The distinguished property of the local convex space Cp(X) of real- valued functions on a Tychonoff space X, equipped with the pointwise topology on X, has recently aroused great interest among analysts and Cp-theorists, obtaining very interesting properties and nice characterizations. For instance, it has recently been obtained that a space Cp(X) is distinguished if and only if any function f 2 RX belongs to the pointwise closure of a pointwise bounded set in C(X). The extensively studied distinguished properties in the injective tensor products Cp(X) ⊗# E and in Cp(X, E) contrasts with the few distinguished properties of injective tensor products related to the dual space Lp(X) of Cp(X) endowed with the weak* topology, as well as to the weak* dual of Cp(X, E). To partially fill this gap, some distinguished properties in the injective tensor product space Lp(X) ⊗# E are presented and a characterization of the distinguished property of the weak* dual of Cp(X, E) for wide classes of spaces X and E is provided.
    [Show full text]
  • The Processing and Characterisation of Recycled Ndfeb Based Magnets
    The Processing and Characterisation of Recycled NdFeB based Magnets By Salahadin Muhammed Ali Adrwish A thesis submitted to the University of Birmingham for the degree of Doctor of Philosphy Supervisors Prof. I.R. Harris Dr. A.J. Williams School of Metallurgy and materials University of Birmingham B15 2TT University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. CONTENTS Acknowledgement List of abbreviations Synopsis Chapter One 1.0 Aims of the Project 1 Chapter Two 2.0 Commercial use of NdFeB magnets 5 2.1 Development of NdFeB-type magnets 5 2. 2 Global NdFeB market 6 2.3 Major NdFeB producers 8 2.4 Applications 12 2.5 Factors affecting NdFeB supply and demand 14 2.5.1 IT sector 14 2.5.2 Global price of Dy and Nd 16 2.5.3 Environmental considerations 18 Chapter Three 3.0 Detailed aspects of NdFeB-type magnets recycling 22 3.1 Introduction 22 3.2 Introduction 22 3.3 Processing of recycled NdFeB over the years 25 3.3.1 Recycling of NdFeB magnets 26 3.3.2 Recycling of machine (internal) waste (sludge) 27
    [Show full text]
  • + New Horizons
    Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16
    [Show full text]
  • 2018: Aiaa-Space-Report
    AIAA TEAM SPACE TRANSPORTATION DESIGN COMPETITION TEAM PERSEPHONE Submitted By: Chelsea Dalton Ashley Miller Ryan Decker Sahil Pathan Layne Droppers Joshua Prentice Zach Harmon Andrew Townsend Nicholas Malone Nicholas Wijaya Iowa State University Department of Aerospace Engineering May 10, 2018 TEAM PERSEPHONE Page I Iowa State University: Persephone Design Team Chelsea Dalton Ryan Decker Layne Droppers Zachary Harmon Trajectory & Propulsion Communications & Power Team Lead Thermal Systems AIAA ID #908154 AIAA ID #906791 AIAA ID #532184 AIAA ID #921129 Nicholas Malone Ashley Miller Sahil Pathan Joshua Prentice Orbit Design Science Science Science AIAA ID #921128 AIAA ID #922108 AIAA ID #761247 AIAA ID #922104 Andrew Townsend Nicholas Wijaya Structures & CAD Trajectory & Propulsion AIAA ID #820259 AIAA ID #644893 TEAM PERSEPHONE Page II Contents 1 Introduction & Problem Background2 1.1 Motivation & Background......................................2 1.2 Mission Definition..........................................3 2 Mission Overview 5 2.1 Trade Study Tools..........................................5 2.2 Mission Architecture.........................................6 2.3 Planetary Protection.........................................6 3 Science 8 3.1 Observations of Interest.......................................8 3.2 Goals.................................................9 3.3 Instrumentation............................................ 10 3.3.1 Visible and Infrared Imaging|Ralph............................ 11 3.3.2 Radio Science Subsystem.................................
    [Show full text]
  • Aluminium Level 2 2019 CES Edupack
    Level 2 Age-hardening wrought Al-alloys The 2000 and 7000 series age -hardening aluminum alloys are the backbone of the aerospace industry. The 6000 series has lower strength but is more easily extruded: it is used for marine and ground transport systems. THE MATERIAL The high -strength aluminum alloys rely on age -hardening: a sequence of heat treatment steps that causes the precipitation of a nano-scale dispersion of intermetallics that impede dislocation motion and impart strength. This can be as high as 700 MPa giving them a strength-to-weight ratio exceeding even that of the strongest steels. This record describes for the series of wrought Al alloys that rely on age-hardening requiring a solution heat treatment followed by quenching and ageing. This is recorded by adding TX to the series number, where X is a number between 0 and 8 that records the state of heat treatment. They are listed below using the IADS designations (see Technical notes for details).2000 series: Al with 2 to 6% Cu -- the oldest and most widely used aerospace series.6000 series: Al with up to 1.2% Mg and 1.3% Si -- medium strength extrusions and forgings.7000 series: Al with up to 8% Zn and 3% Mg -- the Hercules of aluminum alloys, used for high strength aircraft structures, forgings and sheet. Certain special alloys also contain silver. So this record, like that for the non-age hardening alloys, is broad, encompassing all of these. COMPOSITION 2000 series: Al + 2 to 6% Cu + Fe, Mn, Zn and sometimes Zr 6000 series: Al + up to 1.2%Mg + 0.25% Zn + Si, Fe a nd Mn 7000 series: Al + 4 to 9 % Zn + 1 to 3% Mg + Si, Fe, Cu and occasionally Zr and Ag GENERAL PROPERTIES Density 2500 - 2900 kg/m^3 Price *1.
    [Show full text]
  • 1 the New Horizons Spacecraft Glen H. Fountain, David Y
    The New Horizons Spacecraft Glen H. Fountain, David Y. Kusnierkiewicz, Christopher B. Hersman, Timothy S. Herder, Thomas B Coughlin, William T. Gibson, Deborah A. Clancy, Christopher C. DeBoy, T. Adrian Hill, James D. Kinnison, Douglas S. Mehoke, Geffrey K. Ottman, Gabe D. Rogers, S. Alan Stern, James M. Stratton, Steven R. Vernon, Stephen P. Williams Abstract The New Horizons spacecraft was launched on January 19, 2006. The spacecraft was designed to provide a platform for the seven instruments designated by the science team to collect and return data from Pluto in 2015 that would meet the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO-OSS-01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other NASA missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one way light time during the Pluto fly-by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a Radioisotope Thermoelectric Generator (RTG) to supply electrical power. One RTG was available for use by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on less than 200 W.
    [Show full text]
  • Establishing a Correlation Between Interfacial Microstructures and Corro- Sion Initiation Sites in Al/Cu Joints by SEM-EDS and AFM-SKPFM
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Sarvghad Moghaddam, Madjid, Parvizi, R., Davoodi, Ali, Haddad- Sabzevar, Mohsen, & Imani, Amin (2014) Establishing a correlation between interfacial microstructures and corro- sion initiation sites in Al/Cu joints by SEM-EDS and AFM-SKPFM. Corrosion Science, 79, pp. 148-158. This file was downloaded from: https://eprints.qut.edu.au/95930/ c Consult author(s) regarding copyright matters This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] License: Creative Commons: Attribution-Noncommercial-No Derivative Works 2.5 Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1016/j.corsci.2013.10.039 Accepted Manuscript Establishing a Correlation between Interfacial Microstructures and Corrosion Initiation Sites in Al/Cu Joints by SEM-EDS and AFM-SKPFM M.
    [Show full text]
  • NASA Finds Neptune Moons Locked in 'Dance of Avoidance' 15 November 2019, by Gretchen Mccartney
    NASA finds Neptune moons locked in 'dance of avoidance' 15 November 2019, by Gretchen McCartney Although the dance may appear odd, it keeps the orbits stable, researchers said. "We refer to this repeating pattern as a resonance," said Marina Brozovi?, an expert in solar system dynamics at NASA's Jet Propulsion Laboratory in Pasadena, California, and the lead author of the new paper, which was published Nov. 13 in Icarus. "There are many different types of 'dances' that planets, moons and asteroids can follow, but this one has never been seen before." Far from the pull of the Sun, the giant planets of the Neptune Moon Dance: This animation illustrates how the outer solar system are the dominant sources of odd orbits of Neptune's inner moons Naiad and gravity, and collectively, they boast dozens upon Thalassa enable them to avoid each other as they race dozens of moons. Some of those moons formed around the planet. Credit: NASA alongside their planets and never went anywhere; others were captured later, then locked into orbits dictated by their planets. Some orbit in the opposite direction their planets rotate; others swap orbits Even by the wild standards of the outer solar with each other as if to avoid collision. system, the strange orbits that carry Neptune's two innermost moons are unprecedented, according to Neptune has 14 confirmed moons. Neso, the newly published research. farthest-flung of them, orbits in a wildly elliptical loop that carries it nearly 46 million miles (74 million Orbital dynamics experts are calling it a "dance of kilometers) away from the planet and takes 27 avoidance" performed by the tiny moons Naiad years to complete.
    [Show full text]
  • 191002 Knowledge: K1.02 [2.7/2.9] Qid: P6 (B1806)
    NRC Generic Fundamentals Examination Question Bank--PWR May 2020 TOPIC: 191002 KNOWLEDGE: K1.02 [2.7/2.9] QID: P6 (B1806) Density input is normally used in steam flow instruments to convert __________ into __________. A. mass flow rate; volumetric flow rate B. volumetric flow rate; mass flow rate C. mass flow rate; differential pressure D. differential pressure; volumetric flow rate ANSWER: B. TOPIC: 191002 KNOWLEDGE: K1.02 [2.7/2.9] QID: P305 (B2906) If the steam pressure input to a density-compensated steam flow instrument fails high, the associated flow rate indication will... A. decrease, because the density input has decreased. B. increase, because the density input has decreased. C. decrease, because the density input has increased. D. increase, because the density input has increased. ANSWER: D. -1- Sensors and Detectors NRC Generic Fundamentals Examination Question Bank--PWR May 2020 TOPIC: 191002 KNOWLEDGE: K1.02 [2.7/2.9] QID: P406 (B1606) The density compensating input to a steam flow instrument is used to convert volumetric flow rate into… A. velocity flow rate. B. gallons per minute. C. mass flow rate. D. differential flow rate. ANSWER: C. -2- Sensors and Detectors NRC Generic Fundamentals Examination Question Bank--PWR May 2020 TOPIC: 191002 KNOWLEDGE: K1.02 [2.7/2.9] QID: P1212 If the steam pressure input to a density-compensated steam flow instrument fails low, the indicated flow rate will... A. increase, because the density input has increased. B. decrease, because the density input has increased. C. increase, because the density input has decreased. D. decrease, because the density input has decreased.
    [Show full text]
  • Machining of Aluminum and Aluminum Alloys / 763
    ASM Handbook, Volume 16: Machining Copyright © 1989 ASM International® ASM Handbook Committee, p 761-804 All rights reserved. DOI: 10.1361/asmhba0002184 www.asminternational.org MachJning of Aluminum and AlumJnum Alloys ALUMINUM ALLOYS can be ma- -r.. _ . lul Tools with small rake angles can normally chined rapidly and economically. Because be used with little danger of burring the part ," ,' ,,'7.,','_ ' , '~: £,~ " ~ ! f / "' " of their complex metallurgical structure, or of developing buildup on the cutting their machining characteristics are superior ,, A edges of tools. Alloys having silicon as the to those of pure aluminum. major alloying element require tools with The microconstituents present in alumi- larger rake angles, and they are more eco- num alloys have important effects on ma- nomically machined at lower speeds and chining characteristics. Nonabrasive con- feeds. stituents have a beneficial effect, and ,o IIR Wrought Alloys. Most wrought alumi- insoluble abrasive constituents exert a det- num alloys have excellent machining char- rimental effect on tool life and surface qual- acteristics; several are well suited to multi- ity. Constituents that are insoluble but soft B pie-operation machining. A thorough and nonabrasive are beneficial because they e,,{' , understanding of tool designs and machin- assist in chip breakage; such constituents s,~ ,.t ing practices is essential for full utilization are purposely added in formulating high- of the free-machining qualities of aluminum strength free-cutting alloys for processing in alloys. high-speed automatic bar and chucking ma- Strain-hardenable alloys (including chines. " ~ ~p /"~ commercially pure aluminum) contain no In general, the softer ailoys~and, to a alloying elements that would render them lesser extent, some of the harder al- c • o c hardenable by solution heat treatment and ,p loys--are likely to form a built-up edge on precipitation, but they can be strengthened the cutting lip of the tool.
    [Show full text]
  • Embedding Nuclear Spaces in Products of an Arbitrary Banach Space
    proceedings of the american mathematical society Volume 34, Number 1, July 1972 EMBEDDING NUCLEAR SPACES IN PRODUCTS OF AN ARBITRARY BANACH SPACE STEPHEN A. SAXON Abstract. It is proved that if E is an arbitrary nuclear space and F is an arbitrary infinite-dimensional Banach space, then there exists a fundamental (basic) system V of balanced, convex neigh- borhoods of zero for E such that, for each Kin i*~, the normed space Ev is isomorphic to a subspace of F. The result for F=lv (1 ^/>^oo) was proved by A. Grothendieck. This paper is an outgrowth of an interest in varieties of topological vector spaces [2] stimulated by J. Diestel and S. Morris, and is in response to their most helpful discussions and questions. The main theorem, valid for arbitrary infinite-dimensional Banach spaces, was first proved by A. Grothendieck [3] (also, see [5, p. 101]) for the Banach spaces /„ (1 ^p^ co) and later by J. Diestel for the Banach space c0. Our demonstration relies on two profound results of T. Kömura and Y. Kömura [4] and C. Bessaga and A. Pelczyriski [1], respectively: (i) A locally convex space is nuclear if and only if it is isomorphic to a subspace of a product space (s)1, where / is an indexing set and (s) is the Fréchet space of all rapidly decreasing sequences. (ii) Every infinite-dimensional Banach space contains a closed infinite- dimensional subspace which has a Schauder basis.1 Recall that for a balanced, convex neighborhood V of zero in a locally convex space E, Ev is a normed space which is norm-isomorphic to (M,p\M), where/? is the gauge of V and M is a maximal linear subspace of £ on which/; is a norm; Ev is the completion of Ev.
    [Show full text]
  • Aluminum Alloy Weldability: Identification of Weld Solidification Cracking Mechanisms Through Novel Experimental Technique and Model Development
    Dipl.-Ing. Nicolas Coniglio Aluminum Alloy Weldability: Identifi cation of Weld Solidifi cation Cracking Mechanisms through Novel Experimental Technique and Model Development BAM-Dissertationsreihe • Band 40 Berlin 2008 Die vorliegende Arbeit entstand an der BAM Bundesanstalt für Materialforschung und -prüfung. Impressum Aluminum Alloy Weldability: Identifi cation of Weld Solidifi cation Cracking Mechanisms through Novel Experimental Technique and Model Development 2008 Herausgeber: BAM Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin Telefon: +49 30 8104-0 Telefax: +49 30 8112029 E-Mail: [email protected] Internet: www.bam.de Copyright © 2008 by BAM Bundesanstalt für Materialforschung und -prüfung Layout: BAM-Arbeitsgruppe Z.64 ISSN 1613-4249 ISBN 978-3-9812354-3-2 Aluminum Alloy Weldability: Identification of Weld Solidification Cracking Mechanisms through Novel Experimental Technique and Model Development Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigt durch die Fakultät für Maschinenbau der Otto-von-Guericke-Universität Madgeburg am 02.06.08 vorgelegte Dissertation von Dipl.-Ing. Nicolas Coniglio Thesis Committee: Prof. Dr.-Ing. A. Bertram Prof. Dr.-Ing. T. Böllinghaus Prof. C.E. Cross Prof. S. Marya Date of Examination: 23 October 2008 Abstract Abstract The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated.
    [Show full text]