Characterisation of Vanadium-Based Oxidation Catalysts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Maleic Anhydride ______
MALEIC ANHYDRIDE ______________________________________________________________________________ _______________ Method no.: 86 Matrix: Air Target concentration: 0.25 ppm (1 mg/m3) Procedure: Samples are collected by drawing air through glass fiber filters coated with 2 mg of 3,4- dimethoxybenzylamine (veratrylamine). Samples are extracted with 90:10 (v/v) acetonitrile/dimethylsulfoxide and analyzed by HPLC using a UV detector. Recommended air volume and sampling rate: 60 L at 0.5 L/min Reliable quantitation limit: 8.3 ppb (33 µg/m3) Standard error of estimate at the target concentration: 8.86% (Section 4.7.) Special requirement: Submit the samples for analysis as soon as possible after sampling. If delay is unavoidable, store the samples in a refrigerator. Store samples in a refrigerator upon receipt at the laboratory. Status of method: Evaluated method. This method has been subjected to the established evaluation procedures of the Organic Methods Evaluation Branch. Date: December 1990 C h e m i s t : Yihlin Chan Organic Methods Evaluation Branch OSHA Analytical Laboratory Salt Lake City, Utah 1. General Discussion 1.1. Background 1.1.1. History In OSHA Method 25 (Ref. 5.1.), maleic anhydride is collected and derivatized on p-anisidine-coated XAD-2 tubes. An untreated XAD-2 tube is connected in series to trap the p-anisidine that is partly leached from the first tube during sampling. In trying to develop sampling and analytical methods for a series of anhydrides (acetic, maleic, phthalic, and trimellitic), derivatizing agents other than p-anisidine were investigated to obviate the use of the second tube. 1-(2-Pyridyl)piperazine, the agent used in earlier methods for a series of isocyanates (Refs. -
469 Subpart D—Exemptions from Tolerances
Environmental Protection Agency § 180.1001 oxo-1,2,3-benzotriazin-3(4H)-ylmethyl] (1-methylethyl) benzeneacetate in or phosphorodithioate in soybean oil re- on the following raw agricultural com- sulting from application of the insecti- modities: cide to the raw agricultural commodity soybeans. Commodity Parts per million (2) The following tolerances are es- Eggs, whole ................................... 0.03 tablished for residues of the insecticide Lettuce, head ................................. 5.0 O,O- dimethyl S-[4-oxo-1,2,3- Poultry, fat ...................................... 0.3 Poultry, meat .................................. 0.03 benzotriazin-3(4H)-ylmethyl] Poultry, mbyp (except liver) ........... 0.3 phosphorodithioate in the indicated Poultry, liver ................................... 0.03 commodities when used for the feed of Sorghum, fodder ............................ 10.0 Sorghum, forage ............................ 10.0 cattle, goats, and sheep. Such residues Sorghum, grain .............................. 5.0 may be present therein only as a result Sugarbeet, pulp ............................. 2.5 of the application of the insecticide to Sugarbeet, root .............................. 0.5 the growing agricultural crop. Sugarbeet, top ............................... 5.0 (b) Section 18 emergency exemptions. Commodity Parts per million [Reserved] Citrus pulp, dried ............................................... 5 (c) Tolerances with regional registra- Sugarcane bagasse ........................................... 1.5 tions. -
Xyfluor Chemical Compatibility Guide
456456 Xyfluor® Chemical Compatibility Xyfluor® is a proprietary, highly fluorinated elastomer. The oxygen in the polymer backbone provides outstanding low-temperature capabilities - far better than FKM or FFKM elastomers. The polymer provides improved resistance to many harsh chemicals that can attack the hydrogen in FKM elastomers. The chemical resistance of Xyfluor® approaches but is not equivalent to FFKM elastomers. A = Swell < 10% after exposure. Suitable. B = Swell > 10% & < 20% after exposure. Generally suitable. C = Swell >20% & < 40% after exposure. May be suitable in some situations. D = Swell > 40% after exposure. Not suitable. N = Insufficient data. Test: Full immersion, Room Temperature, 3 days The information contained herein is believed to be reliable, but no representation, guarantees or warranties of any kind are made to its accuracy or suitability for any purpose. Full-scale testing and end-product performance are the responsibility of the user. CHEMICAL RATING CHEMICAL RATING acetaldehyde A amomnium phosphate A acetic acid, ammonium stearate A glacial A ammonium sulfate A hot A ammonium thiocyanate A 5% A amyl acetate A/B acetic anhydride A amyl alcohol A acetone A amyl nitrate A acetone cyanohydrin A aniline A acetyl chloride A aniline hydrochloride A acetylene gas A anti-freeze, alcohol or glycol based A acrylonitrile A aqua regia N adipic acid A argon gas A alcohol, denatured A arsenic acid A alkyl benzene A ash slurry A alkyl-arylsulphonic acid A asphalt A alumina trihydrate N barium chloride A aluminum acetate -
6.5 Phthalic Anhydride
6.5 Phthalic Anhydride 6.5.1 General1 Phthalic anhydride (PAN) production in the United States in 1972 was 0.9 billion pounds per year; this total is estimated to increase to 2.2 billion pounds per year by 1985. Of the current production, 50 percent is used for plasticizers, 25 percent for alkyd resins, 20 percent for unsaturated polyester resins, and 5 percent for miscellaneous and exports. PAN is produced by catalytic oxidation of either orthoxylene or naphthalene. Since naphthalene is a higher-priced feedstock and has a lower feed utilization (about 1.0 lb PAN/lb o-xylene versus 0.97 lb PAN/lb naphthalene), future production growth is predicted to utilize o-xylene. Because emission factors are intended for future as well as present application, this report will focus mainly on PAN production utilizing o-xylene as the main feedstock. The processes for producing PAN by o-xylene or naphthalene are the same except for reactors, catalyst handling, and recovery facilities required for fluid bed reactors. In PAN production using o-xylene as the basic feedstock, filtered air is preheated, compressed, and mixed with vaporized o-xylene and fed into the fixed-bed tubular reactors. The reactors contain the catalyst, vanadium pentoxide, and are operated at 650 to 725EF (340 to 385EC). Small amounts of sulfur dioxide are added to the reactor feed to maintain catalyst activity. Exothermic heat is removed by a molten salt bath circulated around the reactor tubes and transferred to a steam generation system. Naphthalene-based feedstock is made up of vaporized naphthalene and compressed air. -
Partial Oxidation of N-Pentane Over Vanadium Phosphorus Oxide Supported on Hydroxyapatites
RESEARCH ARTICLE S. Singh, 1 S. Afr. J. Chem., 2016, 69, 1–8, <http://journals.sabinet.co.za/sajchem/>. Partial Oxidation of n-Pentane over Vanadium Phosphorus Oxide supported on Hydroxyapatites Sooboo Singh School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4000, South Africa. E-mail: [email protected] Received 14 August 2015, revised 13 November 2015, accepted 20 November 2015. ABSTRACT The selective oxidation of n-pentane to value-added products, maleic anhydride or phthallic anhydride by vanadium phosphorus oxide loaded on hydroxyapatites as catalysts and oxygen as oxidant was investigated. Hydroxyapatite (HAp) and cobalt- hydroxyapatite (Co-HAp) were prepared by the co-precipitation method and VPO with varying weight percentages (2.5–15.0 %) were loaded on the hydroxyapatite supports by the wet impregnation technique. The catalyst materials were characterized by surface area measurements, elemental analysis, powder X-ray diffraction (XRD), infrared spectroscopy (IR) and temperature- programmed reduction (TPR). VPO is present in two phases, viz.(VO)2P2O7 and VOPO4. With increase in the VPO loading on the hydroxyapatites, the (VO)2P2O7 phase also increased. From catalytic results, a conversion of 75 % of n-pentane and selectivity towards maleic anhydride, about 50 % and phthalic anhydride, about 25 %, were consistently achieved with loadings of 5.0 and 7.5 wt. % VPO at 360 °C for GHSVs of 1900 and 2300 h–1. Under optimum conditions, product yields of up to 40 % maleic anhydride and 20 % phthalic anhydride were obtained. It is proposed that the products formed through the diene intermediate. KEYWORDS Selective oxidation, n-pentane, vanadium phosphorus oxide, hydroxyapatite, maleic anhydride, phthalic anhydride. -
Preparation, Characterization, and Crystallization of Naphthalene-Labeled Polypropylene
Polymer Journal, Vol. 32, No. 12, pp 995~993 (2000) Preparation, Characterization, and Crystallization of Naphthalene-Labeled Polypropylene Jun YANG, t Guangxin CHEN, Wanjun LIU, and Jingjiang LIU State Key Laboratory of Poymer Physics and Chemistry, Changchun Institute ofApplied Chemistry, Chinese Academy ofSciences, Changchun 130022, People's Republic of China (Received April 10, 2000; Accepted August 18, 2000) ABSTRACT: Naphthalene-labeled polypropylene (PP) was prepared by melt reaction of maleic anhydride-grafted polypropylene (PP-g-MA) with 1-aminonaphthalene in a Barabender mixer chamber. The structure of the product was analyzed with fourier transform infrared (FT-IR), ultraviolet (UV) and fluorescence. The results showed that naphthyl groups grafted onto the PP molecular chains through the imide bonds formed between MA and 1-aminonaphthalene. 4 The content of the chromophores was 1.8 X 10 ·· mo! g - i measured by elemental analysis. Isothermal crystallization be havior was studied by differential scanning calorimeter (DSC). Labeled PP had a higher crystallization rate than PP-g MA. Wide-angle X-Ray diffraction (WAXD) analysis revealed that labeled PP had higher crystallinity than PP-g-MA. KEY WORDS Melt Reaction I Excimer Fluorescence/ Polypropylene/Naphthalene/ Excimer formation has been widely used to study poly DSC analysis of isothermal crystallization revealed that mer physics and processing. This fluorescence quench labeled PP has a higher crystallization rate than PP-g ing can give information about miscibility of polymer MA as well as a higher crystallinity measured by blends, 1 residual strains in polymer materials,2 chain WAXD. To our knowledge, labeling fluorescent chromo folding,3 distribution of functional groups grafted onto a phores to a polymer in melt instead of in solution is polymer backbone,4 chain interactions,5 and conforma scarcely reported. -
Maleic Anhydride 1 Maleic Anhydride
Maleic anhydride 1 Maleic anhydride Maleic anhydride[1] Identifiers [2] CAS number 108-31-6 [3] PubChem 7923 [4] ChemSpider 7635 [5] UNII V5877ZJZ25 [6] EC-number 203-571-6 [7] ChEBI CHEBI:474859 [8] ChEMBL CHEMBL374159 RTECS number UE5950000 [9] Jmol-3D images Image 1 Properties Molecular formula C H O 4 2 3 Molar mass 98.06 g/mol Appearance White crystals Density 1.48 g/cm3 Melting point 52.8 °C (127.0 °F; 325.9 K) Boiling point 202 °C (396 °F; 475 K) Solubility in water Reacts Hazards Maleic anhydride 2 [10] MSDS MSDS at J. T. Baker EU classification Corrosive (C) R-phrases R22, R34, R42/43 S-phrases (S2), S22, S26, S36/37/39, S45 NFPA 704 Flash point 102 °C (216 °F; 375 K) Related compounds Related acid anhydrides Succinic anhydride Related compounds Maleic acid Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa) [11] (verify) (what is: / ?) Infobox references Maleic anhydride is an organic compound with the formula C H (CO) O. It is the acid anhydride of maleic acid. it 2 2 2 is a colourless or white solid with an acrid odour. It is produced industrially on a large scale for applications in coatings and polymers. Production Maleic anhydride was traditionally produced by the oxidation of benzene or other aromatic compounds. As of 2006, only a few smaller plants continue to use benzene. Instead, most maleic anhydride plants is produced by vapor-phase oxidation of n-butane. The overall process converts the methyl groups to carboxylate and dehydrogenates the backbone. -
Evaluation of Commercially Available Styrene-Co-Maleic Acid Polymers For
European Polymer Journal 114 (2019) 485–500 Contents lists available at ScienceDirect European Polymer Journal journal homepage: www.elsevier.com/locate/europolj Evaluation of commercially available styrene-co-maleic acid polymers for T the extraction of membrane proteins from spinach chloroplast thylakoids ⁎ Olena Korotycha,b, , Jyotirmoy Mondala, Kerim M. Gattás-Asfurac, Jessica Hendricksa, ⁎ Barry D. Brucea,d, a Department of Biochemistry, and Cellular, and Molecular Biology, University of Tennessee at Knoxville, 1311 Cumberland Avenue, Knoxville, TN 37996-1939, United States b Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611-6131, United States c Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32611-6131, United States d Department of Microbiology, University of Tennessee at Knoxville, 1311 Cumberland Avenue, Knoxville, TN 37996-1937, United States ARTICLE INFO ABSTRACT Keywords: Solubilization of membrane proteins by poly(styrene-co-maleic acid) salts (pSMA-S) has significant potential for styrene-co-maleic acid lipid particle (SMALP) membrane protein studies. This approach provides an opportunity to overcome many disadvantages associated styrene-maleic acid (SMA) copolymer with a traditional detergent-based technique including protein denaturation and displacement of boundary lipids poly(styrene-co-maleic acid) salt (pSMA-S) which may offer both structural and functional stability to membrane proteins. Thylakoid membranes (TMs) membrane protein from photosynthetic organisms are well studied protein-rich membranes that host several multi-subunit protein thylakoid complexes associated with oxygenic photosynthesis. These protein complexes are important for applied pho- solubilization efficacy tosynthesis and by being extracted and purified they can be used in the near future for direct energy conversion. -
Production of Maleic Anhydride
Production of Maleic Anhydride Background Maleic anhydride is a versatile chemical intermediate used to make unsaturated polyester resins, lube oil additives, alkyd resins, and a variety of other products. In 1995, global production of maleic anhydride was estimated at 1.8 billion pounds, with an estimated value of $700 million. Over the last five years, world consumption has increased at an average annual rate of 5.8%, with the fastest growth occurring in Asia, where it is used as an intermediate for production of 1,4-butanediol [1]. The goal of this project is to design a grass roots facility that is capable of producing 40 million pounds of maleic anhydride per year from n-butane. Process Description Figure 1 shows a PFD for the overall process. Pure butane, Stream 2, and compressed air, Stream 3, are mixed and fed to R-101, an adiabatic reactor, where butane reacts with oxygen to form maleic anhydride. The reaction is exothermic, therefore, one could consider either a fluidized bed reactor or a packed bed reactor with heat removal to stay close to isothermal. The reactor effluent is cooled and sent to T-101, a packed bed absorber, where it is contacted with water, Stream 7, to remove the light gases and all of the maleic anhydride reacts to form maleic acid. The vapor effluent, which consists of non-condensables, Stream 8, must be sent to an after-burner to remove any carbon monoxide prior to venting to the atmosphere. This is not shown here. The liquid effluent, Stream 9, is then cooled and flashed at 101 kPa and 120°C in V-101. -
6.5 Phthalic Anhydride
6.5 Phthalic Anhydride 6.5.1 General1 Phthalic anhydride (PAN) production in the United States in 1972 was 0.9 billion pounds per year; this total is estimated to increase to 2.2 billion pounds per year by 1985. Of the current production, 50 percent is used for plasticizers, 25 percent for alkyd resins, 20 percent for unsaturated polyester resins, and 5 percent for miscellaneous and exports. PAN is produced by catalytic oxidation of either orthoxylene or naphthalene. Since naphthalene is a higher-priced feedstock and has a lower feed utilization (about 1.0 lb PAN/lb o-xylene versus 0.97 lb PAN/lb naphthalene), future production growth is predicted to utilize o-xylene. Because emission factors are intended for future as well as present application, this report will focus mainly on PAN production utilizing o-xylene as the main feedstock. The processes for producing PAN by o-xylene or naphthalene are the same except for reactors, catalyst handling, and recovery facilities required for fluid bed reactors. In PAN production using o-xylene as the basic feedstock, filtered air is preheated, compressed, and mixed with vaporized o-xylene and fed into the fixed-bed tubular reactors. The reactors contain the catalyst, vanadium pentoxide, and are operated at 650 to 725EF (340 to 385EC). Small amounts of sulfur dioxide are added to the reactor feed to maintain catalyst activity. Exothermic heat is removed by a molten salt bath circulated around the reactor tubes and transferred to a steam generation system. Naphthalene-based feedstock is made up of vaporized naphthalene and compressed air. -
Polyanionic Cathode Materials for Sodium-Ion Batteries
Polyanionic cathode materials for sodium-ion batteries Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) der KIT-Fakultät für Chemie und Biowissenschaften des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION von Herr Huang Zhang KIT-Dekan: Prof. Dr. Reinhard Fischer Referent: Prof. Dr. Stefano Passerini Korreferent: Prof. Dr. Helmut Ehrenberg Tag der mündlichen Prüfung: 13 Dezember 2018 To my family “A journey of a thousand miles begins with a single step.” (Lao-Tzu) Acknowledgments First of all, I would like to thank my advisor, Prof. Stefano Passerini, for giving me the chance to explore in sodium-ion batteries. I am grateful that he challenged me to meet his high scientific and communication standards, for his flexibility in allowing me to pursue what I found interesting, and for trusting me to solve problems with an independent approach. I really appreciate the enjoyable environment to work in Electrochemistry I group. I am also very grateful to Prof. Helmut Ehrenberg for being the second examiner of my thesis, especially for his fruitful discussion. I would like to thank Dr. Daniel Buchholz and Dr. Ivana Hasa with whom I was working in the sodium-ion battery research field. I am really grateful to their help on my work. Dr. Alberto Varzi, Dr. Sangsik Jeong, Dr. Diogo Vieira Carvalho, Lucas Lodovico, and Jakob Asenbauer are also acknowledged. Without their support this thesis would not be possible. I would like to express my gratitude to Dr. Dominic Bresser for his critical review and correction on the thesis. Francesco Liberale from Polytechnic University of Milan is also acknowledged for his critical discussion on the thesis. -
Electronic Structure of Vanadyl Pyrophosphate: Cluster Model Studies M
Journal of Molecular Catalysis A: Chemical 166 (2001) 59–72 Electronic structure of vanadyl pyrophosphate: cluster model studies M. Witko a,∗, R. Tokarz a, J. Haber a, K. Hermann b a Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek, 30239 Cracow, Poland b Fritz-Haber-Institute der Max-Planck-Gesellschaft, Faradayweg, 4-6, D-14195 Berlin, Germany Abstract The electronic properties of (VO)2P2O7(1 0 0) surface are discussed using the cluster model and DFT method. The calcu- lations indicate that present cluster models are size converged and the cluster as large as V10P6O50H30 can be considered the realistic model of the extended (VO)2P2O7(1 0 0) surface. Vanadyl pyrophosphate forms a material of a mixed ionic–covalent character. Major covalent contributions participate in the V–O as well as in the P–O binding. The calculations reveal clear electronic differences between structurally different surface oxygen atoms. Triply coordinated oxygen sites (O3) are found to be the most negatively charged. Doubly coordinated oxygen sites (O2) and oxygen atoms singly coordinated to phosphorous are characterize by a similar local reactivity with respect to electrophilic attacks. The strong nucleophilicity of surface oxygen sites together with the V3d character of HOMO/LUMO suggest that the interaction of adsorbate with the (VO)2P2O7(100) surface will lead to the activation of organic species proceeding via to C–H bond splitting. © 2001 Elsevier Science B.V. All rights reserved. Keywords: Vanadyl pyrophosphate; DFT method; Electronic structure 1. Introduction vanadium being in different formal oxidation state: 5+ (phosphates ␥, ␦-VOPO4), 4+ (pyrophosphate Vanadium containing systems are widely used as (VO)2P2O7) and 3+ (monophosphate VPO4) (see for components of various catalysts for many industrial example [3,4]).