Pseudotopological Spaces and the Stone-ˇcech
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Completeness in Quasi-Pseudometric Spaces—A Survey
mathematics Article Completeness in Quasi-Pseudometric Spaces—A Survey ¸StefanCobzas Faculty of Mathematics and Computer Science, Babe¸s-BolyaiUniversity, 400 084 Cluj-Napoca, Romania; [email protected] Received:17 June 2020; Accepted: 24 July 2020; Published: 3 August 2020 Abstract: The aim of this paper is to discuss the relations between various notions of sequential completeness and the corresponding notions of completeness by nets or by filters in the setting of quasi-metric spaces. We propose a new definition of right K-Cauchy net in a quasi-metric space for which the corresponding completeness is equivalent to the sequential completeness. In this way we complete some results of R. A. Stoltenberg, Proc. London Math. Soc. 17 (1967), 226–240, and V. Gregori and J. Ferrer, Proc. Lond. Math. Soc., III Ser., 49 (1984), 36. A discussion on nets defined over ordered or pre-ordered directed sets is also included. Keywords: metric space; quasi-metric space; uniform space; quasi-uniform space; Cauchy sequence; Cauchy net; Cauchy filter; completeness MSC: 54E15; 54E25; 54E50; 46S99 1. Introduction It is well known that completeness is an essential tool in the study of metric spaces, particularly for fixed points results in such spaces. The study of completeness in quasi-metric spaces is considerably more involved, due to the lack of symmetry of the distance—there are several notions of completeness all agreing with the usual one in the metric case (see [1] or [2]). Again these notions are essential in proving fixed point results in quasi-metric spaces as it is shown by some papers on this topic as, for instance, [3–6] (see also the book [7]). -
Filtering Germs: Groupoids Associated to Inverse Semigroups
FILTERING GERMS: GROUPOIDS ASSOCIATED TO INVERSE SEMIGROUPS BECKY ARMSTRONG, LISA ORLOFF CLARK, ASTRID AN HUEF, MALCOLM JONES, AND YING-FEN LIN Abstract. We investigate various groupoids associated to an arbitrary inverse semigroup with zero. We show that the groupoid of filters with respect to the natural partial order is isomorphic to the groupoid of germs arising from the standard action of the inverse semigroup on the space of idempotent filters. We also investigate the restriction of this isomorphism to the groupoid of tight filters and to the groupoid of ultrafilters. 1. Introduction An inverse semigroup is a set S endowed with an associative binary operation such that for each a 2 S, there is a unique a∗ 2 S, called the inverse of a, satisfying aa∗a = a and a∗aa∗ = a∗: The study of ´etalegroupoids associated to inverse semigroups was initiated by Renault [Ren80, Remark III.2.4]. We consider two well known groupoid constructions: the filter approach and the germ approach, and we show that the two approaches yield isomorphic groupoids. Every inverse semigroup has a natural partial order, and a filter is a nonempty down-directed up-set with respect to this order. The filter approach to groupoid construction first appeared in [Len08], and was later simplified in [LMS13]. Work in this area is ongoing; see for instance, [Bic21, BC20, Cas20]. Every inverse semigroup acts on the filters of its subsemigroup of idempotents. The groupoid of germs associated to an inverse semigroup encodes this action. Paterson pioneered the germ approach in [Pat99] with the introduction of the universal groupoid of an inverse semigroup. -
Relations on Semigroups
International Journal for Research in Engineering Application & Management (IJREAM) ISSN : 2454-9150 Vol-04, Issue-09, Dec 2018 Relations on Semigroups 1D.D.Padma Priya, 2G.Shobhalatha, 3U.Nagireddy, 4R.Bhuvana Vijaya 1 Sr.Assistant Professor, Department of Mathematics, New Horizon College Of Engineering, Bangalore, India, Research scholar, Department of Mathematics, JNTUA- Anantapuram [email protected] 2Professor, Department of Mathematics, SKU-Anantapuram, India, [email protected] 3Assistant Professor, Rayalaseema University, Kurnool, India, [email protected] 4Associate Professor, Department of Mathematics, JNTUA- Anantapuram, India, [email protected] Abstract: Equivalence relations play a vital role in the study of quotient structures of different algebraic structures. Semigroups being one of the algebraic structures are sets with associative binary operation defined on them. Semigroup theory is one of such subject to determine and analyze equivalence relations in the sense that it could be easily understood. This paper contains the quotient structures of semigroups by extending equivalence relations as congruences. We define different types of relations on the semigroups and prove they are equivalence, partial order, congruence or weakly separative congruence relations. Keywords: Semigroup, binary relation, Equivalence and congruence relations. I. INTRODUCTION [1,2,3 and 4] Algebraic structures play a prominent role in mathematics with wide range of applications in science and engineering. A semigroup -
Or Dense in Itself)Ifx Has No Isolated Points
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 131, Number 11, Pages 3607{3616 S 0002-9939(03)06660-7 Article electronically published on February 24, 2003 TYCHONOFF EXPANSIONS BY INDEPENDENT FAMILIES WANJUN HU (Communicated by Alan Dow) Abstract. A method for Tychonoff expansions using independent families is introduced. Using this method we prove that every countable Tychonoff space which admits a partition into infinitely many open-hereditarily irre- solvable dense subspaces has a Tychonoff expansion that is !-resolvable but not strongly extraresolvable. We also show that, under Luzin's Hypothesis ! ! (2 1 =2 ), there exists an !-resolvable Tychonoff space of size !1 which is not maximally resolvable. Introduction A topological space X is called crowded (or dense in itself)ifX has no isolated points. E. Hewitt defined a resolvable space as a space which has two disjoint dense subsets (see [17]). A space is called κ-resolvable [3] if it admits κ-many pairwise disjoint dense sets. The cardinal ∆(X):=minfjUj : U is a non-empty open subset of Xg is called the dispersion character of the space X.ThespaceX is called maximally resolvable [2] if it is ∆(X)-resolvable; if every crowded subspace of X is not resolvable, then X is called hereditarily irresolvable (HI). Analogously, X is open-hereditarily irresolvable (or OHI) if every non-empty open subset of X is irresolvable. V.I. Malykhin introduced a similar concept of extraresolvable (see [20] + and [6]): a space is extraresolvable if there exists a family fDα : α<∆(X) g of dense susbets of X such that Dα \ Dβ is nowhere dense in X for distinct α and β. -
Basic Properties of Filter Convergence Spaces
Basic Properties of Filter Convergence Spaces Barbel¨ M. R. Stadlery, Peter F. Stadlery;z;∗ yInstitut fur¨ Theoretische Chemie, Universit¨at Wien, W¨ahringerstraße 17, A-1090 Wien, Austria zThe Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA ∗Address for corresponce Abstract. This technical report summarized facts from the basic theory of filter convergence spaces and gives detailed proofs for them. Many of the results collected here are well known for various types of spaces. We have made no attempt to find the original proofs. 1. Introduction Mathematical notions such as convergence, continuity, and separation are, at textbook level, usually associated with topological spaces. It is possible, however, to introduce them in a much more abstract way, based on axioms for convergence instead of neighborhood. This approach was explored in seminal work by Choquet [4], Hausdorff [12], Katˇetov [14], Kent [16], and others. Here we give a brief introduction to this line of reasoning. While the material is well known to specialists it does not seem to be easily accessible to non-topologists. In some cases we include proofs of elementary facts for two reasons: (i) The most basic facts are quoted without proofs in research papers, and (ii) the proofs may serve as examples to see the rather abstract formalism at work. 2. Sets and Filters Let X be a set, P(X) its power set, and H ⊆ P(X). The we define H∗ = fA ⊆ Xj(X n A) 2= Hg (1) H# = fA ⊆ Xj8Q 2 H : A \ Q =6 ;g The set systems H∗ and H# are called the conjugate and the grill of H, respectively. -
Foliations of Three Dimensional Manifolds∗
Foliations of Three Dimensional Manifolds∗ M. H. Vartanian December 17, 2007 Abstract The theory of foliations began with a question by H. Hopf in the 1930's: \Does there exist on S3 a completely integrable vector field?” By Frobenius' Theorem, this is equivalent to: \Does there exist on S3 a codimension one foliation?" A decade later, G. Reeb answered affirmatively by exhibiting a C1 foliation of S3 consisting of a single compact leaf homeomorphic to the 2-torus with the other leaves homeomorphic to R2 accumulating asymptotically on the compact leaf. Reeb's work raised the basic question: \Does every C1 codimension one foliation of S3 have a compact leaf?" This was answered by S. Novikov with a much stronger statement, one of the deepest results of foliation theory: Every C2 codimension one foliation of a compact 3-dimensional manifold with finite fundamental group has a compact leaf. The basic ideas leading to Novikov's Theorem are surveyed here.1 1 Introduction Intuitively, a foliation is a partition of a manifold M into submanifolds A of the same dimension that stack up locally like the pages of a book. Perhaps the simplest 3 nontrivial example is the foliation of R nfOg by concentric spheres induced by the 3 submersion R nfOg 3 x 7! jjxjj 2 R. Abstracting the essential aspects of this example motivates the following general ∗Survey paper written for S.N. Simic's Math 213, \Advanced Differential Geometry", San Jos´eState University, Fall 2007. 1We follow here the general outline presented in [Ca]. For a more recent and much broader survey of foliation theory, see [To]. -
Generalized Inverse Limits and Topological Entropy
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of Faculty of Science, University of Zagreb FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Goran Erceg GENERALIZED INVERSE LIMITS AND TOPOLOGICAL ENTROPY DOCTORAL THESIS Zagreb, 2016 PRIRODOSLOVNO - MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Goran Erceg GENERALIZIRANI INVERZNI LIMESI I TOPOLOŠKA ENTROPIJA DOKTORSKI RAD Zagreb, 2016. FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Goran Erceg GENERALIZED INVERSE LIMITS AND TOPOLOGICAL ENTROPY DOCTORAL THESIS Supervisors: prof. Judy Kennedy prof. dr. sc. Vlasta Matijevic´ Zagreb, 2016 PRIRODOSLOVNO - MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Goran Erceg GENERALIZIRANI INVERZNI LIMESI I TOPOLOŠKA ENTROPIJA DOKTORSKI RAD Mentori: prof. Judy Kennedy prof. dr. sc. Vlasta Matijevic´ Zagreb, 2016. Acknowledgements First of all, i want to thank my supervisor professor Judy Kennedy for accept- ing a big responsibility of guiding a transatlantic student. Her enthusiasm and love for mathematics are contagious. I thank professor Vlasta Matijevi´c, not only my supervisor but also my role model as a professor of mathematics. It was privilege to be guided by her for master's and doctoral thesis. I want to thank all my math teachers, from elementary school onwards, who helped that my love for math rises more and more with each year. Special thanks to Jurica Cudina´ who showed me a glimpse of math theory already in the high school. I thank all members of the Topology seminar in Split who always knew to ask right questions at the right moment and to guide me in the right direction. I also thank Iztok Baniˇcand the rest of the Topology seminar in Maribor who welcomed me as their member and showed me the beauty of a teamwork. -
Data Monoids∗
Data Monoids∗ Mikolaj Bojańczyk1 1 University of Warsaw Abstract We develop an algebraic theory for languages of data words. We prove that, under certain conditions, a language of data words is definable in first-order logic if and only if its syntactic monoid is aperiodic. 1998 ACM Subject Classification F.4.3 Formal Languages Keywords and phrases Monoid, Data Words, Nominal Set, First-Order Logic Digital Object Identifier 10.4230/LIPIcs.STACS.2011.105 1 Introduction This paper is an attempt to combine two fields. The first field is the algebraic theory of regular languages. In this theory, a regular lan- guage is represented by its syntactic monoid, which is a finite monoid. It turns out that many important properties of the language are reflected in the structure of its syntactic monoid. One particularly beautiful result is the Schützenberger-McNaughton-Papert theorem, which describes the expressive power of first-order logic. Let L ⊆ A∗ be a regular language. Then L is definable in first-order logic if and only if its syntactic monoid ML is aperiodic. For instance, the language “words where there exists a position with label a” is defined by the first-order logic formula (this example does not even use the order on positions <, which is also allowed in general) ∃x. a(x). The syntactic monoid of this language is isomorphic to {0, 1} with multiplication, where 0 corresponds to the words that satisfy the formula, and 1 to the words that do not. Clearly, this monoid does not contain any non-trivial group. There are many results similar to theorem above, each one providing a connection between seemingly unrelated concepts of logic and algebra, see e.g. -