From the Harmonic Oscillator to the Ade
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
08 Cyclotomic Polynomials
8. Cyclotomic polynomials 8.1 Multiple factors in polynomials 8.2 Cyclotomic polynomials 8.3 Examples 8.4 Finite subgroups of fields 8.5 Infinitude of primes p = 1 mod n 8.6 Worked examples 1. Multiple factors in polynomials There is a simple device to detect repeated occurrence of a factor in a polynomial with coefficients in a field. Let k be a field. For a polynomial n f(x) = cnx + ::: + c1x + c0 [1] with coefficients ci in k, define the (algebraic) derivative Df(x) of f(x) by n−1 n−2 2 Df(x) = ncnx + (n − 1)cn−1x + ::: + 3c3x + 2c2x + c1 Better said, D is by definition a k-linear map D : k[x] −! k[x] defined on the k-basis fxng by D(xn) = nxn−1 [1.0.1] Lemma: For f; g in k[x], D(fg) = Df · g + f · Dg [1] Just as in the calculus of polynomials and rational functions one is able to evaluate all limits algebraically, one can readily prove (without reference to any limit-taking processes) that the notion of derivative given by this formula has the usual properties. 115 116 Cyclotomic polynomials [1.0.2] Remark: Any k-linear map T of a k-algebra R to itself, with the property that T (rs) = T (r) · s + r · T (s) is a k-linear derivation on R. Proof: Granting the k-linearity of T , to prove the derivation property of D is suffices to consider basis elements xm, xn of k[x]. On one hand, D(xm · xn) = Dxm+n = (m + n)xm+n−1 On the other hand, Df · g + f · Dg = mxm−1 · xn + xm · nxn−1 = (m + n)xm+n−1 yielding the product rule for monomials. -
Resolution of ADE Singularities
Resolution of Kleinian Singularities James J. Green April 25, 2014 abstract Firstly, the classification of finite subgroups of SL(2; C), a result of Felix Klein in 1884, is presented. The polynomial invariant subrings of these groups are then found. The generators of these subrings 3 satisfy a polynomial relation in three variables, which can be realised as a hypersurface in C . Each of these surfaces have a singularity at the origin; these are the Kleinian singularities. These singularities are blown-up, and their resolution graphs are shown to be precisely the Coxeter- Dynkin diagrams ADE. The target readership of this project is intended to be undergraduates with a foundational knowledge of group theory, topology and algebraic geometry. 1 1 Classifying the Finite Subgroups of SL(2; C) 1.1 Important Subgroups of the General Linear Group Recall: The general linear group of a vector space V over a field F is given by GL(V ) = ff : V −! V j f is linear and invertibleg: n In particular, we denote GL(F ) by GL(n; F). Since we can view linear maps as matrices, GL(n; F) can also be viewed as the set of invertible n × n matrices with entries in F. The next few definitions include important subgroups of GL(n; F). Definition 1.1. The special linear group over F is given by SL(n; F) = fA 2 GL(n; F) j det A = 1g: Definition 1.2. The orthogonal group over F is given by T O(n; F) = fA 2 GL(n; F) j AA = Ig where AT denotes the transpose of A, and I denotes the n × n identity matrix. -
Swampland Constraints on 5D N = 1 Supergravity Arxiv:2004.14401V2
Prepared for submission to JHEP Swampland Constraints on 5d N = 1 Supergravity Sheldon Katz, a Hee-Cheol Kim, b;c Houri-Christina Tarazi, d Cumrun Vafa d aDepartment of Mathematics, MC-382, University of Illinois at Urbana-Champaign, Ur- bana, IL 61801, USA bDepartment of Physics, POSTECH, Pohang 790-784, Korea cAsia Pacific Center for Theoretical Physics, Postech, Pohang 37673, Korea dDepartment of Physics, Harvard University, Cambridge, MA 02138, USA Abstract: We propose Swampland constraints on consistent 5-dimensional N = 1 supergravity theories. We focus on a special class of BPS magnetic monopole strings which arise in gravitational theories. The central charges and the levels of current algebras of 2d CFTs on these strings can be calculated by anomaly inflow mechanism and used to provide constraints on the low-energy particle spectrum and the effective action of the 5d supergravity based on unitarity of the worldsheet CFT. In M-theory, where these theories are realized by compactification on Calabi-Yau 3-folds, the spe- cial monopole strings arise from wrapped M5-branes on special (\semi-ample") 4- cycles in the threefold. We identify various necessary geometric conditions for such cycles to lead to requisite BPS strings and translate these into constraints on the low-energy theories of gravity. These and other geometric conditions, some of which can be related to unitarity constraints on the monopole worldsheet, are additional arXiv:2004.14401v2 [hep-th] 13 Jul 2020 candidates for Swampland constraints on 5-dimensional N = 1 supergravity -
Arxiv:2106.08994V2 [Math.GM] 1 Aug 2021 Efc Ubr N30b.H Rvdta F2 If That and Proved Properties He Studied BC
Measuring Abundance with Abundancy Index Kalpok Guha∗ Presidency University, Kolkata Sourangshu Ghosh† Indian Institute of Technology Kharagpur, India Abstract A positive integer n is called perfect if σ(n) = 2n, where σ(n) denote n σ(n) the sum of divisors of . In this paper we study the ratio n . We de- I → I n σ(n) fine the function Abundancy Index : N Q with ( ) = n . Then we study different properties of Abundancy Index and discuss the set of Abundancy Index. Using this function we define a new class of num- bers known as superabundant numbers. Finally we study superabundant numbers and their connection with Riemann Hypothesis. 1 Introduction Definition 1.1. A positive integer n is called perfect if σ(n)=2n, where σ(n) denote the sum of divisors of n. The first few perfect numbers are 6, 28, 496, 8128, ... (OEIS A000396), This is a well studied topic in number theory. Euclid studied properties and nature of perfect numbers in 300 BC. He proved that if 2p −1 is a prime, then 2p−1(2p −1) is an even perfect number(Elements, Prop. IX.36). Later mathematicians have arXiv:2106.08994v2 [math.GM] 1 Aug 2021 spent years to study the properties of perfect numbers. But still many questions about perfect numbers remain unsolved. Two famous conjectures related to perfect numbers are 1. There exist infinitely many perfect numbers. Euler [1] proved that a num- ber is an even perfect numbers iff it can be written as 2p−1(2p − 1) and 2p − 1 is also a prime number. -
Little String Defects and Nilpotent Orbits by Christian Schmid A
Little String Defects and Nilpotent Orbits by Christian Schmid A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Mina Aganagic, Chair Professor Ori Ganor Professor Nicolai Reshetikhin Spring 2020 Little String Defects and Nilpotent Orbits Copyright 2020 by Christian Schmid 1 Abstract Little String Defects and Nilpotent Orbits by Christian Schmid Doctor of Philosophy in Physics University of California, Berkeley Professor Mina Aganagic, Chair In this thesis, we first derive and analyze the Gukov{Witten surface defects of four- dimensional N = 4 Super Yang-Mills (SYM) theory from little string theory. The little string theory arises from type IIB string theory compactified on an ADE singularity. Defects are introduced as D-branes wrapping the 2-cycles of the singularity. In a suitable limit, these become defects of the six-dimensional superconformal N = (2; 0) field theory, which reduces to SYM after further compactification. We then use this geometric setting to connect to the complete nilpotent orbit classification of codimension-two defects, and find relations to ADE-type Toda CFT. We highlight the differences between the defect classification in the little string theory and its (2; 0) CFT limit, and find physical insights into nilpotent orbits and their classification by Bala{Carter labels and weighted Dynkin diagrams. i Contents Contents i 1 Introduction1 1.1 Little string theory................................ 2 1.2 Six-Dimensional (2; 0) Superconformal Field Theory ............. 3 1.3 Gukov{Witten Surface Defects of N = 4 SYM................ -
Representations of Quivers & Gabriel's Theorem
Level 5M Project: Representations of Quivers & Gabriel's Theorem Emma Cummin (0606574) March 24, 2011 Abstract Gabriel's theorem, first proved by Peter Gabriel in 1972 [1], comes in two parts. Part (i) states that \a quiver Q is of finite orbit type if and only if each component of its underlying undirected graph Q^ is a simply{laced Dynkin diagram" and part (ii) states \let Q be a quiver such that Q^ is a simply{laced Dynkin diagram; then n is the dimension of a (unique) indecomposable representation of Q if and only if n 2 Φ+" [2]. This surprising theorem gives a deceptively simply result which links isomorphism classes of representations of a given quiver with an assigned dimension vector, with the root system of the geometric object underlying such a quiver. This project introduces quivers and representation theory to the reader, with the intention of heading towards proving Gabriel's theorem. This is the main result in the project, and so a proof of both parts is provided. On the way, the reader is introduced to quivers, the category of quiver representations and its equivalence with the category of KQ{modules, Dynkin diagrams, root systems and the Weyl group and the Coxeter functors. 1 Contents 1 Introduction 3 2 Quiver Representations and Categories 4 2.1 Quivers and Representations . .4 2.1.1 Introduction to Quivers . .4 2.1.2 The Kroenecker Quiver . .5 2.2 Path Algebras . .7 2.3 Introduction to Category Theory . .8 2.4 Equivalence of Categories . 11 3 Geometric Interpretation of Isomorphism Classes of Quiver Representa- tions 15 3.1 The Representation Space . -
1.6 Exponents and the Order of Operations
1.6 EXPONENTS AND THE ORDER OF OPERATIONS Writing Whole Numbers and Variables in Exponent Form Student Learning Objectives Recall that in the multiplication problem 3 # 3 # 3 # 3 # 3 = 243 the number 3 is called a factor. We can write the repeated multiplication 3 # 3 # 3 # 3 # 3 using a shorter nota- After studying this section, you will tion, 35, because there are five factors of 3 in the repeated multiplication. We say be able to: 5 5 that 3 is written in exponent form. 3 is read “three to the fifth power.” Write whole numbers and variables in exponent form. Evaluate numerical and EXPONENT FORM algebraic expressions in The small number 5 is called an exponent. Whole number exponents, except exponent form. zero, tell us how many factors are in the repeated multiplication. The number Use symbols and key words 3 is called the base. The base is the number that is multiplied. for expressing exponents. Follow the order of operations. 3 # 3 # 3 # 3 # 3 = 35 The exponent is 5. 3 appears as a factor 5 times. The base is 3. We do not multiply the base 3 by the exponent 5. The 5 just tells us how many 3’s are in the repeated multiplication. If a whole number or variable does not have an exponent visible, the exponent is understood to be 1. 9 = 91 and x = x1 EXAMPLE 1 Write in exponent form. (a)2 # 2 # 2 # 2 # 2 # 2 (b)4 # 4 # 4 # x # x (c) 7 (d) y # y # y # 3 # 3 # 3 # 3 Solution # # # # # = 6 # # # x # x = 3 # x2 3x2 (a)2 2 2 2 2 2 2 (b) 4 4 4 4 or 4 (c)7 = 71 (d) y # y # y # 3 # 3 # 3 # 3 = y3 # 34, or 34y3 Note, it is standard to write the number before the variable in a term. -
Properties of Exponents
1 Algebra II Properties of Exponents 2015-11-09 www.njctl.org 2 Table of Contents Click on topic to go to that section. Review of Integer Exponents Fractional Exponents Exponents with Multiple Terms Identifying Like Terms Evaluating Exponents Using a Calculator Standards 3 Review of Integer Exponents Return to Table of Contents 4 Powers of Integers Just as multiplication is repeated addition, an exponent represents repeated multiplication. For example, a5 read as "a to the fifth power" = a · a · a · a · a In this case, a is the base and 5 is the exponent. The base, a, is multiplied by itself 5 times. 5 Powers of Integers Make sure when you are evaluating exponents of negative numbers, you keep in mind the meaning of the exponent and the rules of multiplication. For example, , which is the same as . However, Notice the difference! Similarly, but . 6 1 Evaluate: 64 Answer 7 2 Evaluate: -128 Answer 8 3 Evaluate: 81 Answer 9 Properties of Exponents The properties of exponents follow directly from expanding them to look at the repeated multiplication they represent. Work to understand the process by which we find these properties and if you can't recall what to do, just repeat these steps to confirm the property. We'll use 3 as the base in our examples, but the properties hold for any base. We show that with base a and powers b and c. We'll use the facts that: 10 Properties of Exponents We need to develop all the properties of exponents so we can discover one of the inverse operations of raising a number to a power which is finding the root of a number. -
Heterotic Little String Theories and Holography
Received: November 10, 1999, Accepted: November 12, 1999 HYPER VERSION Heterotic little string theories and holography Martin Gremm∗ JHEP11(1999)018 Joseph Henry Laboratories, Princeton University Princeton, NJ 08544 E-mail: [email protected] Anton Kapustin School of Natural Sciences, Institute for Advanced Study Olden Lane, Princeton, NJ 08540 E-mail: [email protected] Abstract: It has been conjectured that little string theories in six dimensions are holographic to critical string theory in a linear dilaton background. We test this con- jecture for theories arising on the worldvolume of heterotic fivebranes. We compute the spectrum of chiral primaries in these theories and compare with results following from type-I-heterotic duality and the AdS/CFT correspondence. We also construct holographic duals for heterotic fivebranes near orbifold singularities. Finally we find several new little string theories which have Spin(32)/Z2 or E8 E8 global symmetry × but do not have a simple interpretation either in heterotic or M-theory. Keywords: Superstrings and Heterotic Strings, p-branes, Conformal Field Models in String Theory. ∗On leave of absence from MIT, Cambridge, MA 02139 Contents 1. Introduction 1 2. Holographic description of heterotic fivebranes in flat space 4 2.1 Supergravity solutions 4 2.2 Worldsheet partition function 6 2.3 Symmetries of the worldsheet CFT 7 2.4 The spectrum of space-time chiral primaries 8 JHEP11(1999)018 3. More general heterotic LSTs with SU(2)L SU(2)R G symmetry 11 × × 3.1 Worldsheet partition functions 11 3.2 Examples of chiral primaries 13 4. Fivebranes near orbifold singularities 14 5. -
2. Exponents 2.1 Exponents: Exponents Are Shorthand for Repeated Multiplication of the Same Thing by Itself
Page 1 of 5 2. Exponents 2.1 Exponents: Exponents are shorthand for repeated multiplication of the same thing by itself. For instance, the shorthand for multiplying three copies of the number 5 is shown on the right-hand side of the "equals" sign in (5)(5)(5) = 53. The "exponent", being 3 in this example, stands for however many times the value is being multiplied. The thing that's being multiplied, being 5 in this example, is called the "base". The exponent says how many copies of the base are multiplied together. For example, 35 = 3·3·3·3·3 = 243. The base 3 appears 5 times in the repeated multiplication, because the exponent is 5. Here, 3 is the base, 5 is the exponent, and 243 is the power or, more specifically, the fifth power of 3, 3 raised to the fifth power, or 3 to the power of 5. The word "raised" is usually omitted, and very often "power" as well, so 35 is typically pronounced "three to the fifth" or "three to the five". The exponent is usually shown as a superscript (a letter, character, or symbol that is written above) to the right of the base. The exponentiation bn can be read as: b raised to the n-th power, b raised to the power of n, or b raised by the exponent of n, most briefly as b to the n. superscript This process of using exponents is called "raising to a power", where the exponent is the "power". The expression "53" is pronounced as "five, raised to the third power" or "five to the third". -
Numbers 1 to 100
Numbers 1 to 100 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 30 Nov 2010 02:36:24 UTC Contents Articles −1 (number) 1 0 (number) 3 1 (number) 12 2 (number) 17 3 (number) 23 4 (number) 32 5 (number) 42 6 (number) 50 7 (number) 58 8 (number) 73 9 (number) 77 10 (number) 82 11 (number) 88 12 (number) 94 13 (number) 102 14 (number) 107 15 (number) 111 16 (number) 114 17 (number) 118 18 (number) 124 19 (number) 127 20 (number) 132 21 (number) 136 22 (number) 140 23 (number) 144 24 (number) 148 25 (number) 152 26 (number) 155 27 (number) 158 28 (number) 162 29 (number) 165 30 (number) 168 31 (number) 172 32 (number) 175 33 (number) 179 34 (number) 182 35 (number) 185 36 (number) 188 37 (number) 191 38 (number) 193 39 (number) 196 40 (number) 199 41 (number) 204 42 (number) 207 43 (number) 214 44 (number) 217 45 (number) 220 46 (number) 222 47 (number) 225 48 (number) 229 49 (number) 232 50 (number) 235 51 (number) 238 52 (number) 241 53 (number) 243 54 (number) 246 55 (number) 248 56 (number) 251 57 (number) 255 58 (number) 258 59 (number) 260 60 (number) 263 61 (number) 267 62 (number) 270 63 (number) 272 64 (number) 274 66 (number) 277 67 (number) 280 68 (number) 282 69 (number) 284 70 (number) 286 71 (number) 289 72 (number) 292 73 (number) 296 74 (number) 298 75 (number) 301 77 (number) 302 78 (number) 305 79 (number) 307 80 (number) 309 81 (number) 311 82 (number) 313 83 (number) 315 84 (number) 318 85 (number) 320 86 (number) 323 87 (number) 326 88 (number) -
Modular Arithmetic in the AMC and AIME
AMC/AIME Handout Modular Arithmetic in the AMC and AIME Author: For: freeman66 AoPS Date: May 13, 2020 0 11 1 10 2 9 3 8 4 7 5 6 It's time for modular arithmetic! "I have a truly marvelous demonstration of this proposition which this margin is too narrow to contain." - Pierre de Fermat freeman66 (May 13, 2020) Modular Arithmetic in the AMC and AIME Contents 0 Acknowledgements 3 1 Introduction 4 1.1 Number Theory............................................... 4 1.2 Bases .................................................... 4 1.3 Divisibility ................................................. 4 1.4 Introduction to Modular Arithmetic ................................... 7 2 Modular Congruences 7 2.1 Congruences ................................................ 8 2.2 Fermat's Little Theorem and Euler's Totient Theorem......................... 8 2.3 Exercises .................................................. 10 3 Residues 10 3.1 Introduction................................................. 10 3.2 Residue Classes............................................... 11 3.3 Exercises .................................................. 11 4 Operations in Modular Arithmetic 12 4.1 Modular Addition & Subtraction..................................... 12 4.2 Modular Multiplication .......................................... 13 4.3 Modular Exponentiation.......................................... 14 4.4 Modular Division.............................................. 14 4.5 Modular Inverses.............................................. 14 4.6 The Euclidean Algorithm