Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Table of Contents TABLE OF CONTENTS Title page, illustration from Van Wyk, 2001 Declaration………………………………………………………………………………..II Acknowledgements………………………………………………………………………III Abstract…………………………………………………………………………………..IV Table of Contents………………………………………………………………………..VII List of Figures.…………….……………………………………………………………..IX List of Tables…………………………………………………………………………….XII List of Abbreviations…………………………………………………………………...XIV 1 Introduction 1.1 Tuberculosis .........................................................................................................1 1.2 The organism........................................................................................................2 1.3 Symptoms and diagnosis......................................................................................3 1.4 Treatment of tuberculosis .....................................................................................4 1.5 Anti-tuberculosis drugs ........................................................................................4 1.6 Drug-resistant tuberculosis...................................................................................5 1.7 Traditional medicine in South Africa...................................................................7 1.8 Drugs derived from natural products ...................................................................8 1.9 Plants with antimycobacterial activity.................................................................9 1.10 Tuberculosis drug development .........................................................................14 1.11 Project objectives ...............................................................................................17 2 Plant selection and crude extract preparation 2.1 Introduction........................................................................................................18 2.2 Materials and methods .......................................................................................18 2.3 Results ................................................................................................................20 2.4 Discussion..........................................................................................................29 3 Antimicrobial testing of crude extracts 3.1 Introduction........................................................................................................32 3.2 Materials and methods .......................................................................................32 3.3 Results ................................................................................................................34 3.4 Discussion..........................................................................................................40 4 Antimycobacterial testing of crude extracts 4.1 Introduction........................................................................................................46 4.2 Materials and methods .......................................................................................47 4.3 Results ................................................................................................................49 4.4 Discussion..........................................................................................................51 5 The isolation and characterization of anacardic acids from Ozoroa paniculosa 5.1 Introduction........................................................................................................53 5.2 Materials and methods .......................................................................................55 5.3 Results ................................................................................................................59 5.4 Discussion ..........................................................................................................69 6 The antimicrobial and antimycobacterial activity of anacardic acids 6.1 Introduction........................................................................................................72 6.2 Materials and methods .......................................................................................72 6.3 Results: Compound 1 .........................................................................................72 6.4 Results: HPLC Fractions ....................................................................................85 6.5 Discussion..........................................................................................................90 7 The cytotoxicity testing of anacardic acids 7.1 Introduction........................................................................................................93 7.2 Materials and methods .......................................................................................93 VII TABLE OF CONTENTS 7.3 Results ................................................................................................................95 7.4 Discussion..........................................................................................................96 8 Conclusion………………………………………………………………………..97 9 Future work……………………………………………………………………...100 10 Presentations…………………………………………………………………….101 11 References……………………………………………………………………….102 12 Appendix: Nuclear Magnetic Resonance: 2-Dimensional Data ..…….………...114 VIII LIST OF FIGURES AND SCHEMES Figure 1.1: The estimated geographical distribution of tuberculosis cases in 2003 (WHO, 2005) .................................................................................................1 Figure 1.2: A model of the mycobacterial cell wall, proposed by Minnikin, showing the primary constituents of lipids, mycolates, arabinogalactan and peptidoglycan. The funnel-shaped structure in the centre represents a porin, responsible for the movement of molecules across the cell wall (Hong and Hopfinger, 2004). ...............................................................................................2 Figure 1.3: The structures of RIF, INH, PYR and EMB......................................................5 Figure 1.4: Prevalence of MDR-TB among new TB cases between 1994 and 2002 (WHO, 2004a)……………………………………………………………………….6 Figure 1.5: The chemical structures of some antimycobacterial natural products……….11 Figure 2.1: A diagramatic representation of the experimental processes followed in this project………………………………………………………………………………..19 Figure 2.2: Pictures of selected medicinal plants used in this study. (A) Siphonochilus aethiopicus; (B) Mentha longifolia; (C) Salvia africana-lutea; (D) Tetradenia riparia; (E) Helichrysum odoratissimum; (F) and (G) Eriocephalus africanus; (H) Agathosma betulina; (I) Ozoroa paniculosa ..............................................30 Figure 3.1: Examples of the disc diffusion method. Plate ‘A’ shows the activity of the acetone extract of H. odoratissimum (45) and C. scabrida acetone and methanol extracts (47 and 63 respectively) against B. cereus. Plate ‘B’ shows the activity of the acetone extracts of T. riparia (35), S. cordatum bark (42) and H. odoratissimum (45) against S. aureus………………………………………………………………………….35 Figure 3.2: An example of the broth micro-dilution method for the determination of MIC’s of extracts against E. faecalis. The wells from left to right contain the negative control, culture control, solvent control, antibiotic control and in duplicate, the acetone extracts of A. robusta, C. scabrida, D. stramonium and O. paniculosa……..….35 Figure 4.1: The BACTEC 460 apparatus (A) with racks containing the inoculated vials ready to be tested and the individual 12B vials containing the radiolabelled carbon substrate (B). ..........................................................................................................47 Figure 5.1: Selected plant extracts exhibiting the greatest antimicrobial and antimycobacterial activity………………………………………………………………...55 Figure 5.2: The zones containing the active principles on TLC viewed under UV 365nm (A) and agar overlay bio-autography plates of fractions 2 (B) and 3 (C) after column chromatography of the crude extract of O. paniculosa showing the zones of inhibition of M. aurum growth…………………………………………………………...60 Figure 5.3: The HPLC profile of the eluted fractions HPLC1, 2 and 3 using a semi-preparative C-18 column and visualizing at 300nm on a Shimadzu LC10AS at the University of Cape Town…………………………….…………………………….61 Figure 5.4: LC-MS results of active fraction 3 of O. paniculosa performed at the University of Stellenbosch………………………………………………………………..61 Figure 5.5: High resolution mass spectrum of compound 1 ..............................................62 Figure 5.6: The 13C spectrum of compound 1....................................................................62 IX LIST OF FIGURES AND SCHEMES Figure 5.7: The 1H spectrum of compound 1.....................................................................63 Figure 5.8: The structure of 6-[8(z)-pentadecenyl]salicylic acid isolated from Ozoroa paniculosa……………………………………………………………………….65 Figure 5.9: Mass spectrometry indicating the isotopic distribution of the tailing edge of fraction HPLC3…………………………………………………………………..66 Figure 5.10: The 13C spectrum of HPLC3..........................................................................67 Figure 5.11: The 1H spectrum of HPLC3...........................................................................67 Figure 5.12: The structure of 6-pentadecylsalicyclic acid with the saturated side chain isolated from fraction HPLC3 of O. paniculosa………………………..………….69 Figure 5.13: The structures of the saturated (structure
Recommended publications
  • Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
    YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work.
    [Show full text]
  • The Ethnobotany of Central Sekhukhuneland, South Africa
    The Ethnobotany of Central Sekhukhuneland, South Africa by Mahlatse Maromo Paul Mogale DISSERTATION submitted in fulfilment of the requirements of the degree MAGISTER SCIENTIAE in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG SUPERVISOR: PROF BEN-ERIK VAN WYK CO-SUPERVISOR: DOMITILLA CLAUDIA RAIMONDO FEBRUARY 2018 MSc Dissertation Mogale M.M.P The Ethnobotany of Central Sekhukhuneland, South Africa 0 | AFFIDAVIT: MASTER AND DOCTORAL STUDENTS TO WHOM IT MAY CONCERN This serves to confirm that I (Full Name(s) and Surname) Mahlatse Maromo Paul Mogale ID Number: 8809056203082 Student number: 201467302 enrolled for the Qualification: Masters in Botany in the Faculty of Science Herewith declare that my academic work is in line with the Plagiarism Policy of the University of Johannesburg with which I am familiar. I further declare that the work presented in the dissertation is authentic and original unless clearly indicated otherwise and in such instances full reference to the source is acknowledged and I do not pretend to receive any credit for such acknowledged quotations, and that there is no copyright infringement in my work. I declare that no unethical research practices were used or material gained through dishonesty. I understand that plagiarism is a serious offence and that should I contravene the Plagiarism Policy notwithstanding signing this affidavit, I may be found guilty of a serious criminal offence (perjury) that would amongst other consequences compel the University of Johannesburg to inform all other tertiary institutions of the offence and to issue a corresponding certificate of reprehensible academic conduct to whomever requests such a certificate from the institution.
    [Show full text]
  • Bark Medicines Used in Traditional Healthcare in Kwazulu-Natal, South Africa: an Inventory
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector South African Journal of Botany 2003, 69(3): 301–363 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 0254–6299 Bark medicines used in traditional healthcare in KwaZulu-Natal, South Africa: An inventory OM Grace1, HDV Prendergast2, AK Jäger3 and J van Staden1* 1 Research Centre for Plant Growth and Development, School of Botany and Zoology, University of Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa 2 Centre for Economic Botany, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, United Kingdom 3 Department of Medicinal Chemistry, Royal Danish School of Pharmacy, 2 Universitetsparken, 2100 Copenhagen 0, Denmark * Corresponding author, e-mail: [email protected] Received 13 June 2002, accepted in revised form 14 March 2003 Bark is an important source of medicine in South Overlapping vernacular names recorded in the literature African traditional healthcare but is poorly documented. indicated that it may be unreliable in local plant identifi- From thorough surveys of the popular ethnobotanical cations. Most (43%) bark medicines were documented literature, and other less widely available sources, 174 for the treatment of internal ailments. Sixteen percent of species (spanning 108 genera and 50 families) used for species were classed in threatened conservation cate- their bark in KwaZulu-Natal, were inventoried. gories, but conservation and management data were Vernacular names, morphological and phytochemical limited or absent from a further 62%. There is a need for properties, usage and conservation data were captured research and specialist publications to address the in a database that aimed to synthesise published infor- gaps in existing knowledge of medicinal bark species mation of such species.
    [Show full text]
  • Anacardiaceae)
    73 Vol. 45, N. 1 : pp. 73 - 79, March, 2002 ISSN 1516-8913 Printed in Brazil BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Ontogeny and Structure of the Pericarp of Schinus terebinthifolius Raddi (Anacardiaceae) Sandra Maria Carmello-Guerreiro1∗ and Adelita A. Sartori Paoli2 1Departamento de Botânica, Instituto de Biologia, Universidade Estadual de Campinas, Caixa Postal 6109, CEP: 13083-970, Campinas, SP, Brasil; 2Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista, Caixa Postal 199, CEP: 13506-900, Rio Claro - SP, Brasil ABSTRACT The fruit of Schinus terebinthifolius Raddi is a globose red drupe with friable exocarp when ripe and composed of two lignified layers: the epidermis and hypodermis. The mesocarp is parenchymatous with large secretory ducts associated with vascular bundles. In the mesocarp two regions are observed: an outer region composed of only parenchymatous cells and an inner region, bounded by one or more layers of druse-like crystals of calcium oxalate, composed of parenchymatous cells, secretory ducts and vascular bundles. The mesocarp detaches itself from the exocarp due to degeneration of the cellular layers in contact with the hypodermis. The lignified endocarp is composed of four layers: the outermost layer of polyhedral cells with prismatic crystals of calcium oxalate, and the three innermost layers of sclereids in palisade. Ke y words: Anacardiaceae; Schinus terebinthifolius; pericarp; anatomy; pericarpo; anatomia INTRODUCTION significance particularly at a generic level. However, further ontogenic studies of the Schinus terebinthifolius Raddi, also known as the Anacardiaceae family are necessary to compare Brazilian Pepper Tree, belongs to the tribe the homologous structures in the various taxa (Von Rhoideae (Rhoeae) of the Anacardiaceae family.
    [Show full text]
  • Livros Grátis
    1 Livros Grátis http://www.livrosgratis.com.br Milhares de livros grátis para download. 2 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Tese Gênero Schinus L. (Anacardiaceae): Características embriológicas e a circunscrição das espécies ocorrentes no Estado do Rio Grande do Sul Aluno: João Marcelo Santos de Oliveira Orientador: Prof. Dr. Jorge Ernesto de Araujo Mariath Tese apresentada ao Programa de Pós-Graduação em Botânica da Universidade Federal do Rio Grande do Sul, como um dos requisitos para a obtenção do Título de Doutor em Ciências: Botânica. Porto Alegre, 2005 3 “teremos de encarar as espécies do mesmo modo que aqueles naturalistas encaram os gêneros, admitindo que não passem de combinações artificiais, arranjadas em função da conveniência. Pode não ser uma perspectiva das mais animadoras, mas há de servir pelo menos para nos libertar da inglória pesquisa relativa à indecifrada e indecifrável essência da palavra espécie.” Charles Robert Darwin, 1859 4 Agradecimentos Ao Prof. Dr. Jorge E. A. Mariath pela orientação, pela amizade, pelo entusiasmo, pelo incentivo, pela confiança, pela clareza e pertinência das idéias e palavras que contribuíram diretamente para minha formação, desde minha iniciação científica até a conclusão deste trabalho de doutorado. Ao Prof. Adelino Alvares e a sua família que me auxiliaram e me acolheram durante trabalho de coleta de material botânico no Município Santa Maria. Aos Mestres: Prof. Dr. Paulo Luís de Oliveira, Prof. Dr. Bruno Edgar Irgang, Profa. Dra. Ilsi Boldrini, Profa. Dra. Hilda Maria Longhi-Wagner, Profa. Dra. Tatiana Chies, pelo convívio, ensinamentos e incentivo, além da ajuda nas diversas expedições de coleta de material botânico.
    [Show full text]
  • A Plant Ecological Study and Management Plan for Mogale's Gate Biodiversity Centre, Gauteng
    A PLANT ECOLOGICAL STUDY AND MANAGEMENT PLAN FOR MOGALE’S GATE BIODIVERSITY CENTRE, GAUTENG By Alistair Sean Tuckett submitted in accordance with the requirements for the degree of MASTER OF SCIENCE in the subject ENVIRONMENTAL MANAGEMENT at the UNIVERSITY OF SOUTH AFRICA SUPERVISOR: PROF. L.R. BROWN DECEMBER 2013 “Like winds and sunsets, wild things were taken for granted until progress began to do away with them. Now we face the question whether a still higher 'standard of living' is worth its cost in things natural, wild and free. For us of the minority, the opportunity to see geese is more important that television.” Aldo Leopold 2 Abstract The Mogale’s Gate Biodiversity Centre is a 3 060 ha reserve located within the Gauteng province. The area comprises grassland with woodland patches in valleys and lower-lying areas. To develop a scientifically based management plan a detailed vegetation study was undertaken to identify and describe the different ecosystems present. From a TWINSPAN classification twelve plant communities, which can be grouped into nine major communities, were identified. A classification and description of the plant communities, as well as, a management plan are presented. The area comprises 80% grassland and 20% woodland with 109 different plant families. The centre has a grazing capacity of 5.7 ha/LSU with a moderate to good veld condition. From the results of this study it is clear that the area makes a significant contribution towards carbon storage with a total of 0.520 tC/ha/yr stored in all the plant communities. KEYWORDS Mogale’s Gate Biodiversity Centre, Braun-Blanquet, TWINSPAN, JUICE, GRAZE, floristic composition, carbon storage 3 Declaration I, Alistair Sean Tuckett, declare that “A PLANT ECOLOGICAL STUDY AND MANAGEMENT PLAN FOR MOGALE’S GATE BIODIVERSITY CENTRE, GAUTENG” is my own work and that all sources that I have used or quoted have been indicated and acknowledged by means of complete references.
    [Show full text]
  • Cytotoxic, Antimicrobial, Antioxidant, Antilipoxygenase
    South African Journal of Botany 95 (2014) 9–18 Contents lists available at ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Cytotoxic, antimicrobial, antioxidant, antilipoxygenase activities and phenolic composition of Ozoroa and Searsia species (Anacardiaceae) used in South African traditional medicine for treating diarrhoea Aroke S. Ahmed a,b,⁎,LyndyJ.McGawa, Nivan Moodley c, Vinasan Naidoo a, Jacobus N. Eloff a a Phytomedicine programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa b Federal Institute of Industrial Research, Oshodi, PMB 21023, Ikeja, Lagos, Nigeria c Biosciences, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa article info abstract Article history: The safety and effectiveness of many of the medicinal plants used in traditional medicine by rural people with Received 15 November 2013 little or no access to allopathic drugs is yet to be evaluated. With this in mind, Ozoroa and Searsia (previously Received in revised form 27 June 2014 known as Rhus) species traditionally used in South Africa to treat microbial infections and gastrointestinal Accepted 29 July 2014 disorders were selected for in vitro evaluation of biological activities and cytotoxicity. Available online xxxx Phenolic-enriched leaf extracts were prepared using mixture of 1% HCl acidified 70% acetone and n-hexane. The Edited by J Van Staden crude extract was further fractionated with solvent of different polarities. Crude extracts and fractions were test- ed against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Enterococcus faecalis, Aspergillus Keywords: fumigatus, Candida albicans and Cryptococcus neoformans.
    [Show full text]
  • Antimycobacterial Activity and Low Cytotoxicity of Leaf Extracts of Some African
    Antimycobacterial activity and low cytotoxicity of leaf extracts of some African Anacardiaceae tree species. Short Title: Antimycobacterial and cytotoxicity of Anacardiaceae tree species Prudence N. Kabongo-Kayoka1,2, Jacobus N. Eloff2, Chikwelu L. Obi3, Lyndy J. McGaw2 1Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X 6, Florida 1710, South Africa; [email protected] 2Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa 3Division of Academic Affairs, University of Fort Hare, Alice 5700, South Africa *Corresponding author. E-mail address: [email protected] (P.N. Kabongo-Kayoka) Treatment of tuberculosis is a challenge due to multi and extremely drug resistant strains of Mycobacterium tuberculosis. Plant species contain antimicrobial compounds that may lead to new anti-TB drugs. Previous screening of some tree species from the Anacardiaceae family revealed the presence of antimicrobial activity, justifying further investigations. Leaf extracts of 15 Anacardiaceae tree species were screened for antimycobacterial activity using a twofold serial microdilution assay against the pathogenic Mycobacterium bovis and multidrug resistant M. tuberculosis and rapidly growing mycobacteria, Mycobacterium smegmatis, Mycobacterium fortuitum and Mycobacterium aurum. The vaccine strain, M. bovis and an avirulent strain, H37Ra M. tuberculosis, were also used. Cytotoxicity was assessed using a colorimetric assay against Vero kidney, human hepatoma and murine macrophage cells. Four out of 15 crude acetone extracts showed significant antimycobacterial activity with MIC varying from 50 to 100µg/mL. Searsia undulata had the highest activity against most mycobacteria, followed by Protorhus longifolia.
    [Show full text]
  • SABONET Report No 18
    ii Quick Guide This book is divided into two sections: the first part provides descriptions of some common trees and shrubs of Botswana, and the second is the complete checklist. The scientific names of the families, genera, and species are arranged alphabetically. Vernacular names are also arranged alphabetically, starting with Setswana and followed by English. Setswana names are separated by a semi-colon from English names. A glossary at the end of the book defines botanical terms used in the text. Species that are listed in the Red Data List for Botswana are indicated by an ® preceding the name. The letters N, SW, and SE indicate the distribution of the species within Botswana according to the Flora zambesiaca geographical regions. Flora zambesiaca regions used in the checklist. Administrative District FZ geographical region Central District SE & N Chobe District N Ghanzi District SW Kgalagadi District SW Kgatleng District SE Kweneng District SW & SE Ngamiland District N North East District N South East District SE Southern District SW & SE N CHOBE DISTRICT NGAMILAND DISTRICT ZIMBABWE NAMIBIA NORTH EAST DISTRICT CENTRAL DISTRICT GHANZI DISTRICT KWENENG DISTRICT KGATLENG KGALAGADI DISTRICT DISTRICT SOUTHERN SOUTH EAST DISTRICT DISTRICT SOUTH AFRICA 0 Kilometres 400 i ii Trees of Botswana: names and distribution Moffat P. Setshogo & Fanie Venter iii Recommended citation format SETSHOGO, M.P. & VENTER, F. 2003. Trees of Botswana: names and distribution. Southern African Botanical Diversity Network Report No. 18. Pretoria. Produced by University of Botswana Herbarium Private Bag UB00704 Gaborone Tel: (267) 355 2602 Fax: (267) 318 5097 E-mail: [email protected] Published by Southern African Botanical Diversity Network (SABONET), c/o National Botanical Institute, Private Bag X101, 0001 Pretoria and University of Botswana Herbarium, Private Bag UB00704, Gaborone.
    [Show full text]
  • The Evolution and Biogeography of Seed Dispersal in Southern African Trees
    The evolution and biogeography of seed dispersal in southern African trees Richard Spencer Knight University of Cape Town Thesis presented for the degree of Master of Science University of Cape Town March 1983 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town THE EVOLUTION AND BIOGEOGRAPHY OF SEED DISPERSAL IN SOUTHERN AFRICAN TREES TABLE OF CONTENTS Page Introduction 2 Part 1. Inter-relationships between type, size and colour of fruits and dispersal in southern African trees 7 Part 2. The biogeography of seed-dispersal in southern African trees 37 Part 3. Quantified hypotheses for describing relationships between fruit morphology in southern Africa trees and environmental elements 69 Part 4. Distribution and evolution of aril­ bearing trees in southern Africa 88 Part 5. The biogeography and evolution of fruit/frugivore relationships in southern Africa 117 Conclusion 152 Acknowledgements 155 Appendix 1 156 Appendix 2 157 Appendix 3 160 Appendix 4 Knight et al. (1982) Distribution and species richness of trees in southern Africa. Jl S. Afr. Bot. 48 : 455-480. 164 Appendix 5 Notes on the data source and collection 1 91 2 I NTRODUCTI rn~ Many quuntified biocic,ographical analysE:,s have conc,~nt.ra.t<:;d on describing patterns, while the processes t.hat may influence the nature of these patterhs are rarely considered.
    [Show full text]
  • Bsb 113 Biology of Cells
    Journal of Medicinal Plants Research Vol. 6(42), pp. 5460-5463, 3 November, 2012 Available online at http://www.academicjournals.org/JMPR DOI: 10.5897/JMPR10.005 ISSN 1996-0875 ©2011 Academic Journals Full Length Research Paper Antioxidant activities of crude extracts from medicinal plants used by diabetic patients in Eastern Botswana Motlhanka D. M. T.* and Mathapa G. Botswana College of Agriculture, Basic Sciences Department, Medicinal Plant Research, Bag 0027, Gaborone, Botswana. Accepted 14 April, 2011 The antioxidant activities of water extracts of Myrothamnus flabellifolius (shoot) and Ozoroa paniculosa (roots) and their combinations called “Danzoria”(equal proportion of extracts from the two plants) were evaluated spectrophotometrically using the DPPH free radical scavenging assay. At 25 µg/ml the free radical scavenging power of the extracts were as follows: M. flabellifolius alone (66%); O. paniculosa root alone (49%); O. paniculosa stem alone (81%); O. paniculosa leaf alone (79%). At the same concentration (25 µg/ml) their combination (Danzoria) exhibited the following radical scavenging potencies: M. flabellifolius + O. paniculosa root (85%); M. flabellifolius + O. paniculosa stem (91%); M. flabellifolius +O. paniculosa leaf (91%). At 100 µg/ml and above there were no significant differences between scavenging potencies for individual extracts and their combinations. The scavenging potencies were in magnitudes of 90-91%. These plants and their combinations contain antioxidant compounds and their free radical scavenging activity may be responsible for their antidiabetic properties as advocated in traditional medicine. Key words: Free radical scavenging, Myrothamnus flabellifolius, Ozoroa paniculosa, antidiabetic, Eastern Botswana INTRODUCTION Myrothamnus flabellifolius (shoot) and Ozoroa paniculosa cellular organelles and enzymes, lipid peroxidation, and (roots, stem, leaves) and their combination called development of insulin resistance (Maritim et al., 2003).
    [Show full text]
  • Appendix A: Habitats & Flora of the Heritage Park
    APPENDIX A: HABITATS & FLORA OF THE HERITAGE PARK 1. Thornveld & mixed bushveld of the plains 1.1. Thornveld on black clay soils Aspilia Commelina Turf thornveld mossambicensis bhengalensis Open thorny Gladiolus elliotii Striga forbesia bushveld Gladiolus elliotii Ipomoea magnusiana Striga gesnerioides Hibiscus trionum Crabbea angustifolia Convolvulus sagittatus 205 1.2. Thornveld on red to brown loams Thornveld Hibiscus cannabinus Hermannia boraginiflora Open thorny parkland Chamaechrista Commelina africana savanna mimosoides Harpagophytum Asclepias meliodora Euphorbia clavaroides procumbens Thornveld Ammocharis sp. Harpagophytum zeyheri Aloe greatheadii Aloe greatheadii Aerva leucura 206 Thorny bushveld Coccinia sessilifolia Coccinia sessilifolia Cyphostemma Ipomoea papilio Ipomoea gracilisepala lanigerum Heliotropium strigosum Raphionacme hirsuta Tephrosia plicata 1.3. Mixed bushveld Mixed Bushveld on Xerophyta retinervis Xerophyta retinervis rocky soil Mixed bushveld on Aptosimum lineare Ledebouria apertiflora hillslope 207 Semi-open bushveld Boophane disticha Oxalis smithiana Cucumis zeyheri Closed bushveld Hirpicium bechuanense Oxalis depressa Aptosimum elongatum Lippia javanica 2. Kloofs, ravines & rocky mountain sites of the Dwarsberg Rang 2.1. Mountain footslopes Rocky footslope Striga gesnerioides Oldenlandia herbacea 208 2.2. Rocky mountain kloofs & ravines Mountain kloof Ficus sp. Hibiscus sp Pavonia sp. Kloof Rocky ravine 2.3. Middle and upper slopes Closed mountain Midslopes Abutilon grandiflorum bushveld Plumbago zeylanica
    [Show full text]