Texas Energy Sector: Past and Future

Total Page:16

File Type:pdf, Size:1020Kb

Texas Energy Sector: Past and Future Texas Energy Sector: Past and Future Jolanda Prozzi Ashley Dumais Mike Cline Lisa Loftus-Otway Eleanor Seaborne CTR Technical Report: 0-6513-1B Report Date: December 2011 Project: 0-6513 Project Title: Impacts of Energy Developments on the Texas Transportation System Sponsoring Agency: Texas Department of Transportation Performing Agency: Center for Transportation Research at The University of Texas at Austin Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Center for Transportation Research The University of Texas at Austin 1616 Guadalupe St, Suite 4.202 Austin, TX 78701 www.utexas.edu/research/ctr Copyright (c) 2011 Center for Transportation Research The University of Texas at Austin All rights reserved Printed in the United States of America Disclaimers Author's Disclaimer: The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the Federal Highway Administration or the Texas Department of Transportation (TxDOT). This report does not constitute a standard, specification, or regulation. Patent Disclaimer: There was no invention or discovery conceived or first actually reduced to practice in the course of or under this contract, including any art, method, process, machine manufacture, design or composition of matter, or any new useful improvement thereof, or any variety of plant, which is or may be patentable under the patent laws of the United States of America or any foreign country. Engineering Disclaimer NOT INTENDED FOR CONSTRUCTION, BIDDING, OR PERMIT PURPOSES. v Acknowledgments The authors wish to th ank the members of the Project Managem ent Committee and Project Director Dr. Duncan Stewart. vi Table of Contents Chapter 1. Introduction................................................................................................................ 1 1.1 Report Structure .....................................................................................................................2 Chapter 2. Texas’s Energy Sector ............................................................................................... 3 2.1 Energy Production in Texas ...................................................................................................3 2.2 Energy Consumption in Texas .............................................................................................11 2.3 Energy Production and Consumption ..................................................................................17 2.4 Energy Efficiency ................................................................................................................26 2.5 Concluding Remarks ............................................................................................................27 Chapter 3. Enabling Energy Infrastructure ............................................................................. 29 3.1 Current State of Texas’s Electricity Transmission Infrastructure .......................................29 3.2 Competitive Renewable Energy Zones (CREZ) ..................................................................30 3.3 The Future of Electricity Transmission ...............................................................................32 3.4 Concluding Remarks ............................................................................................................34 Chapter 4. Advancements in Energy Technology .................................................................... 35 4.1 Natural Gas Extraction Technology ....................................................................................35 4.2 Oil Extraction Technology ...................................................................................................38 4.3 Coal Energy Technology .....................................................................................................42 4.4 Wind Energy Technologies .................................................................................................44 4.5 Solar Energy Technology ....................................................................................................47 4.6 Bio-fuel Technology ............................................................................................................49 4.7 Nuclear Technology .............................................................................................................51 4.8 Concluding Remarks ............................................................................................................52 Chapter 5. Energy Price Trends ................................................................................................ 53 5.1 Historic Energy Price Trends ...............................................................................................53 5.2 Anticipated Energy Price Trends .........................................................................................58 5.3 Concluding Remarks ............................................................................................................62 Chapter 6. Socio-Economic Impacts of the Energy Sector ..................................................... 63 6.1 Framework for Understanding Socio-economic Impacts from Energy Development ........63 6.2 Socio-Economic Impacts of Oil and Gas Drilling ...............................................................64 6.3 Socio-economic Impacts of Wind Farm Development ........................................................78 6.4 Concluding Remarks ............................................................................................................87 Chapter 7. Environmental Regulations .................................................................................... 89 7.1 Regulations for Energy Production Facilities ......................................................................89 7.2 Regulatory Developments: Air ............................................................................................90 7.3 Regulatory Developments: Waste .......................................................................................92 7.4 Regulatory Developments: Water ........................................................................................93 7.5 Commentary: Air, Energy, and Waste .................................................................................93 7.6 Concluding Remarks ............................................................................................................99 Chapter 8. Tax and Other Incentives ...................................................................................... 101 vii 8.1 Federal and State Incentives ..............................................................................................102 8.2 Concluding Remarks ..........................................................................................................102 Chapter 9. Texas’s Potential Energy Futures ........................................................................ 109 9.1 Scenario Development .......................................................................................................109 9.2 Scenario 1—Fossil Fuels Future ........................................................................................111 9.3 Scenario 2—Renewable Future (Market Driven) ..............................................................112 9.4 Scenario 3—Carbon Future ...............................................................................................113 9.5 Scenario 4—Renewable Future (Regulatory Driven) ........................................................114 9.6 Concluding Remarks ..........................................................................................................115 Chapter 10. Concluding Remarks ........................................................................................... 117 10.1 Energy Drivers .................................................................................................................117 10.2 Energy Futures .................................................................................................................123 10.3 Energy Indicators .............................................................................................................124 10.4 Concluding Remarks ........................................................................................................125 References .................................................................................................................................. 127 Appendix A: Regulations for Energy Production Facilities (2010–2011) ............................ 139 Appendix B: Air Quality Rules since 2010 ............................................................................. 181 Appendix C: Federal and State Incentives for Eligible Technologies .................................. 195 Appendix D: Explanation of the Incentives ............................................................................ 204 viii List of Figures Figure 2.1: The Energy Sector ........................................................................................................ 3 Figure 2.2: Energy Production and Consumption in Texas ............................................................ 4 Figure 2.3: Dry Natural Gas Production ........................................................................................
Recommended publications
  • Chapter 14. Northern Shelf Region
    Chapter 14. Northern Shelf Region Queen Charlotte Sound, Hecate Strait, and Dixon canoes were almost as long as the ships of the early Spanish, Entrance form a continuous coastal seaway over the conti- and British explorers. The Haida also were gifted carvers nental shelfofthe Canadian west coast (Fig. 14.1). Except and produced a volume of art work which, like that of the for the broad lowlands along the northwest side ofHecate mainland tribes of the Kwaluutl and Tsimshian, is only Strait, the region is typified by a highly broken shoreline now becoming appreciated by the general public. of islands, isolated shoals, and countless embayments The first Europeans to sail the west coast of British which, during the last ice age, were covered by glaciers Columbia were Spaniards. Under the command of Juan that spread seaward from the mountainous terrain of the Perez they reached the vicinity of the Queen Charlotte mainland coast and the Queen Charlotte Islands. The Islands in 1774 before returning to a landfall at Nootka irregular countenance of the seaway is mirrored by its Sound on Vancouver Island. Quadra followed in 1775, bathymetry as re-entrant troughs cut landward between but it was not until after Cook’s voyage of 1778 with the shallow banks and broad shoals and extend into Hecate Resolution and Discovery that the white man, or “Yets- Strait from northern Graham Island. From an haida” (iron men) as the Haida called them, began to oceanographic point of view it is a hybrid region, similar explore in earnest the northern coastal waters. During his in many respects to the offshore waters but considerably sojourn at Nootka that year Cook had received a number modified by estuarine processes characteristic of the of soft, luxuriant sea otter furs which, after his death in protected inland coastal waters.
    [Show full text]
  • Evaluation of Sb 16 Mu Center for Business & Economic Research
    EVALUATION OF SB 16 MU CENTER FOR BUSINESS & ECONOMIC RESEARCH October 2017 Evaluation of SB 16 i EVALUATION OF SB 16 MU CENTER FOR BUSINESS & ECONOMIC RESEARCH Evaluation of SB 16 FINAL REPORT October 19, 2017 Christine Risch, MS Director of Resource & Energy Economics Calvin Kent, PhD Professor Emeritus Center for Business & Economic Research Marshall University Contact: [email protected] OR (304-696-5754) ii EVALUATION OF SB 16 MU CENTER FOR BUSINESS & ECONOMIC RESEARCH Executive Summary West Virginia Senate Bill 16, introduced in the 2017 regular legislative session would repeal 11-6A-5a of the West Virginia Code related to wind power projects. The current Code grants pollution control property tax treatment to wind turbines and towers. For property taxation, assessment of the covered facilities is based on salvage value which the statute defines as five percent (5%) of original cost. Senate Bill 16 would repeal this status for existing and future wind facilities without a grandfathering provision for either operating wind projects, or those currently under development. • Passage of SB 16 would amount to an increase in the property taxes levied on wind facilities from $2.7 million to $11.9 million, a factor of 4.4. To the industry, this would be an average increase in operating costs of 34 percent. • While it is uncertain what the impact of this policy change would be on future wind development in the State or on the probability that other industries will choose to invest here, one wind developer stopped development on two early-stage projects in West Virginia because of SB 16.
    [Show full text]
  • Who Uses the Land?
    National Park Service Bering Land Bridge US Department of the Interior Lesson Plan Who Uses the Land? The Seward Peninsula has been used for over 10,000 years. The earliest evidence of usage harkens back to Grade Level: Sixth Grade- the Bering Land Bridge, when the earliest inhabitants Eleventh Grade of this continent crossed over from Asia. This land Grade Subjects: American Indian use continues up to today, with many different groups History and Culture, Community, competing for rights to use the land. The various Government, Historic Preservation, types of usage have not always been beneficial. History, Planning/Development, Public Policy, Regional Studies, Objective Westward Expansion The students will engage in research to learn how the local environment has been used throughout history. Duration: 30-60 minutes Background Group Size: Up to 24 For background information on land use history in Alaska, visit Standards: (8) SA3.1, AH. PPE3, the following websites: AH. CC6 • Alaska history: http://www.akhistorycourse.org/articles/ Vocabulary article.php?artID=138 Land use • Native Alaskan History wiki: http://wiki.bssd.org/index. ANCSA php/Native_Alaskan_history Native corporations • ANCSA info for Elementary School age: http://www. alaskool.org/projects/ancsa/elem_ed/elem_ancsa.htm • Inuit History in Alaska: http://www.everyculture.com/multi/Ha-La/Inuit.html • History of Northwest Alaska: http://www.akhistorycourse.org/articles/article.php?artID=75 Introduction: • Point to a couple of places on a map of the United States. Picking Texas or Florida may prove to be good starting points. • Ask the students how those lands are used today? Some potential answers may include fishing, tourism and orchards for Florida.
    [Show full text]
  • The Role of Natural Gas in a Low-Carbon Energy Economy
    Briefing Paper The Role of Natural Gas in a Low-Carbon Energy Economy Christopher Flavin Saya Kitasei April 2010 Natural Gas and Sustainable Energy Initiative The Role of Natural Gas in a Low-Carbon Energy Economy* Christopher Flavin and Saya Kitasei Executive Summary Growing estimates of natural gas resources, including a new category of ―unconventional‖ gas, suggest that accessible supplies of this least carbon-intensive of the fossil fuels may be far more abundant than previously assumed. This unexpected development creates opportunities for deploying natural gas in a variety of sectors—including power generation, industry, and transportation—to help displace oil and coal, thereby reducing greenhouse gas emissions and improving air quality. Beyond providing a cleaner, market-ready alternative to oil and coal, natural gas can facilitate the systemic changes that will underpin the development of a more energy-efficient and renewable energy-based economy. For example, smaller, distributed generators, many producing usable heat as well as electricity, could generate economical, low-emission replacements for a large fraction of currently operating conventional power plants, providing flexible back-up to the variable output of the solar and wind generators that will comprise a growing share of the electric power system. All of these gains are contingent on the development of sound public policy to incentivize and guide the transition. Critical policy decisions that are now pending include: electric power regulation at the local, state, and federal levels; effective federal and state oversight of the natural gas exploration and extraction process; future Environmental Protection Agency (EPA) regulatory decisions under the U.S.
    [Show full text]
  • The Response of the Upper Ocean to Solar Heating II
    Quart. J. R. Met. Soc. (1986). 112, pp. 29-42 55 1.465.553:ss 1.365.7 1 The response of the upper ocean to solar heating. 11: The wind-driven current By J. D. WOODS and V. STRASS 1n.Ytitrtt ,fuer Meereskunde an der Unioer,rituet Kiel, F. R. G. (Received 28 February lYX?: revised 30 July 1985) SUMMARY The current profile generated by a steady wind stress is disturbed by the diurnal variation of mixed layer depth forced by solar heating. Momentum diffused deep at night is abandoned to rotate incrtially during the day when the mixed layer is shallow and then re-entrained next night when it deepens. The resulting variation of current profile has been calculated with a one-dimcnsional model in which power supply to turhulencc determines the profile of eddy viscosity. The resulting variations of current velocity at fixed depths are so complicated that it is not surprising that current meter nieasurenients have seldom yielded the classical Ekmaii solution. However, the progressive vector diagrams do exhibit an Ekman-like response (albeit with superimposed inertial disturbances) suggesting that the model might be tested by tracking drifters designed to follow the flow at fixed depths. The inertial rotation of the current in the diurnal thermocline leads to a diurnal jet. the dynamical equivalent of the nocturnal jet in the atmospheric boundary layer over land. The role of inertial currents in deepening the mixed layer is clarified, leading to proposals for improving the turbulence parametrizations used in models of the upper ocean. The model predicts that the diurnal thermocline contains two layers of persistent vigorous turbulence separated by a thicker band of patchy turbulence in otherwise laminar flow.
    [Show full text]
  • Wind Energy Institute 2008
    UTCLE THE UNIVERSITY OF TEXAS SCHOOL OF LAW WIND ENERGY INSTITUTE 2008 THE PREMIER GATHERING OF KEY PARTICIPANTS IN TEXAS WIND DEVELOPMENT Tuesday, February 19 – Wednesday, February 20, 2008 Austin Convention Center • Austin, Texas PLATINUM SPONSORS FPL Energy, LLC Invenergy LLC RES Americas GOLD SPONSORS AES Wind Generation • Airtricity Inc. • Siemens Power Generation • Stoel Rives LLP SILVER SPONSORS Baker Botts L.L.P. • Chadbourne & Parke LLP • Clipper Windpower, Inc. • Gexa Energy, LLC • Horizon Wind Energy Locke Lord Bissell & Liddell LLP • Lone Star Transmission, LLC • Stahl, Bernal & Davies, L.L.P. Steakley, Wetsel & Carmichael, L.L.P. • Suzlon Wind Energy Corporation • Vinson & Elkins LLP PRESENTED BY THE UNIVERSITY OF TEXAS SCHOOL OF LAW AND THE OIL, GAS AND ENERGY RESOURCES LAW SECTION OF THE STATE BAR OF TEXAS 2008 WIND ENERGY INSTITUTE Presented by The University of Texas School of Law and The Oil, Gas and Energy Resources Law Section of the State Bar of Texas February 19-20, 2008 • Austin Convention Center • Austin, Texas Earn up to 14.50 Hours of MCLE Credit Specialization Credit Expected for Oil, Gas & Mineral Law TUESDAY, FEBRUARY 19, 2008 10:45 a.m. .50 hr Presiding Officer: Power Markets and Nodal Pricing: How the New Andy Bowman, Airtricity, Inc., Austin, TX Rules will Change the Economics and Location of Wind Developments This session provides a snapshot of common methods by 7:30 a.m. Registration Opens which power is currently bought and sold in Texas, and continues with non-technical highlights of the new nodal Includes continental breakfast. pricing system, using illustrative and practical examples Edward W.
    [Show full text]
  • Renewable Energy: Wind and Solar
    Renewable Energy: Chapter | 19 Wind and Solar ❖ Can Texans harness the wind and sun and even the jobs that go with these energy sources? 600-turbine development across 336,000 Introduction acres of West Texas. Financed by Chinese In late 2009, German utility giant E.ON banks, the development will feature new constructed the world’s largest wind farm in turbines made in China and will bring the tiny West Texas town of Roscoe. The 300 temporary construction jobs and 30 Roscoe wind farm has the capacity to produce permanent jobs to the area. Renewable 781.5 megawatts — enough electricity for energy in Texas is new — and it has already every home in Plano, McKinney and the been globalized. rest of the 265,000 households in Collin These giant wind projects illustrate County. The $1 billion project in Roscoe two key trends: Texas is emerging as took 21 months to complete and employed the capital of renewable energy, and 500 construction workers, who built 627 wind foreign companies are moving fast to take turbines on the fields of 300 property owners advantage. “People in Texas think it has — land that once pumped oil. got to be conventional energy or renewable The wind turbines of West Texas spin at energy. It’s not. It’s both,” said Michael 7 miles per hour. And one turbine produces Webber, an engineering professor at the about as much electricity as 350 households University of Texas at Austin and associate consume in a year. These economics are director of the Center for International attracting more wind turbines to the state, Energy and Environmental Policy.
    [Show full text]
  • Turbulent Flow Structure in Experimental Laboratory Wind
    Coastal Engineering 64 (2012) 1–15 Contents lists available at SciVerse ScienceDirect Coastal Engineering journal homepage: www.elsevier.com/locate/coastaleng Turbulent flow structure in experimental laboratory wind-generated gravity waves Sandro Longo a,⁎, Dongfang Liang b, Luca Chiapponi a, Laura Aguilera Jiménez c a Department of Civil Engineering, University of Parma, Parco Area delle Scienze, 181/A, 43100 Parma, Italy b Department of Engineering, Trumpington Street, Cambridge CB2 1PZ, UK c Instituto Interuniversitario de Investigación del Sistema Tierra, Universidad de Granada, Avda. del Mediterráneo s/n, 18006 Granada, Spain article info abstract Article history: This paper is the third part of a report on systematic measurements and analyses of wind-generated water Received 1 December 2011 waves in a laboratory environment. The results of the measurements of the turbulent flow on the water Received in revised form 7 February 2012 side are presented here, the details of which include the turbulence structure, the correlation functions, Accepted 8 February 2012 and the length and velocity scales. It shows that the mean turbulent velocity profiles are logarithmic, and Available online xxxx the flows are hydraulically rough. The friction velocity in the water boundary layer is an order of magnitude smaller than that in the wind boundary layer. The level of turbulence is enhanced immediately beneath the Keywords: fl 2 Free surface turbulence water surface due to micro-breaking, which re ects that the Reynolds shear stress is of the order u*w. The ver- Wind-generated waves tical velocities of the turbulence are related to the relevant velocity scale at the still-water level.
    [Show full text]
  • Renewable Energy Potential in Texas and Business Opportunities for the Netherlands
    Renewable energy potential in Texas and business opportunities for the Netherlands Commissioned by the ministry of Foreign Affairs 2016-2017 Renewable energy potential in Texas and business opportunities for the Netherlands Elène Lenders Wageningen University Environmental Economics and Natural Resources Group, Wageningen, The Netherlands The Netherlands Business Support Office, Houston, Texas, United States of America September 2016 – February 2017 Content 1. Introduction ........................................................................................................................................... 4 1.1. Research Question ........................................................................................................................ 4 1.2. Method .......................................................................................................................................... 4 1.3. Definition of renewable energy ..................................................................................................... 5 1.4. Units .............................................................................................................................................. 5 2. The current market situation for energy in Texas ................................................................................. 6 2.1. An independent electricity grid ..................................................................................................... 6 2.2. The main fuel types supplied .......................................................................................................
    [Show full text]
  • Renewable Energy in Alaska WH Pacific, Inc
    Renewable Energy in Alaska WH Pacific, Inc. Anchorage, Alaska NREL Technical Monitor: Brian Hirsch NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Subcontract Report NREL/SR-7A40-47176 March 2013 Contract No. DE-AC36-08GO28308 Renewable Energy in Alaska WH Pacific, Inc. Anchorage, Alaska NREL Technical Monitor: Brian Hirsch Prepared under Subcontract No. AEU-9-99278-01 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Subcontract Report 15013 Denver West Parkway NREL/SR-7A40-47176 Golden, Colorado 80401 March 2013 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 This publication was reproduced from the best available copy submitted by the subcontractor and received minimal editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • Texas Wind Industry's Rapid Growth Creates New Challenges
    BU S I NES SEX R E V I E W A TBureau of Business Research • IC2 institute •The University of Texas at AustinSFebruary 2010 In the past decade, Texas began to harness in carbon emissions and other harmful by- Texas Wind some of its abundant wind potential and, in products associated with some conventional the process, became an international wind forms of power, decreased dependence on Industry's energy leader. The state currently accounts for foreign oil, and economic revitalization of more than 25 percent of installed wind energy rural areas, to name but a few. As compelling Rapid capacity in the United States (see Table 1). as the arguments for wind energy may be, the But while 2009 brought a new pro-renewable growth of wind energy in Texas hinges upon Growth energy administration in Washington, the industry’s ability to address issues that may increased public awareness and interest in limit future development. green technology, and an ever-expanding Creates New demand for energy, the growth of the state’s For example, although wind energy has been new installed capacity fell below 40 percent touted as a green alternative to traditional Challenges for the first time since 2006 (see Table 2, p. generation, there is growing concern about 2). While the recession-induced credit crunch the environmental impact of development by and falling natural gas prices were two obvious on certain key species. And on the political culprits, Texas faces a host of other challenges as front, while the wind industry successfully Will Furgeson avoided any major setbacks during the 81st Development Manager, it seeks to retain its position atop the domestic Invenergy wind energy market and attract the capital and Legislative Session in 2009, the industry must new jobs that the booming renewable energy navigate through another session in 2011.
    [Show full text]
  • WIND ENERGY Renewable Energy and the Environment
    WIND ENERGY Renewable Energy and the Environment © 2009 by Taylor & Francis Group, LLC WIND ENERGY Renewable Energy and the Environment VaughnVaughn NelsonNelson CRC Press Taylor Si Francis Group BocaBoca RatonRaton LondonLondon NewNewYor Yorkk CRCCRC PressPress isis an an imprintimprint ofof thethe TaylorTaylor && FrancisFrancis Group,Group, anan informa informa businessbusiness © 2009 by Taylor & Francis Group, LLC CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2009 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-1-4200-7568-7 (Hardcover) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti- lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy- ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
    [Show full text]