Process for the Selective Reduction of the 4-Halogen in 2,4-Dihaloanilines

Total Page:16

File Type:pdf, Size:1020Kb

Process for the Selective Reduction of the 4-Halogen in 2,4-Dihaloanilines Europaisches Patentamt European Patent Office © Publication number: 0 507 41 7 A2 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 92200978.2978.2 © int. Ci.5; C07C 209/74, C07C 231/14 @ Date of filing: 03.04.92 © Priority: 04.04.91 US 680712 © Applicant: DOWELANCO 9002 Purdue Road @ Date of publication of application: Indianapolis, Indiana 46268-3030(US) 07.10.92 Bulletin 92/41 @ Inventor: Pews, Garth R. © Designated Contracting States: 4403 Andre Street DE ES FR GB IT NL Midland, Michigan 48640(US) Inventor: Wehmeyer, Richard M. 205 Zinnia Lake Jackson, Texas 77566(US) Inventor: Hunter, James E. 114 Player Court No. 3 Walnut Creek, California 94598(US) © Representative: Smulders, Theodorus A.H.J., Ir. et al Vereenigde Octrooibureaux Nieuwe Parklaan 97 NL-2587 BN 's-Gravenhage(NL) © Process for the selective reduction of the 4-halogen in 2,4-dihaloanilines. © Substituted 2-haloanilines are prepared from the correspondingly substituted 2,4-dichloro- or 2,4- dibromoanilines by selectively reducing a chloro or bromo substituent para to a protected amino group in the presence of the same halogen as an ortho substituent. The selective reductions are accomplished by protecting the amino function of the aniline with two protecting groups, e.g., as the diacetanilide or the succinimide. CM < o Rank Xerox (UK) Business Services EP 0 507 417 A2 The present invention concerns a process for preparing substituted 2-haloanilines from the correspond- ingly substituted 2,4-dichloro- or 2,4-dibromoanilines. More particularly, the present invention concerns the selective reduction of a chloro or bromo substituent para to the protected amino group of an aniline also having the same halogen as an ortho substituent. 2-Halo and 2,6-dihaloanilines are useful as intermediates in the manufacture of a wide variety of chemical products including, for example, dyes, pharmaceuticals and agricultural chemicals. Unfortunately, 2-halo and 2,6-dihaloanilines, optionally substituted in the 3(5)- and/or 6-position, are often not that easy to obtain. Since direct electrophilic halogenation of anilines typically provides little or no selectivity for halogenation at carbons ortho versus para to the amino group, the 4-position must normally be blocked 10 and then deprotected in order to prevent halogenation from occurring there. For example, 2,6-dichloro-3- methylaniline is presently manufactured from the acetanilide of m-toluidine in a multistep process (see O.G. Backeberg et al., J.Chem.Soc, 1943, 78-80; and H.C. Brimelow et al., J.Chem.Soc, 1951, 1208-1212) involving the following reaction sequence: 75 NHAc NHAc CIS03H 20 (ii) (i) 25 HCI/H20 H202 (iii) 30 i) protection of the p-position by sulfonamidation; 35 ii) hydrolysis of the acetanilide; iii) chlorination of the 2- and 6-positions; and iv) deprotection of the p-position. The yields of the protection (i) and chlorination (iii) steps are relatively low and the use of chlorosulfonic acid and ammonia present difficulties with respect to safe handling and waste disposal. 40 Rather than employing a scheme which involves the protection and deprotection of the reactive para position, it would be desirable to have a process in which a chloro or bromo substituent in the para position could be selectively removed from readily available anilines also having the same halogen in at least one of the ortho positions. The present invention concerns a process for preparing 2-haloanilines of formula (I) 45 50 55 wherein X is CI or Br, R is X, F, C1-C4 alkyl, C1-C+ alkoxy, CF3 or C02R2, R1 is H or C1-C4 alkyl, and 2 EP 0 507 417 A2 R2 is H or Ci -C+ alkyl characterized by: (a) contacting an amino-protected 2,4-dichloroaniline or an amino-protected 2,4-dibromoaniline of formula (II) (ID where R5 is CH3 or CH2CH3, or R3 and R+ taken together are 30 40 45 and X, R and R1 are as previously defined, with a hydrogen source in the presence of a palladium catalyst in an inert organic solvent to selectively remove the 4-chloro or 4-bromo substituent; and 50 (b) hydrolyzing the protecting groups from the amino function to produce the desired aniline. By protecting the amino function of the aniline with two protecting groups, e.g., as the diacetanilide or the succinimide, a chloro or bromo substituent para to the amino function can be selectively reduced in the presence of the same halogen substituent ortho to the amino function. Thus the present process for preparing 2-haloanilines unsubstituted in the 4-position avoids the need of protecting and deprotecting the 55 position para to the amino group and allows the use of readily available starting materials which have been completely halogenated in all of the available reactive ortho and para positions. As used herein, the term "halo" refers to CI or Br, and the terms "C1-C4 alkyl" and "C1-C4 alkoxy" refer to straight-chained or branched hydrocarbon groups of up to four carbon atoms, provided that all 3 EP 0 507 417 A2 substituent groups are sterically compatible with each other. The term "sterically compatible" is employed to designate substituent groups which are not affected by steric hindrance as this term is defined in "The Condensed Chemical Dictionary", 7th edition, Reinhold Publishing Co., N.Y. page 893 (1966) which definition is as follows: "steric hindrance": A characteristic of molecular structure in which the molecules 5 have a spatial arrangement of their atoms such that a given reaction with another molecule is prevented or retarded in rate." Sterically compatible may be further defined as reacting compounds having substituents whose physical bulk does not require confinement within volumes insufficient for the exercise of their normal behavior as discussed in "Organic Chemistry" by D.J. Cram and G. Hammond, 2nd edition, McGraw-Hill w book Company, N.Y., page 215 (1964). The preferred "C1-C+ alkyl" and "C1-C+ alkoxy" groups are -CH3, -CH2CH3, -OCH3 and -OCH2CH3. The most preferred group is -CH3. The amino-protected chloroaniline and bromoaniline starting materials of formula II are known com- pounds, eg., see Japanese Patent Publication Nos. 52-025117 or 56-164106, or can be prepared from the is appropriately substituted chloro- and bromoanilines by conventional acylation procedures. For example, diacetanilides can be prepared from the corresponding chloro- or bromoanilines by treatment with excess acetic anhydride and an acid catalyst, such as, for example, methanesulfonic acid. Alternatively, dipropionamides, succinimides and glutarimides can be prepared from the appropriate chloro- or bromoanilines and the corresponding acid chlorides or bromides, e.g., propionyl, succinyl or glutaryl 20 chloride, in the presence of a hydrogen halide acceptor, such as pyridine or triethylamine. In cases where the aniline contains a bulky ortho substituent, e.g., Br, the introduction of two protecting groups on the amine function may prove difficult and the formation of the diacetanilide {R3 and R+ are each -C(0)CH3} is preferred. The preferred starting materials are those in which X is CI or Br, R is CI, Br, CH3, OCH3 or C02R2, R1 is 25 H or CH3, R2 is CH3 or CH2CH3 and R3 and R+ are -C(0)CH3. The most preferred starting materials are those in which X is CI, R is CI or C02R2, R1 is H or CH3, R2 is CH3, and R3 and R* are -C(0)CH3. The appropriately substituted chloroanilines may in turn conveniently be prepared by protecting the amine moiety of commercially available ortho and meta substituted anilines as the hydrochloride salt, followed by treatment with chlorine. Similarly, appropriately substituted bromoanilines may conveniently be 30 prepared by treatment of commercially available ortho and meta substituted anilines with bromine in acetic acid. In the reduction step, the amino-protected 2-halo-4-chloro- or bromoaniline is contacted with a hydrogen source in the presence of a palladium catalyst. During the course of the reaction, the halogen in the 4- position is selectively replaced by hydrogen. 35 The selective reduction is fairly specific to palladium catalysts, and palladium on carbon has generally been found to be more effective than palladium dispersed on other supports. Thus, the preferred catalyst is 1 to 10 percent palladium on carbon. The percent loading of palladium on the carbon support also affects the efficiency of the catalyst depending upon such factors as solvent or hydrogen source. In some instances, 10 percent palladium on carbon functions better than 5 percent or 1 percent palladium on carbon, 40 even though comparisons are based on equal metal content. Generally, 0.01 to 0.20 equivalents of palladium are employed per equivalent of substrate; from 0.02 to 0.10 equivalents are preferred. The reduction can be conducted using hydrogen gas as the hydrogen source. The hydrogen gas can be continuously sparged into the reaction mixture at atmospheric pressure or the reaction mixture can be pressurized with hydrogen gas in a sealed reactor. With hydrogen gas, however, it is often difficult to 45 control the extent of reduction. This is particularly so when excess hydrogen is sparged into the reaction as is often most convenient. Therefore, it is preferable to use other hydrogen sources. Formate salts are the most convenient and preferred hydrogen source for the present application. By the term "formate salts" is meant alkali metal formates, such as sodium formate and potassium formate, ammonium formate and trialkylammonium formates wherein the alkyl groups are straight-chained alkyl 50 groups of 1 to 4 carbons, such as triethylammonium formate. The trialkylammonium formates, being relatively non-hygroscopic, easily prepared and quite soluble in most organic solvents, are the preferred hydrogen source. The trialkylammonium formates can be prepared by stirring an excess of trialkylamine with formic acid in toluene.
Recommended publications
  • Review of Extractive Distillation. Process Design, Operation
    Review of Extractive Distillation. Process design, operation optimization and control Vincent Gerbaud, Ivonne Rodríguez-Donis, Laszlo Hegely, Péter Láng, Ferenc Dénes, Xinqiang You To cite this version: Vincent Gerbaud, Ivonne Rodríguez-Donis, Laszlo Hegely, Péter Láng, Ferenc Dénes, et al.. Review of Extractive Distillation. Process design, operation optimization and control. Chemical Engineering Research and Design, Elsevier, 2019, 141, pp.229-271. 10.1016/j.cherd.2018.09.020. hal-02161920 HAL Id: hal-02161920 https://hal.archives-ouvertes.fr/hal-02161920 Submitted on 21 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/239894 Official URL: https://doi.org/10.1016/j.cherd.2018.09.020 To cite this version: Gerbaud, Vincent and Rodríguez-Donis, Ivonne and Hegely, Laszlo and Láng, Péter and Dénes, Ferenc and You, Xinqiang Review of Extractive Distillation. Process design, operation optimization and control. (2018) Chemical Engineering Research and Design, 141.
    [Show full text]
  • United States Patent (10) Patent No.: US 9,586,922 B2 Wood Et Al
    USOO9586922B2 (12) United States Patent (10) Patent No.: US 9,586,922 B2 Wood et al. (45) Date of Patent: Mar. 7, 2017 (54) METHODS FOR PURIFYING 9,388,150 B2 * 7/2016 Kim ..................... CO7D 307/48 5-(HALOMETHYL)FURFURAL 9,388,151 B2 7/2016 Browning et al. 2007/O161795 A1 7/2007 Cvak et al. 2009, 0234142 A1 9, 2009 Mascal (71) Applicant: MICROMIDAS, INC., West 2010, 0083565 A1 4, 2010 Gruter Sacramento, CA (US) 2010/0210745 A1 8/2010 McDaniel et al. 2011 O144359 A1 6, 2011 Heide et al. (72) Inventors: Alex B. Wood, Sacramento, CA (US); 2014/01 00378 A1 4/2014 Masuno et al. Shawn M. Browning, Sacramento, CA 2014/O1878O2 A1 7/2014 Mikochik et al. (US);US): Makoto N. Masuno,M. s Elk Grove, s 2015/02668432015,0203462 A1 9/20157/2015 CahanaBrowning et etal. al. CA (US); Ryan L. Smith, Sacramento, 2016/0002190 A1 1/2016 Browning et al. CA (US); John Bissell, II, Sacramento, 2016,01681 07 A1 6/2016 Masuno et al. CA (US) 2016/02O7897 A1 7, 2016 Wood et al. (73) Assignee: MICROMIDAS, INC., West FOREIGN PATENT DOCUMENTS Sacramento, CA (US) CN 101475544. A T 2009 (*) Notice: Subject to any disclaimer, the term of this N 1939: A 658 patent is extended or adjusted under 35 DE 635,783 C 9, 1936 U.S.C. 154(b) by 0 days. EP 291494 A2 11, 1988 EP 1049657 B1 3, 2003 (21) Appl. No.: 14/852,306 GB 1220851 A 1, 1971 GB 1448489 A 9, 1976 RU 2429234 C2 9, 2011 (22) Filed: Sep.
    [Show full text]
  • Heterogeneous Azeotropic Distillation
    PROSIMPLUS APPLICATION EXAMPLE HETEROGENEOUS AZEOTROPIC DISTILLATION EXAMPLE PURPOSE This example illustrates a high purity separation process of an azeotropic mixture (ethanol-water) through heterogeneous azeotropic distillation. This process includes distillation columns. Additionally these rigorous multi- stage separation modules are part of a recycling stream, demonstrating the efficiency of ProSimPlus convergence methods. Specifications are set on output streams in order to insure the required purity. This example illustrates the way to set "non-standard" specifications in the multi-stage separation modules. Three phase calculations (vapor-liquid- liquid) are done with the taken into account of possible liquid phase splitting. ACCESS Free-Internet Restricted to ProSim clients Restricted Confidential CORRESPONDING PROSIMPLUS FILE PSPS_EX_EN-Heterogeneous-Azeotropic-Distillation.pmp3 . Reader is reminded that this use case is only an example and should not be used for other purposes. Although this example is based on actual case it may not be considered as typical nor are the data used always the most accurate available. ProSim shall have no responsibility or liability for damages arising out of or related to the use of the results of calculations based on this example. Copyright © 2009 ProSim, Labège, France - All rights reserved www.prosim.net Heterogeneous azeotropic distillation Version: March, 2009 Page: 2 / 12 TABLE OF CONTENTS 1. PROCESS MODELING 3 1.1. Process description 3 1.2. Process flowsheet 5 1.3. Specifications 6 1.4. Components 6 1.5. Thermodynamic model 7 1.6. Operating conditions 7 1.7. "Hints and Tips" 9 2. RESULTS 9 2.1. Comments on results 9 2.2. Mass and energy balances 10 2.3.
    [Show full text]
  • Distillation ­ Accessscience from Mcgraw­Hill Education
    6/19/2017 Distillation ­ AccessScience from McGraw­Hill Education (http://www.accessscience.com/) Distillation Article by: King, C. Judson University of California, Berkeley, California. Last updated: 2014 DOI: https://doi.org/10.1036/1097­8542.201100 (https://doi.org/10.1036/1097­8542.201100) Content Hide Simple distillations Fractional distillation Vapor­liquid equilibria Distillation pressure Molecular distillation Extractive and azeotropic distillation Enhancing energy efficiency Computational methods Stage efficiency Links to Primary Literature Additional Readings A method for separating homogeneous mixtures based upon equilibration of liquid and vapor phases. Substances that differ in volatility appear in different proportions in vapor and liquid phases at equilibrium with one another. Thus, vaporizing part of a volatile liquid produces vapor and liquid products that differ in composition. This outcome constitutes a separation among the components in the original liquid. Through appropriate configurations of repeated vapor­liquid contactings, the degree of separation among components differing in volatility can be increased manyfold. See also: Phase equilibrium (/content/phase­equilibrium/505500) Distillation is by far the most common method of separation in the petroleum, natural gas, and petrochemical industries. Its many applications in other industries include air fractionation, solvent recovery and recycling, separation of light isotopes such as hydrogen and deuterium, and production of alcoholic beverages, flavors, fatty acids, and food oils. Simple distillations The two most elementary forms of distillation are a continuous equilibrium distillation and a simple batch distillation (Fig. 1). http://www.accessscience.com/content/distillation/201100 1/10 6/19/2017 Distillation ­ AccessScience from McGraw­Hill Education Fig. 1 Simple distillations. (a) Continuous equilibrium distillation.
    [Show full text]
  • Tissue Free Water Tritium Separation from Foodstuffs by Azeotropic Distillation
    140 SK98K0361 21st RHDJasna podChopkom TISSUE FREE WATER TRITIUM SEPARATION FROM FOODSTUFFS BY AZEOTROPIC DISTILLATION Florentina Constantin, Ariadna Ciubotaru, DecebalPopa Inspectorate of Public Health of Bucharest, Romania 1. INTRODUCTION The actual tritium content in the environment is due to both natural production by cosmic ray interactions in the upper atmosphere and to varying amount of man- made tritium. Tritium, the radioactive isotope of hydrogen, is one of the most important radionuclide released to the environment during the normal operation of a typical nuclear power reactor. Tritiated water constitutes almost the entire radioactivity in liquid waste discharged to the environment from heavy water reactors. Therefore, monitoring tritium in air, precipitation, drinking water and vegetation is necessary for assessing the environmental impact of tritium releases in gaseous and liquid effluents from nuclear plants. The use for agricultural purposes of river water receiving releases of tritium, results in contamination of irrigated crops and then in the contamination of the food chain. ? Tritium is everywhere in living matter, has a long physical half-time (T= 12.26 y) and is known to follow protium pathways in biological material. Tritium in liquid or solid biota samples can not be easily determined quantitatively by any kind of nondestructive analysis because its beta radiation energy (E =18 keV) is so weak that the most part is absorbed in the sample. Therefore, most non-aqueous samples must be treated chemically or physically to be suitable for counting. The choice of preparation method will depend on the type of samples, number and quantities of samples to be processed and availability of measurement equipment.
    [Show full text]
  • Comparison of Complete Extractive and Azeotropic Distillation Processes for Anhydrous Ethanol Production Using Aspen Plustm Simu
    43 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 80, 2020 The Italian Association of Chemical Engineering Online at www.cetjournal.it Guest Editors: Eliseo Maria Ranzi, Rubens Maciel Filho Copyright © 2020, AIDIC Servizi S.r.l. DOI: 10.3303/CET2080008 ISBN 978-88-95608-78-5; ISSN 2283-9216 Comparison of Complete Extractive and Azeotropic Distillation Processes for Anhydrous Ethanol Production using Aspen PlusTM Simulator Nahieh T. Miranda*, Rubens Maciel Filho, Maria Regina Wolf Maciel Laboratory of Optimization, Design, and Advanced Control (LOPCA)/Laboratory of Development of Separation Processes (LDPS), School of Chemical Engineering, University of Campinas, Brazil. [email protected] Performance of the extractive and azeotropic distillation processes using ethylene glycol and cyclohexane as solvents, respectively, for anhydrous ethanol production, were investigated using 02 RadFrac columns each and solvent recycling streams via simulation in Aspen Plus™ Simulator. Both operate at 1 atm, and feed flow -1 rate equals to 100 kmol.h (ethanol – 0.896 and water – 0.104 in mole fractions at the azeotropic point). The NRTL-RK was the model used for extractive and azeotropic distillations. The anhydrous ethanol purity from top of the 1st column of the extractive distillation (22 stages) was 99.50 % (on a mole basis) and water with nd st 99.20 % of purity at the top of the 2 column. On the other hand, in the azeotropic distillation, the 1 column (30 stages) had a bottom product of anhydrous ethanol purity of 99.99 % and water with 99.99 % of purity in the 2nd column, also at the bottom. Both processes produced anhydrous ethanol with a high-grade purity required by the standard norms ASTM D4806, EN 15376, and ANP 36.
    [Show full text]
  • Partial Separation of an Azeotropic Mixture of Hydrogen Chloride and Water and Copper (II) Chloride Recovery for Optimization of the Copper-Chlorine Cycle
    Partial Separation of an Azeotropic Mixture of Hydrogen Chloride and Water and Copper (II) Chloride Recovery for Optimization of the Copper-Chlorine Cycle by Matthew P. Lescisin A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science in The Faculty of Engineering and Applied Science Mechanical Engineering University of Ontario Institute of Technology September 2017 © Matthew P. Lescisin, 2017 Contents Contents ii Abstract v Acknowledgments vi List of Figures vii List of Tables viii Nomenclature ix Quantities...................................... ix Greek Letters.................................... x Subscripts...................................... xi Acronyms...................................... xi 1 Introduction1 2 Background4 2.1 Boiling in the Subcooled Liquid Region .................. 4 2.2 Vapor-Liquid Equilibrium (VLE)...................... 5 2.3 Phase Diagrams................................ 5 2.3.1 Tie-Lines ............................... 6 2.4 Distillation .................................. 6 2.5 Azeotropes .................................. 8 3 Literature Review9 3.1 Azeotropic Distillation............................ 9 3.2 Extractive Distillation............................ 10 3.3 Pressure-Swing Distillation .......................... 11 3.4 Batch Mode.................................. 13 3.5 Heat-Integrated Distillation Columns.................... 13 3.5.1 Heat-Integrated PSD......................... 14 ii CONTENTS iii 3.6 Reflux Ratio ................................. 15
    [Show full text]
  • Studying the Effect of Mixing Miscible Hydrocarbon Components on the Multi-Stage Distillation Operation Compared with Single Component Distillation
    STUDYING THE EFFECT OF MIXING MISCIBLE HYDROCARBON COMPONENTS ON THE MULTI-STAGE DISTILLATION OPERATION COMPARED WITH SINGLE COMPONENT DISTILLATION MOHD NOR FIRDAUS BIN MOHD SALLEH A thesis submitted in fulfilment of the Requirement for the award of the degree of Bachelor of Chemical Engineering (Gas Technology) Faculty of Chemical and Natural Resources Engineering University Malaysia Pahang (UMP) APRIL 2008 ii I declare that this thesis entitled ‘Effect of mixing miscible hydrocarbon component on the multi-stage distillation operation compared with single component’ is the results of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted candidature of any degree. Signature : ……………………………………… Name : MOHD NOR FIRDAUS BIN MOHD SALLEH Date : 30 th APRIL 2008 iii Special dedicated to my beloved father and mother and my whole family members iv ACKNOWLEDGEMENT Alhamdulillah all praises be to almighty Allah who made it possible for me to done this thesis by time. First of all, I would like to express my appreciation especially to my loving caring parent, Mr. Mohd Salleh bin Daud and Madam Rahah binti Md Salleh and rest of my family members who are very supportive morally to whatever good things that I have involve and done all these years. Secondly I am greatly indebted to final year project supervisor Doctor Hayder A. Abdul Bari who was very kind to accept me as his supervise student and allowed me to work with him until this project is done. He greatly influenced, guidance, encouragement, comments and motivated me to explore distillation process in depth.
    [Show full text]
  • Optimization Study on the Azeotropic Distillation Process for Isopropyl Alcohol Dehydration
    Korean J. Chem. Eng., 23(1), 1-7 (2006) Optimization study on the azeotropic distillation process for isopropyl alcohol dehydration Jungho Cho and Jong-Ki Jeon*,† Department of Chemical Engineering, Dong Yang University, 1, Kyochon-dong, Poongki-eup, Youngju, Gyeongbuk 750-711, Korea *Department of Chemical Engineering, Kongju National University, 182, Shinkwan-dong, Gongju, Chungnam 314-701, Korea (Received 9 August 2005 • accepted 26 November 2005) Abstract−Modeling and optimization work was performed using benzene as an entrainer to obtain a nearly pure an- hydrous isopropyl alcohol product from dilute aqueous IPA mixture through an azeotropic distillation process. NRTL liquid activity coefficient model and PRO/II with PROVISION 6.01, a commercial process simulator, were used to simulate the overall azeotropic distillation process. We determined the total reboiler heat duties as an objective function and the concentration of IPA at concentrator top as a manipulated variable. As a result, 38.7 mole percent of IPA at concentrator top gave the optimum value that minimized the total reboiler heat duties of the three distillation columns. Key words: Azeotropic Distillation, Entrainer, NRTL Liquid Activity Coefficient Model, Simulation, Optimization INTRODUCTION using special distillation. One is to utilize an azeotropic distillation process using benzene or cyclohexane as an entrainer [Font et al., An anhydrous isopropyl alcohol (IPA) product with purity over 2003; Tao et al., 2003; Al-Amer, 2000; Fele et al., 2000] and the 99.9% by weight has been widely used as a raw material of paint other is an extractive distillation process using ethylene glycol as a or ink products and as a solvent in electronic and medicine indus- solvent [Ligero and Ravagnani, 2003; Pinto et al., 2000].
    [Show full text]
  • Azeotropes As Powerful Tool for Waste Minimization in Industry and Chemical Processes
    molecules Review Azeotropes as Powerful Tool for Waste Minimization in Industry and Chemical Processes Federica Valentini and Luigi Vaccaro * Laboratory of Green S.O.C., Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; [email protected] * Correspondence: [email protected]; Tel./Fax: +39-07-5585-5541 Academic Editor: Derek J. McPhee Received: 17 October 2020; Accepted: 10 November 2020; Published: 12 November 2020 Abstract: Aiming for more sustainable chemical production requires an urgent shift towards synthetic approaches designed for waste minimization. In this context the use of azeotropes can be an effective tool for “recycling” and minimizing the large volumes of solvents, especially in aqueous mixtures, used. This review discusses the implementation of different kinds of azeotropic mixtures in relation to the environmental and economic benefits linked to their recovery and re-use. Examples of the use of azeotropes playing a role in the process performance and in the purification steps maximizing yields while minimizing waste. Where possible, the advantages reported have been highlighted by using E-factor calculations. Lastly azeotrope potentiality in waste valorization to afford value-added materials is given. Keywords: azeotrope; waste minimization; solvent recovery; azeotropic distillation; process design; waste valorization 1. Introduction The materials not incorporated into the final desired product and the energy required for conducting a process can be considered most trivially as the major direct origin of “waste” associated to chemical production. In addition, the possible formation of undesired isomers or byproducts also results in the generation of costly waste, that being in some cases hazardous, can limit the final application of the main product.
    [Show full text]
  • Graphical Calculation Method for Minimum Reflux Ratio in Azeotropic Distillation'
    GRAPHICAL CALCULATION METHOD FOR MINIMUM REFLUX RATIO IN AZEOTROPIC DISTILLATION' SHOZO TANAKA AND JIRO YAMADA** Shin-etsu Chemical Industry Co., Ltd., Tokyo, Japan In an azeotropic distillation column, the rate of net flow and the composition of net flow for both stripping and rectifying sections can be calculated from the limiting con- ditions of the separation desired. The pinch points are dotted on the radial lines starting from the point of net flow composition by trial and error, and locus of the pinch points are traced on the triangular diagram by the way of connecting the pinch points. Each minimum reflux ratio of stripping and rectifying sections can be calculated from the quan- titative ratio of vapor and liquid of the operating line passing the point of intersection of locus line and feed line, and the larger of the two values shall be defined as the minimum reflux ratio of the system. For example, we illustrate the graphical calculation method for AcOH-H2O-BuOAc system and AcOH-H2O-EtOAc system. Jm^Vm-Lm+i=~W, ^mi=Xwi DXdi-SXSf Introduction An-Vn+i Lin-L) b, Oni- D-S Recently, some substantial papers on calculation [II] when the entrainer is supplied with the feed to method for azeotropic distillation have been reported the column, by Yorizane et al.6>7\ Yamada et al.5\ and Hirose Jm=-W, et alAK The authors previously proposed a graph- ^ni~Xdi ical calculation method of minimumreflux ratio of (4) the azeotropic distillation, and in this paper we report The minimum reflux ratio in the stripping section some results of additional study.
    [Show full text]
  • Aldrich Chemical Co., Inc
    SERVING THE SCIENTIFIC COMMUNITY FOR OVER 3O YEARS AldrichimAldrichimicaica AACTACTA VOL.33, NO.1 • 2000 The Chemical Vapor Deposition of Metal Nitride Films Using Modern Metalorganic Precursors Synthetic Applications of Indium Trichloride Catalyzed Reactions Purpald®: A Reagent That Turns Aldehydes Purple! CHEMISTS HELPING CHEMISTS NewNew ProductsProducts The tert-butyldimethylsilyl analog of OMe O O O Danishefsky’s diene is now available. It has been used to prepare a variety of OTBDMS OTBDMS OTBDMS 52,599-5 52,490-5 52,613-4 bicyclic enones and 2,3-dihydro-4H- TBDMSO pyran-4-ones.1-3 A variety of nucleophiles have been used to open the oxirane (1) Uchida, H. et al. Tetrahedron Lett. 1999, 40, 113. (2) Pudukulathan, Z. et al. J. Am. ring of these compounds. Examples include lithium Chem. Soc. 1998, 120, 11953. (3) Annunziata, R. et al. J. Org. Chem. 1992, 57, 3605. acetylides1,2 and lithium dithianes.3 51,536-1 trans-3-(tert-Butyldimethylsilyloxy)-1-methoxy-1,3- (1) Arista, L. et al. Heterocycles 1998, 48, 1325. (2) Maguire, R. J. et al. J. Chem. Soc., butadiene, 95% Perkin Trans. 1 1998, 2853. (3) Smith, A. B., III; Boldi, A. M. J. Am. Chem. Soc. 1997, 119, 6925. Building blocks for trans-2- 52,599-5 tert-Butyldimethylsilyl (R)-(+)-glycidyl ether, 98% methyl-6-substituted piperidines 52,490-5 tert-Butyldimethylsilyl (S)-(–)-glycidyl ether, 98% via deprotonation with sec-butyl- N N H lithium followed by reaction with Boc 52,613-4 tert-Butyldimethylsilyl glycidyl ether, 98% an electrophile.1-3 52,288-0 52,290-2 (1) Chackalamannil, S.
    [Show full text]