VAX C Run-Time Library Reference Manual
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Operating Systems and Applications for Embedded Systems >>> Toolchains
>>> Operating Systems And Applications For Embedded Systems >>> Toolchains Name: Mariusz Naumowicz Date: 31 sierpnia 2018 [~]$ _ [1/19] >>> Plan 1. Toolchain Toolchain Main component of GNU toolchain C library Finding a toolchain 2. crosstool-NG crosstool-NG Installing Anatomy of a toolchain Information about cross-compiler Configruation Most interesting features Sysroot Other tools POSIX functions AP [~]$ _ [2/19] >>> Toolchain A toolchain is the set of tools that compiles source code into executables that can run on your target device, and includes a compiler, a linker, and run-time libraries. [1. Toolchain]$ _ [3/19] >>> Main component of GNU toolchain * Binutils: A set of binary utilities including the assembler, and the linker, ld. It is available at http://www.gnu.org/software/binutils/. * GNU Compiler Collection (GCC): These are the compilers for C and other languages which, depending on the version of GCC, include C++, Objective-C, Objective-C++, Java, Fortran, Ada, and Go. They all use a common back-end which produces assembler code which is fed to the GNU assembler. It is available at http://gcc.gnu.org/. * C library: A standardized API based on the POSIX specification which is the principle interface to the operating system kernel from applications. There are several C libraries to consider, see the following section. [1. Toolchain]$ _ [4/19] >>> C library * glibc: Available at http://www.gnu.org/software/libc. It is the standard GNU C library. It is big and, until recently, not very configurable, but it is the most complete implementation of the POSIX API. * eglibc: Available at http://www.eglibc.org/home. -
Chapter 10 Streams Streams Text Files and Binary Files
Streams Chapter 10 • A stream is an object that enables the flow of File I/O data between a ppgrogram and some I/O device or file – If the data flows into a program, then the stream is called an input stream – If the dtdata flows out of a program, then the stream is called an output stream Copyright © 2012 Pearson Addison‐Wesley. All rights reserved. 10‐2 Streams Text Files and Binary Files • Input streams can flow from the kbkeyboar d or from a • Files that are designed to be read by human beings, file and that can be read or written with an editor are – StSystem. in is an itinput stream tha t connects to the called text files keyboard – Scanner keyy(y);board = new Scanner(System.in); Text files can also be called ASCII files because the data they contain uses an ASCII encoding scheme • Output streams can flow to a screen or to a file – An advantage of text files is that the are usually the same – System.out is an output stream that connects to the screen on all computers, so tha t they can move from one System.out.println("Output stream"); computer to another Copyright © 2012 Pearson Addison‐Wesley. All rights reserved. 10‐3 Copyright © 2012 Pearson Addison‐Wesley. All rights reserved. 10‐4 Text Files and Binary Files Writing to a Text File • Files tha t are didesigne d to be read by programs and • The class PrintWriter is a stream class that consist of a sequence of binary digits are called binary files that can be used to write to a text file – Binary files are designed to be read on the same type of – An object of the class PrintWriter has the computer and with the same programming language as the computer that created the file methods print and println – An advantage of binary files is that they are more efficient – These are similar to the System.out methods to process than text files of the same names, but are used for text file – Unlike most binary files, Java binary files have the advantage of being platform independent also output, not screen output Copyright © 2012 Pearson Addison‐Wesley. -
C++ Input/Output: Streams 4
C++ Input/Output: Streams 4. Input/Output 1 The basic data type for I/O in C++ is the stream. C++ incorporates a complex hierarchy of stream types. The most basic stream types are the standard input/output streams: istream cin built-in input stream variable; by default hooked to keyboard ostream cout built-in output stream variable; by default hooked to console header file: <iostream> C++ also supports all the input/output mechanisms that the C language included. However, C++ streams provide all the input/output capabilities of C, with substantial improvements. We will exclusively use streams for input and output of data. Computer Science Dept Va Tech August, 2001 Intro Programming in C++ ©1995-2001 Barnette ND & McQuain WD C++ Streams are Objects 4. Input/Output 2 The input and output streams, cin and cout are actually C++ objects. Briefly: class: a C++ construct that allows a collection of variables, constants, and functions to be grouped together logically under a single name object: a variable of a type that is a class (also often called an instance of the class) For example, istream is actually a type name for a class. cin is the name of a variable of type istream. So, we would say that cin is an instance or an object of the class istream. An instance of a class will usually have a number of associated functions (called member functions) that you can use to perform operations on that object or to obtain information about it. The following slides will present a few of the basic stream member functions, and show how to go about using member functions. -
HP C Run-Time Library Reference Manual for Openvms Systems
HP C Run-Time Library Reference Manual for OpenVMS Systems Order Number: BA554-90014 June 2010 This manual describes the functions and macros in the HP C Run-Time Library for OpenVMS systems. Revision/Update Information: This manual supersedes the HP C Run-Time Library Reference Manual for OpenVMS Systems, Version 8.3 Software Version: OpenVMS Version 8.4 for Integrity servers OpenVMS Alpha Version 8.4 Hewlett-Packard Company Palo Alto, California © Copyright 2010 Hewlett-Packard Development Company, L.P. Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial license. The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. UNIX is a registered trademark of The Open Group. X/Open is a registered trademark of X/Open Company Ltd. in the UK and other countries. Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. Microsoft and Windows are US registered trademarks of Microsoft Corporation. Printed in the US ZK5763 The HP OpenVMS documentation set is available on CD-ROM. This document was prepared using DECdocument, Version 3.3-1b. -
Author Guidelines for 8
ACCELERATED CODE GENERATOR FOR PROCESSING OCEAN COLOR REMOTE SENSING DATA ON GPU Jae-Moo Heo1, Gangwon Jo2, Hee-Jeong Han1, Hyun Yang 1 1Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology, Pusan, South Korea 2Seoul National University and ManyCoreSoft Co., Ltd., Seoul, South Korea ABSTRACT GOCI-II ground system in July 2017 and decided to process As the satellite data gradually increases, the processing time algorithms on the Graphics Processing Unit (GPU) in order of the algorithm for remote sensing also increases. It is now to process large amounts of data. essential to make efforts to improve the processing Nowadays, we can take advantage of computation devices performance in various accelerators such as Graphics of various architectures: Many Integrated Core (i.e., Intel Processing Unit (GPU). However, it is very difficult to use Xeon Phi), GPU, and Filed Programmable Gate Array programming models that make programs to run on (FPGA). These accelerators are constantly improving and accelerators. Especially for scientists, easy programming changing. And, parallel programming models that are and performance are often more important than providing compatible with these various accelerators are being many optimization functions and directives. To meet these developed at the same time. However, algorithm source requirements, we developed the accelerated code generator codes have been generally improved for several years or based on Open Computing Language (OpenCL) for several decades and it is not easy to develop a large amount processing ocean color remote sensing data. We easily of these source codes into the existing parallel programming applied our generator to atmospheric correction program for models. -
L13 Streams and IO
Binghamton CS-220 University Spring 20162015 Includes & Streams 1 Binghamton CS-220 University Spring 20162015 C Pre-Processor C Program Pre-Processor Pre-processed C Program Header Files Header Files 2 Binghamton CS-220 University Spring 20162015 #include • Two flavors: • #include <abc.h> • Replace this line with the contents of file abc.h found in the system libraries • #include “xyz.h” • Replace this line with the contents of file xyz.h found in the current directory • Concept: Write code once, use it in many different programs • By convention, included files are called “header files” and have a “.h” file type 3 Binghamton CS-220 University Spring 20162015 Header (.h) files • May include any valid C code • may include further #includes • Typically small – only what you need to invoke “outside” functions • Function prototype declarations • Sometimes, data and/or type declarations • Typically, a header file describes a group of functions • “related” functions – e.g. functions which deal with Input and Output • Typically associated with a “.c” file with the same name • .c file contains function definitions – more later 4 Binghamton CS-220 University Spring 20162015 C Standard Library • Part of C itself • Definitions/Descriptions included in C standard • Available with every C compiler • Primarily, a set of C functions we all can use • Keep C language simple • Wrap complicated stuff in function definitions • We don’t need to know about the implementation of the complicated stuff • Full description of standard library available as reference • Programming in C, Appendix B 5 Binghamton CS-220 University Spring 20162015 Standard Input and Output • Need: #include <stdio.h> • Large list of input and output functions to: • Read and write from a “stream” • Open a file and make a stream • Close a file and remove the stream • Create, Rename, delete, or move files • Streams…. -
CS2043 - Unix Tools & Scripting Cornell University, Spring 20141
CS2043 - Unix Tools & Scripting Cornell University, Spring 20141 Instructor: Bruno Abrahao January 31, 2014 1 Slides evolved from previous versions by Hussam Abu-Libdeh and David Slater Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting Vim: Tip of the day! Line numbers Displays line number in Vim: :set nu Hides line number in Vim: :set nonu Goes to line number: :line number Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting Counting wc How many lines of code are in my new awesome program? How many words are in this document? Good for bragging rights Word, Character, Line, and Byte count with wc wc -l : count the number of lines wc -w : count the number of words wc -m : count the number of characters wc -c : count the number of bytes Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting Sorting sort Sorts the lines of a text file alphabetically. sort -ru file sorts the file in reverse order and deletes duplicate lines. sort -n -k 2 -t : file sorts the file numerically by using the second column, separated by a colon Example Consider a file (numbers.txt) with the numbers 1, 5, 8, 11, 62 each on a separate line, then: $ sort numbers.txt $ sort numbers.txt -n 1 1 11 5 5 8 62 11 8 62 Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting uniq uniq uniq file - Discards all but one of successive identical lines uniq -c file - Prints the number of successive identical lines next to each line Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting Character manipulation! The Translate Command tr [options] <char_list1> [char_list2] Translate or delete characters char lists are strings of characters By default, searches for characters in char list1 and replaces them with the ones that occupy the same position in char list2 Example: tr 'AEIOU' 'aeiou' - changes all capital vowels to lower case vowels Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting Pipes and redirection tr only receives input from standard input (stdin) i.e. -
N2429 V 1 Function Failure Annotation
ISO/IEC JTC 1/SC 22/WG14 N2429 September 23, 2019 v 1 Function failure annotation Niall Douglas Jens Gustedt ned Productions Ltd, Ireland INRIA & ICube, Université de Strasbourg, France We have been seeing an evolution in proposals for the best syntax for describing how to mark how a function fails, such that compilers and linkers can much better optimise function calls than at present. These papers were spurred by [WG21 P0709] Zero-overhead deterministic exceptions, which proposes deterministic exception handling for C++, whose implementation could be very compatible with C code. P0709 resulted in [WG21 P1095] Zero overhead deterministic failure – A unified mecha- nism for C and C++ which proposed a C syntax and exception-like mechanism for supporting C++ deterministic exceptions. That was responded to by [WG14 N2361] Out-of-band bit for exceptional return and errno replacement which proposed an even wider reform, whereby the most popular idioms for function failure in C code would each gain direct calling convention support in the compiler. This paper synthesises all of the proposals above into common proposal, and does not duplicate some of the detail in the above papers for brevity and clarity. It hews closely to what [WG14 N2361] proposes, but with different syntax, and in addition it shows how the corresponding C++ features can be constructed on top of it, without loosing call compatibility with C. Contents 1 Introduction 2 1.1 Differences between WG14 N2361 and WG21 P1095 . .3 2 Proposed Design 4 2.1 errno-related function failure editions . .5 2.2 When to choose which edition . -
Arm C/C++ Compiler Developer and Reference Guide Document ID: 101458 21.1 01 En Version 21.1
Arm C/C++ Compiler Version 21.1 Developer and Reference Guide Non-Confidential Issue 01 Copyright © 2018–2021 Arm Limited (or its affiliates). 101458_21.1_01_en All rights reserved. Arm C/C++ Compiler Developer and Reference Guide Document ID: 101458_21.1_01_en Version 21.1 Arm C/C++ Compiler Developer and Reference Guide Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved. Release information Document history Issue Date Confidentiality Change 1900-00 2 November 2018 Non-Confidential Document release for Arm C/C++ Compiler version 19.0 1910-00 8 March 2019 Non-Confidential Update for Arm C/C++ Compiler version 19.1 1920-00 7 June 2019 Non-Confidential Update for Arm C/C++ Compiler version 19.2 1930-00 30 August 2019 Non-Confidential Update for Arm C/C++ Compiler version 19.3 2000-00 29 November 2019 Non-Confidential Update for Arm C/C++ Compiler version 20.0 2010-00 23 April 2020 Non-Confidential Update for Arm C/C++ Compiler version 20.1 2010-01 23 April 2020 Non-Confidential Documentation update 1 for Arm C/C++ Compiler version 20.1 2020-00 25 June 2020 Non-Confidential Update for Arm C/C++ Compiler version 20.2 2030-00 4 September 2020 Non-Confidential Update for Arm C/C++ Compiler version 20.3 2030-01 16 October 2020 Non-Confidential Documentation update 1 for Arm C/C++ Compiler version 20.3 2100-00 30 March 2021 Non-Confidential Update for Arm C/C++ Compiler version 21.0 2110-00 24 August 2021 Non-Confidential Update for Arm C/C++ Compiler version 21.1 2110-01 26 August 2021 Non-Confidential Documentation update 1 for Arm C/C++ Compiler version 21.1 Proprietary Notice This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. -
Shells and Shell Programming
Shells & Shell Programming (Part A) Software Tools EECS2031 Winter 2018 Manos Papagelis Thanks to Karen Reid and Alan J Rosenthal for material in these slides SHELLS 2 What is a Shell • A shell is a command line interpreter that is the interface between the user and the OS. • The shell: – analyzes each command – determines what actions are to be performed – performs the actions • Example: wc –l file1 > file2 3 Which shell? • sh – Bourne shell – Most common, other shells are a superset – Good for programming • csh or tcsh – command-line default on EECS labs – C-like syntax – Best for interactive use. • bash – default on Linux (Bourne again shell) – Based on sh, with some csh features. • korn – written by David Korn – Based on sh – Some claim best for programming. – Commercial product. 4 bash versus sh • On EECS labs, when you run sh, you are actually running bash. • bash is a superset of sh. • For EECS2031, you will be learning only the features of the language that belong to sh. 5 Changing your shell • I recommend changing your working shell on EECS to bash – It will make it easier to test your shell programs. – You will only need to learn one set of syntax. • What to do: – echo $SHELL (to check your current shell) – chsh <userid> bash – Logout and log back in. – .profile is executed every time you log in, so put your environment variables there 6 Standard Streams • Preconnected input and output channels between a computer program and its environment. There are 3 I/O connections: – standard input (stdin) – standard output (stdout) – standard -
Alex Scriven Data Scientist Introduction to the Course This Course Will Cover
Introduction and refresher I N T R O D U C T I O N TO B A S H S C R I P T I N G Alex Scriven Data Scientist Introduction to the course This course will cover: Moving from command-line to a Bash script Variables and data types in Bash scripting Control statements Functions and script automation INTRODUCTION TO BASH SCRIPTING Why Bash scripting? (Bash) Firstly, let's consider why Bash? Bash stands for 'Bourne Again Shell' (a pun) Developed in the 80's but a very popular shell today. Default in many Unix systems, Macs Unix is the internet! (Running ML Models, Data Pipelines) AWS, Google, Microso all have CLI's to their products INTRODUCTION TO BASH SCRIPTING Why Bash scripting? (scripting!) So why Bash scripting? Ease of execution of shell commands (no need to copy-paste every time!) Powerful programming constructs INTRODUCTION TO BASH SCRIPTING Expected knowledge You are expected to have some basic knowledge for this course. Understand what the command-line (terminal, shell) is Have used basic commands such as cat , grep , sed etc. If you are rusty, don't worry - we will revise this now! INTRODUCTION TO BASH SCRIPTING Shell commands refresher Some important shell commands: (e)grep lters input based on regex paern matching cat concatenates le contents line-by-line tail \ head give only the last -n (a ag) lines wc does a word or line count (with ags -w -l ) sed does paern-matched string replacement INTRODUCTION TO BASH SCRIPTING A reminder of REGEX 'Regex' or regular expressions are a vital skill for Bash scripting. -
Deepfreeze: a Management Interface for ISEAGE Nathan Lyle Karstens Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 DeepFreeze: a management interface for ISEAGE Nathan Lyle Karstens Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Computer Sciences Commons Recommended Citation Karstens, Nathan Lyle, "DeepFreeze: a management interface for ISEAGE" (2007). Retrospective Theses and Dissertations. 14559. https://lib.dr.iastate.edu/rtd/14559 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. DeepFreeze: a management interface for ISEAGE by Nathan Lyle Karstens A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Co-majors: Information Assurance; Computer Engineering Program of Study Committee: Doug W Jacobson, Major Professor Thomas Earl Daniels Johnny S Wong Iowa State University Ames, Iowa 2007 Copyright © Nathan Lyle Karstens, 2007. All rights reserved. UMI Number: 1443093 UMI Microform 1443093 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company