The Osteology of Haya Griva (Dinosauria: Ornithischia) from the Late Cretaceous of Mongolia

Total Page:16

File Type:pdf, Size:1020Kb

The Osteology of Haya Griva (Dinosauria: Ornithischia) from the Late Cretaceous of Mongolia THE OSTEOLOGY OF HAYA GRIVA (DINOSAURIA: ORNITHISCHIA) FROM THE LATE CRETACEOUS OF MONGOLIA DANIEL E. BARTA AND MARK A. NORELL BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY THE OSTEOLOGY OF HAYA GRIVA (DINOSAURIA: ORNITHISCHIA) FROM THE LATE CRETACEOUS OF MONGOLIA DANIEL E. BARTA Department of Anatomy and Cell Biology Oklahoma State University College of Osteopathic Medicine at the Cherokee Nation, Tahlequah, OK; and Richard Gilder Graduate School and Division of Paleontology, American Museum of Natural History, New York MARK A. NORELL Division of Paleontology American Museum of Natural History, New York BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 445, 111 pp., 58 figures, 1 table Issued February 26, 2021 Copyright © American Museum of Natural History 2021 ISSN 0003-0090 CONTENTS Abstract.............................................................................3 Introduction.........................................................................3 Material and methods ................................................................3 Institutional acronyms . 4 Systematic paleontology...............................................................5 Taphonomy..........................................................................7 Description..........................................................................7 Skull and mandible . 7 Axial skeleton ....................................................................45 Appendicular skeleton.............................................................61 Gastroliths .........................................................................77 Histology ..........................................................................77 Phylogeny ..........................................................................84 Discussion .........................................................................89 Ontogenetic and other intraspecific variation.........................................89 Phylogenetic position of Haya griva . 93 Summary ..........................................................................94 Acknowledgments...................................................................94 References..........................................................................95 Appendix 1: Anatomical abbreviations . 102 Appendix 2: Character list for phylogenetic analyses ................................... 103 Supplement available online ..............................(https://doi.org/10.5531/sd.sp.47) 2 ABSTRACT Haya griva is an early-diverging neornithischian (“hypsilophodontid”) dinosaur known from several well-preserved skulls and articulated postcranial skeletons, in addition to dozens of partial or isolated finds from the Upper Cretaceous Khugenetslavkant and Zos Canyon localities (Javkhlant Formation and equivalent beds) in the Gobi Desert of Mongolia. Collectively, nearly the entire skeletal anatomy of Haya is known, including partial growth series of skulls and femora. Detailed description and comparisons with other ornithischians, including novel anatomical information about the palate and braincase gleaned through high-resolution x-ray microcomputed tomography, reveals a wealth of osteological data for understanding the growth and relationships of this key taxon. Though theHaya specimens span a wide size range, bone histology reveals that all are likely perinatal to subadult individuals, with specimens of intermediate age the most common, and skel- etally mature specimens absent. Phylogenetic analyses place Haya as one of the few Asian members of Thescelosauridae, an important noncerapodan neornithischian group of the Late Cretaceous. INTRODUCTION parative anatomical knowledge of early-diverg- ing neornithischians. The combination of The ornithischian dinosaurHaya griva holds character states described in Haya provides fur- great evolutionary, systematic, biostratigraphic, ther information for attempts to resolve the and paleoecological significance. It is the only unstable relationships and complex, mosaic dis- representative of an early-diverging ornithis- tribution of characters within clades along this chian dinosaur currently known among the vast grade (Boyd, 2015). In order to provide a thor- diversity of Mesozoic vertebrates from Mongo- ough account of the morphology, growth, sys- lia’s Gobi Desert. Despite previous expeditions tematics, and probable life habits of Haya griva, to the Upper Cretaceous (Santonian-Campan- we apply high-resolution X-ray microcomputed ian) eastern Gobi exposures of the Javkhlant tomography (µCT) scanning and bone histol- Formation (Shine Us Khudag redbeds) at the ogy to a partial growth series of this taxon for Khugenetslavkant locality (Eberth et al., 2009; the first time, reassess its phylogenetic affinities, fig. 1) by Russian, Mongolian, and American and further evaluate the implications of gastro- paleontologists, the presence of a primitive liths associated with three specimens. neornithischian dinosaur at this site was not revealed until the first discovery of its fossils in 2002 by the joint Mongolian Academy of Sci- MATERIAL AND METHODS ences–American Museum of Natural History The holotype and referred specimens col- expedition (Makovicky et al., 2011). Makovicky lected by the Mongolian Academy of Sciences– et al. (2011) named and described Haya griva American Museum of Natural History (MAE) on the basis of an articulated holotype skull and expeditions listed below form the basis of this several referred specimens consisting of articu- description. lated and partially articulated cranial and post- Four Haya griva skulls (IGM 100/2016, IGM cranial remains. We extensively describe these 100/2017, IGM 100/3178, IGM 100/3181) were materials and another specimen (IGM scanned using high resolution X-ray micro- 100/3181) first presented by Norell and Barta computed tomography (µCT) at the American (2016). We also describe six new nearly com- Museum of Natural History Microscopy and plete or partial specimens of Haya griva, and Imaging Facility (MIF) with a GE v|tome|x CT compare them to other ornithischian dinosaurs, scanner at 160 kv, with a 0.5 mm copper filter, particularly those for which excellent material a current of 200 µA, and a voxel dimension of also exists. Such comparisons enhance com- 0.04 mm to produce 1800 images. All of these 3 4 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 445 FIG. 1. Map of Mongolia showing the Khugenetslavkant and Zos Canyon localities. except IGM 100/3181, which was not processed INSTITUTIONAL ACRONYMS for this study, were reconstructed using Phoe- nix Datos X (GE Inspection Technologies, LP, AMNH FARB American Museum of Natural Lewistown PA) and FIJI (ImageJ, Schindelin et History Fossil Amphibians, Rep- al., 2012) software, and features of interest were tiles, and Birds Collection segmented with VGStudio Max (Volume BYU Earth Sciences Museum, Graphics, Inc. Charlotte, NC). Key specimens Brigham Young University, (IGM 100/1324, IGM 100/2014, IGM 100/2015, Provo, Utah IGM 100/2016, IGM 100/2017, IGM 100/2019, IGM Institute of Geology, Mongolian IGM 100/2020, IGM 100/3137, IGM 100/3178, Academy of Sciences, Ulaan IGM 100/3181, and IGM 100/3661) were sur- Baatar, Mongolia face scanned with a Space Spider surface scan- ROM Royal Ontario Museum, ner (Artec, Luxemborg). Stereolithography Toronto, Ontario, Canada (STL) files of these specimens are provided as MOR Museum of the Rockies, Boze- supplementary information available online man, Montana (https://doi.org/10.5531/sd.sp.47). Bone histol- YPM Yale Peabody Museum of Natu- ogy and phylogenetic analysis methods are ral History, New Haven, Con- described in the relevant sections below. necticut 2021 BARTA AND NORELL: OSTEOLOGY OF HAYA GRIVA 5 SYSTEMATIC PALEONTOLOGY IGM 100/3137 (fig. 29), articulated postcrania lacking skull. Dinosauria Owen, 1842 IGM 100/3178 (figs. 7, 32, 36, 39, 40, 45, 46, 48), Ornithischia Seeley, 1887 skull (CT scanned) and partially articulated postcrania. Neornithischia Cooper, 1985 (sensu Sereno, IGM 100/3181 (fig. 8), skull (CT scanned) and 1998) articulated dorsal series with ribs, manual Haya Makovicky et al., 2011 phalanges, radius and ulna (Norell and Barta, 2016). Haya griva Makovicky et al., 2011 IGM 100/3182 (fig. 50), partial postcrania, Etymology: “Haya griva, from the Sanskrit including a largely complete left leg, some for the Hindu deity Hayagriva, an avatar of dorsal vertebrae, and associated gastroliths. Vishnu characterized by a horse head, in refer- IGM 100/3557 (fig. 12), crushed partial skull. ence to the elongate and faintly horselike skull of IGM 100/3661 (fig. 14), disarticulated partial this dinosaur, and the common depiction of this skull and skeleton. deity in the Buddhist art of Mongolia” (fig. 2) IGM 100/3672 (fig. 15), partial pelvic region and (Makovicky et al., 2011: 626). articulated legs and feet from two individuals Holotype: IGM 100/2017 (figs. 3–5, 17A, in close proximity, centra of the axis and third 18A, 21–26A, 30), complete articulated skull (CT cervical vertebra, a jaw fragment and other scanned) and anterior cervical vertebrae. surface collected fragments, including a pos- Referred Specimens: sible atlantal neurapophysis. An isolated IGM 100/1324 (figs. 41, 51, 52), large isolated troodontid tooth was found in the matrix femur (the largest in the studied sample). inside the jacket during preparation (fig. 16). IGM 100/2013 (figs. 44, 47), “dorsal rib and MAE 15-84, isolated femur. series of chevrons, an articulated right crus Many additional specimens
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • Journal of Paleontology
    Journal of Paleontology http://journals.cambridge.org/JPA Additional services for Journal of Paleontology: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here New heterodontosaurid remains from the Cañadón Asfalto Formation: cursoriality and the functional importance of the pes in small heterodontosaurids Marcos G. Becerra, Diego Pol, Oliver W.M. Rauhut and Ignacio A. Cerda Journal of Paleontology / Volume 90 / Issue 03 / May 2016, pp 555 - 577 DOI: 10.1017/jpa.2016.24, Published online: 27 June 2016 Link to this article: http://journals.cambridge.org/abstract_S002233601600024X How to cite this article: Marcos G. Becerra, Diego Pol, Oliver W.M. Rauhut and Ignacio A. Cerda (2016). New heterodontosaurid remains from the Cañadón Asfalto Formation: cursoriality and the functional importance of the pes in small heterodontosaurids. Journal of Paleontology, 90, pp 555-577 doi:10.1017/jpa.2016.24 Request Permissions : Click here Downloaded from http://journals.cambridge.org/JPA, IP address: 190.172.49.57 on 16 Aug 2016 Journal of Paleontology, 90(3), 2016, p. 555–577 Copyright © 2016, The Paleontological Society 0022-3360/16/0088-0906 doi: 10.1017/jpa.2016.24 New heterodontosaurid remains from the Cañadón Asfalto Formation: cursoriality and the functional importance of the pes in small heterodontosaurids Marcos G. Becerra,1 Diego Pol,1 Oliver W.M. Rauhut,2 and Ignacio A. Cerda3 1CONICET- Museo Palaeontológico Egidio Feruglio, Fontana 140, Trelew, Chubut 9100, Argentina 〈[email protected]〉; 〈[email protected]〉 2SNSB, Bayerische Staatssammlung für Paläontologie und Geologie and Department of Earth and Environmental Sciences, LMU München, Richard-Wagner-Str.
    [Show full text]
  • A Neoceratopsian Dinosaur from the Early Cretaceous of Mongolia And
    ARTICLE https://doi.org/10.1038/s42003-020-01222-7 OPEN A neoceratopsian dinosaur from the early Cretaceous of Mongolia and the early evolution of ceratopsia ✉ Congyu Yu 1 , Albert Prieto-Marquez2, Tsogtbaatar Chinzorig 3,4, Zorigt Badamkhatan4,5 & Mark Norell1 1234567890():,; Ceratopsia is a diverse dinosaur clade from the Middle Jurassic to Late Cretaceous with early diversification in East Asia. However, the phylogeny of basal ceratopsians remains unclear. Here we report a new basal neoceratopsian dinosaur Beg tse based on a partial skull from Baruunbayan, Ömnögovi aimag, Mongolia. Beg is diagnosed by a unique combination of primitive and derived characters including a primitively deep premaxilla with four pre- maxillary teeth, a trapezoidal antorbital fossa with a poorly delineated anterior margin, very short dentary with an expanded and shallow groove on lateral surface, the derived presence of a robust jugal having a foramen on its anteromedial surface, and five equally spaced tubercles on the lateral ridge of the surangular. This is to our knowledge the earliest known occurrence of basal neoceratopsian in Mongolia, where this group was previously only known from Late Cretaceous strata. Phylogenetic analysis indicates that it is sister to all other neoceratopsian dinosaurs. 1 Division of Vertebrate Paleontology, American Museum of Natural History, New York 10024, USA. 2 Institut Català de Paleontologia Miquel Crusafont, ICTA-ICP, Edifici Z, c/de les Columnes s/n Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès Sabadell, Barcelona, Spain. 3 Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA. 4 Institute of Paleontology, Mongolian Academy of Sciences, ✉ Ulaanbaatar 15160, Mongolia.
    [Show full text]
  • Eubrontes and Anomoepus Track
    Sullivan, R.M. and Lucas, S.G., eds., 2016, Fossil Record 5. New Mexico Museum of Natural History and Science Bulletin 74. 345 EUBRONTES AND ANOMOEPUS TRACK ASSEMBLAGES FROM THE MIDDLE JURASSIC XIASHAXIMIAO FORMATION OF ZIZHONG COUNTY, SICHUAN, CHINA: REVIEW, ICHNOTAXONOMY AND NOTES ON PRESERVED TAIL TRACES LIDA XING1, MARTIN G. LOCKLEY2, GUANGZHAO PENG3, YONG YE3, JIANPING ZHANG1, MASAKI MATSUKAWA4, HENDRIK KLEIN5, RICHARD T. MCCREA6 and W. SCOTT PERSONS IV7 1School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; -email: [email protected]; 2Dinosaur Trackers Research Group, University of Colorado Denver, P.O. Box 173364, Denver, CO 80217; 3 Zigong Dinosaur Museum, Zigong 643013, Sichuan, China; 4 Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan; 5 Saurierwelt Paläontologisches Museum Alte Richt 7, D-92318 Neumarkt, Germany; 6 Peace Region Palaeontology Research Centre, Box 1540, Tumbler Ridge, British Columbia V0C 2W0, Canada; 7 Department of Biological Sciences, University of Alberta 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada Abstract—The Nianpanshan dinosaur tracksite, first studied in the 1980s, was designated as the type locality of the monospecific ichnogenus Jinlijingpus, and the source of another tridactyl track, Chuanchengpus, both presumably of theropod affinity. After the site was mapped in 2001, these two ichnotaxa were considered synonyms of Eubrontes and Anomoepus, respectively, the latter designation being the first identification of this ichnogenus in China. The assemblage indicates a typical Jurassic ichnofauna. The present study reinvestigates the site in the light of the purported new ichnospecies Chuanchengpus shenglingensis that was introduced in 2012. After re- evaluation of the morphological and extramorphological features, C.
    [Show full text]
  • 8. Archosaur Phylogeny and the Relationships of the Crocodylia
    8. Archosaur phylogeny and the relationships of the Crocodylia MICHAEL J. BENTON Department of Geology, The Queen's University of Belfast, Belfast, UK JAMES M. CLARK* Department of Anatomy, University of Chicago, Chicago, Illinois, USA Abstract The Archosauria include the living crocodilians and birds, as well as the fossil dinosaurs, pterosaurs, and basal 'thecodontians'. Cladograms of the basal archosaurs and of the crocodylomorphs are given in this paper. There are three primitive archosaur groups, the Proterosuchidae, the Erythrosuchidae, and the Proterochampsidae, which fall outside the crown-group (crocodilian line plus bird line), and these have been defined as plesions to a restricted Archosauria by Gauthier. The Early Triassic Euparkeria may also fall outside this crown-group, or it may lie on the bird line. The crown-group of archosaurs divides into the Ornithosuchia (the 'bird line': Orn- ithosuchidae, Lagosuchidae, Pterosauria, Dinosauria) and the Croco- dylotarsi nov. (the 'crocodilian line': Phytosauridae, Crocodylo- morpha, Stagonolepididae, Rauisuchidae, and Poposauridae). The latter three families may form a clade (Pseudosuchia s.str.), or the Poposauridae may pair off with Crocodylomorpha. The Crocodylomorpha includes all crocodilians, as well as crocodi- lian-like Triassic and Jurassic terrestrial forms. The Crocodyliformes include the traditional 'Protosuchia', 'Mesosuchia', and Eusuchia, and they are defined by a large number of synapomorphies, particularly of the braincase and occipital regions. The 'protosuchians' (mainly Early *Present address: Department of Zoology, Storer Hall, University of California, Davis, Cali- fornia, USA. The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds (ed. M.J. Benton), Systematics Association Special Volume 35A . pp. 295-338. Clarendon Press, Oxford, 1988.
    [Show full text]
  • From the Early Cretaceous Wonthaggi Formation (Strzelecki Group)
    Journal of Paleontology, 93(3), 2019, p. 543–584 Copyright © 2019, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/19/1937-2337 doi: 10.1017/jpa.2018.95 New small-bodied ornithopods (Dinosauria, Neornithischia) from the Early Cretaceous Wonthaggi Formation (Strzelecki Group) of the Australian-Antarctic rift system, with revision of Qantassaurus intrepidus Rich and Vickers-Rich, 1999 Matthew C. Herne,1,2 Jay P. Nair,2 Alistair R. Evans,3 and Alan M. Tait4 1School of Environmental and Rural Science, University of New England, Armidale 2351, New South Wales, Australia <ornithomatt@ gmail.com> 2School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia <[email protected]> 3School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> 4School of Earth, Atmosphere & Environment, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> Abstract.—The Flat Rocks locality in the Wonthaggi Formation (Strzelecki Group) of the Gippsland Basin, southeastern Australia, hosts fossils of a late Barremian vertebrate fauna that inhabited the ancient rift between Australia and Antarc- tica. Known from its dentary, Qantassaurus intrepidus Rich and Vickers-Rich, 1999 has been the only dinosaur named from this locality. However, the plethora of vertebrate fossils collected from Flat Rocks suggests that further dinosaurs await discovery. From this locality, we name a new small-bodied ornithopod, Galleonosaurus dorisae n.
    [Show full text]
  • R / 2J�J Ij Rjsj L)J J �� __Rj Ljlj F LANDED! VOLUME 2 - RAPTORS to PRATINCOLES
    -_r_/ 2J�J iJ_rJsJ l)J_J �� __rJ lJlJ_f LANDED! VOLUME 2 - RAPTORS TO PRATINCOLES In 1990 Oxford Univer sity Press published Volume One Over 70 colourpl ates illustr ated of the Ha11dbook of Austra­ by JeffDavies feature nearly lia 11, New Zeala11d a11d every species. Antarctic Birds to widespread acclaim. Now Volume Two, VOLUME2 covering Raptors to Pratin­ Contains vultures, hawks and coles, has been completed. eagles, falcons, galliformes and quail, Malleefowl a11d megapodes, Four more volumes are to be cranes,crakes and rails, bustards, published making this the the Australian and New Zealand most detailed and up-to-date resident waders, a11d plovers, reference work of the birds of lapwi11gs a11d douerels. Australasia. COMPREHENSIVE Each volume exami11es all aspects of bird lifeinc luding: • field i£Jentiflca1ion • dis1ribu1io11 and popula1io11 • social orga11iza1io11 The Handbook is the most ex­ • social behaviour citing and significant project •movements in Australasian ornithology to­ •plumages day and will have an •breeding • habitat enormous impact on the direc­ • voice tion of future research and the •food conservation of Au stralasian and Antarctic birds. _ • AVAI�!�! BER t�n�r? Volume 2 $250 RAOU Volumes 1 & 2 $499 -- m! CJOlltlllllCOIIIIYIOOI ORDER FORM Place your order with Oxford University Press by: cgJ Reply Paid 1641, Oxford University Press, D Please send me __ copy/copies of the Handbook of GPO Box 2784Y, Melbourne3001 Aus1ralia11, New Zealondand A111arc1ic Birds Volume 2 at the 11 (03) 646 4200 FAX (03) 646 3251 special pre-publication price of $250 (nonnal retail price $295) plus $7.50 for po stage and handling OR D I enclose my cheque/money order for$ _______ D Please send me set/sets of Volumes I a11d 2 of the D Please charge my Visa/Mastercard/Bankcard no.
    [Show full text]
  • New Heterodontosaurid Remains from the Cañadón Asfalto Formation: Cursoriality and the Functional Importance of the Pes in Small Heterodontosaurids
    Journal of Paleontology, 90(3), 2016, p. 555–577 Copyright © 2016, The Paleontological Society 0022-3360/16/0088-0906 doi: 10.1017/jpa.2016.24 New heterodontosaurid remains from the Cañadón Asfalto Formation: cursoriality and the functional importance of the pes in small heterodontosaurids Marcos G. Becerra,1 Diego Pol,1 Oliver W.M. Rauhut,2 and Ignacio A. Cerda3 1CONICET- Museo Palaeontológico Egidio Feruglio, Fontana 140, Trelew, Chubut 9100, Argentina 〈[email protected]〉; 〈[email protected]〉 2SNSB, Bayerische Staatssammlung für Paläontologie und Geologie and Department of Earth and Environmental Sciences, LMU München, Richard-Wagner-Str. 10, Munich 80333, Germany 〈[email protected]〉 3CONICET- Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, Museo Carlos Ameghino, Belgrano 1700, Paraje Pichi Ruca (predio Marabunta), Cipolletti, Río Negro, Argentina 〈[email protected]〉 Abstract.—New ornithischian remains reported here (MPEF-PV 3826) include two complete metatarsi with associated phalanges and caudal vertebrae, from the late Toarcian levels of the Cañadón Asfalto Formation. We conclude that these fossil remains represent a bipedal heterodontosaurid but lack diagnostic characters to identify them at the species level, although they probably represent remains of Manidens condorensis, known from the same locality. Histological features suggest a subadult ontogenetic stage for the individual. A cluster analysis based on pedal measurements identifies similarities of this specimen with heterodontosaurid taxa and the inclusion of the new material in a phylogenetic analysis with expanded character sampling on pedal remains confirms the described specimen as a heterodontosaurid. Finally, uncommon features of the digits (length proportions among nonungual phalanges of digit III, and claw features) are also quantitatively compared to several ornithischians, theropods, and birds, suggesting that this may represent a bipedal cursorial heterodontosaurid with gracile and grasping feet and long digits.
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • Brains and Intelligence
    BRAINS AND INTELLIGENCE The EQ or Encephalization Quotient is a simple way of measuring an animal's intelligence. EQ is the ratio of the brain weight of the animal to the brain weight of a "typical" animal of the same body weight. Assuming that smarter animals have larger brains to body ratios than less intelligent ones, this helps determine the relative intelligence of extinct animals. In general, warm-blooded animals (like mammals) have a higher EQ than cold-blooded ones (like reptiles and fish). Birds and mammals have brains that are about 10 times bigger than those of bony fish, amphibians, and reptiles of the same body size. The Least Intelligent Dinosaurs: The primitive dinosaurs belonging to the group sauropodomorpha (which included Massospondylus, Riojasaurus, and others) were among the least intelligent of the dinosaurs, with an EQ of about 0.05 (Hopson, 1980). Smartest Dinosaurs: The Troodontids (like Troödon) were probably the smartest dinosaurs, followed by the dromaeosaurid dinosaurs (the "raptors," which included Dromeosaurus, Velociraptor, Deinonychus, and others) had the highest EQ among the dinosaurs, about 5.8 (Hopson, 1980). The Encephalization Quotient was developed by the psychologist Harry J. Jerison in the 1970's. J. A. Hopson (a paleontologist from the University of Chicago) did further development of the EQ concept using brain casts of many dinosaurs. Hopson found that theropods (especially Troodontids) had higher EQ's than plant-eating dinosaurs. The lowest EQ's belonged to sauropods, ankylosaurs, and stegosaurids. A SECOND BRAIN? It used to be thought that the large sauropods (like Brachiosaurus and Apatosaurus) and the ornithischian Stegosaurus had a second brain.
    [Show full text]
  • A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
    A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member.
    [Show full text]
  • Perinate and Eggs of a Giant Caenagnathid Dinosaur from the Late Cretaceous of Central China
    ARTICLE Received 29 Jul 2016 | Accepted 15 Feb 2017 | Published 9 May 2017 DOI: 10.1038/ncomms14952 OPEN Perinate and eggs of a giant caenagnathid dinosaur from the Late Cretaceous of central China Hanyong Pu1, Darla K. Zelenitsky2, Junchang Lu¨3, Philip J. Currie4, Kenneth Carpenter5,LiXu1, Eva B. Koppelhus4, Songhai Jia1, Le Xiao1, Huali Chuang1, Tianran Li1, Martin Kundra´t6 & Caizhi Shen3 The abundance of dinosaur eggs in Upper Cretaceous strata of Henan Province, China led to the collection and export of countless such fossils. One of these specimens, recently repatriated to China, is a partial clutch of large dinosaur eggs (Macroelongatoolithus) with a closely associated small theropod skeleton. Here we identify the specimen as an embryo and eggs of a new, large caenagnathid oviraptorosaur, Beibeilong sinensis. This specimen is the first known association between skeletal remains and eggs of caenagnathids. Caenagnathids and oviraptorids share similarities in their eggs and clutches, although the eggs of Beibeilong are significantly larger than those of oviraptorids and indicate an adult body size comparable to a gigantic caenagnathid. An abundance of Macroelongatoolithus eggs reported from Asia and North America contrasts with the dearth of giant caenagnathid skeletal remains. Regardless, the large caenagnathid-Macroelongatoolithus association revealed here suggests these dinosaurs were relatively common during the early Late Cretaceous. 1 Henan Geological Museum, Zhengzhou 450016, China. 2 Department of Geoscience, University of Calgary, Calgary, Alberta, Canada T2N 1N4. 3 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China. 4 Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9. 5 Prehistoric Museum, Utah State University, 155 East Main Street, Price, Utah 84501, USA.
    [Show full text]