The Phylogeny and Life Cycle of Two Species of Profilicollis (Acanthocephala: Polymorphidae) in Marine Hosts Off the Pacific Coast of Chile

Total Page:16

File Type:pdf, Size:1020Kb

The Phylogeny and Life Cycle of Two Species of Profilicollis (Acanthocephala: Polymorphidae) in Marine Hosts Off the Pacific Coast of Chile Journal of Helminthology, Page 1 of 8 doi:10.1017/S0022149X16000638 © Cambridge University Press 2016 The phylogeny and life cycle of two species of Profilicollis (Acanthocephala: Polymorphidae) in marine hosts off the Pacific coast of Chile S.M. Rodríguez1*, G. D’Elía2 and N. Valdivia1,3 1Doctorado en Biología Marina and Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, campus Isla Teja s/n, Valdivia, Chile: 2Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile: 3Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL) (Received 7 June 2016; Accepted 20 August 2016) Abstract Resolving complex life cycles of parasites is a major goal of parasitological re- search. The aim of this study was to analyse the life cycle of two species of the genus Profilicollis, the taxonomy of which is still unstable and life cycles unclear. We extracted individuals of Profilicollis from two species of crustaceans (inter- mediate hosts) and four species of seagulls (definitive hosts) from sandy-shore and estuarine habitats along the south-east Pacific coast of Chile. Mitochondrial DNA analyses showed that two species of Profilicollis infected intermediate hosts from segregated habitats: while P. altmani larvae infected ex- clusively molecrabs of the genus Emerita from fully marine habitats, P. antarcticus larvae infected the crab Hemigrapsus crenulatus from estuarine habitats. Moreover, P. altmani completed its life cycle in four seagulls, Chroicocephalus ma- culipennis, Leucopheus pipixcan, Larus modestus and L. dominicanus, while P. antarc- ticus, on the other hand, completed its life cycle in the kelp gull L. dominicanus. Accordingly, our results show that two congeneric parasites use different and spatially segregated species as intermediate hosts, and both are capable of infect- ing one species of definitive hosts. As such, our analyses allow us to shed light on a complex interaction network. Introduction 2010), and a single parasite species can have multiple intermediate and definitive host species (Near, 2002; One of the major goals of parasitological research is to Mayer et al., 2003; Royal et al., 2004; La Sala & clarify the life cycles of parasites. Most of these parasites Martorelli, 2007; Steinauer et al., 2007; Kochin et al., have complex life cycles, being trophically transmitted be- 2010; La Sala et al., 2013). tween intermediate and definitive hosts (Thomas et al., Parasites of the genus Profilicollis (Polymorphidae: 2009; Thieltges et al., 2013). Although the evolution of Acanthocephala) infect marine mammals, shorebirds parasites and that of hosts are not independent of each and waterfowl as definitive hosts, and amphipods, deca- other, parasites can evolve far more rapidly than hosts pods and euphausiids as intermediate hosts (Balboa (Kochin et al., 2010). As a consequence, parasites can et al., 2009; García-Varela et al., 2013). In the definitive switch hosts in a given environment (Kochin et al., predator host, the adult female worm develops and pro- duces eggs (acanthors) that are released into the environ- ment through the host faeces. Upon its intake by an *E-mail: [email protected] arthropod host, the acanthor develops in the haemocoele Downloaded from http:/www.cambridge.org/core. Tufts Univ, on 27 Sep 2016 at 22:44:30, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0022149X16000638 2 S.M. Rodríguez et al. into an acanthellae and then into a cystacanth. Finally, the We analysed molecular data in order to identify accurate- cystacanth infects the definitive host when the latter pre- ly acanthocephalan specimens collected from intermedi- dates upon an infected intermediate prey host ate and definitive hosts along 1200 km of the Chilean SE (Zdzitowiecki, 1985). Pacific coast. Two Profilicollis species have been described from the shores of the south-east (SE) Pacific (Amin, 2013) – P. alt- mani (Perry, 1942; = P. bullocki Mateo, 1982) and P. antarc- Materials and methods – ticus Zdzitowiecki, 1985 which infect intermediate hosts Collection and examination of crab and avian hosts from segregated habitats with little or no spatial overlap. While P. altmani infects the sandy-shore molecrab Emerita The study area corresponded to marine and estuarine analoga (Stimpson, 1857) (Goulding & Cohen, 2014; systems along the SE Pacific coast of Chile. Sandy-shore Rodríguez & D’Elía, 2016), P. antarcticus infects the estuar- molecrabs, estuarine crabs and seagulls were captured at ine crab Hemigrapsus crenulatus (Varunidae; Milne- six sites located between 29.9 and 39.5°S, spanning Edward, 1837) (Haye & Ojeda, 1998; Latham & Poulin, 1200 km of the shore. The sandy beaches surveyed were 2002a). However, recent work challenges the identifica- ‘Coquimbo’ (29.9°S–71.2°W), ‘Dichato’ (36.4°S–72.9°W), tion of the Profilicollis species that infects H. crenulatus, ‘Colcura’ (37.1°S–73.1°W), ‘Calfuco’ (39.7°S–73.3°W) and which has been ascribed either to P. antarcticus or another ‘Chaihuín’ (39.9°S−73.5°W). The estuarine site corre- species, namely P. chasmagnathi (Balboa et al., 2009). sponded to the mouth of the Valdivia River, ‘Niebla’ Therefore, it is still unclear which species actually infects (39.8°S–73.4°W). the estuarine crab H. crenulatus. In the sandy-shore sites, 239 individuals of the mole- In addition to the unclear parasite–intermediate host link crab E. analoga were captured during 2014 and 2015 in described above, the identity of the species of Profilicollis in- winter and summer seasons. At each site and sampling fecting the definitive hosts is also unclear. While P. antarcti- time, four transects were randomly deployed perpendicu- cus has been registered only as a parasite of the kelp gull larly to the shoreline. Along each transect we placed Larus dominicanus (Lichtenstein, 1823) (Torres et al., 1991, six sampling stations located c. 2 m apart from each Latham & Poulin, 2002b), P. altmani has been described in other, from the effluent line to the swash line. Plastic 2 that seabird in addition to Chroicocephalus maculipennis corers (0.03 m ) were buried to a depth of 20 cm and the Lichtenstein, 1823, Leucopheus pipixcan (Wagler, 1831), sand was sieved through a 1-mm-mesh sieve. Crabs Podiceps sp. and Numenius phaeopus (Linnaeus, 1758). were transferred to the laboratory for parasite identifica- However, significant morphological differences between P. tion and sorting. In the estuarine site, 30 individuals of altmani individuals collected from different seabird species H. crenulatus were sampled by hand between October have been found (Riquelme et al., 2006), suggesting that 2015 and March 2016 along a 300-m transect on promon- these individuals might belong to more than one species. tory rocks. In order to answer the question of which parasite spe- A total of 16 seagulls were captured around 40°S on the cies (co-)occur in this parasitic system, we can suggest SE Pacific coast. Specimens were captured in resting areas that, due to the differences in the prey item consumption by means of a 3 × 5 m Whosh net trap installed in the and high mobility of seagulls (Smith, 2007; Yorio et al., morning and activated after 2 h. After capture, the speci- −1 2013), both Profilicollis species could be found co- mens were sedated with 40 mg kg of ketamine plus −1 occurring in any of the definite hosts. On the other 7mgkg of xylazine and transferred to the laboratory. hand, intermediate host species occur in specific habitats In addition, we analysed nine seagulls found dead during and with little spatial overlap (i.e. molecrabs inhabiting March–April 2015 and summer of 2016 in the sampling re- full marine habitats and crabs inhabiting estuaries), gion around 40°S. In summary, the analysed seagull sam- which can stimulate specific and strict parasite–intermedi- ple was as follows: C. maculipennis (n = 8), L. dominicanus ate host relationships (Near, 2002; Steinauer et al., 2007). (n = 8), L. modestus (n = 8) and L. pipixcan (n = 1). Thus, we might expect parasite co-occurrence in defini- Each sampled crustacean was dissected, and the abun- tive, but not in intermediate, hosts. Testing this hypothesis dance of Profilicollis spp. in the haemocoele was determined requires the accurate identification of parasite species. Up under a stereomicroscope. Seagulls were euthanized using −1 to now, the identification of these species has been almost an overdose of 0.2–1mlkg intracardiac thiopental. exclusively based on morphological characters. The ana- Afterwards, the birds were necropsied and each gastro- lysis of this type of evidence has provided valuable contri- intestinal tract was removed and opened in order to sort, butions to our understanding of parasite–host interactions, identify and count the Profilicollis parasite specimens. but its reliability can be severely compromised by the high Parasites were identified on the basis of published morpho- morphological similarity among acanthocephalan species logical characters (e.g. Riquelme et al., 2006;Balboaet al., (Near et al., 1998,Balboaet al., 2009)andthescarceknowl- 2009). A total of 749 Profilicollis specimens were extracted edge of their geographic variation. Therefore, the assess- from the different hosts (see table 1) and were stored in ment of molecular data provides an opportunity to 95% ethanol for subsequent DNA extraction. Prevalence identify cryptic species accurately (e.g. Goulding & and intensity of infection in each host species were calcu- Cohen, 2014; Rodríguez & D’Elía, 2016), and can well be lated according to Bush et al.(1997). used to shed light on the potentially complex Profilicollis interaction network in SE Pacific shores. Molecular and phylogenetic analyses Here, we test whether multiple Profilicollis species are able to co-occur in definitive (seagulls) and intermediate Genetic analyses were based on a fragment of 578 bp of (marine and estuarine crabs) hosts in SE Pacific shores. the mitochondrial cytochrome oxidase I (COI) gene.
Recommended publications
  • Phylogeny, Biogeography, and Host Specificity
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.443311; this version posted May 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Cryptic diversity within the Poecilochirus carabi mite 2 species complex phoretic on Nicrophorus burying 3 beetles: phylogeny, biogeography, and host specificity 4 Julia Canitz1, Derek S. Sikes2, Wayne Knee3, Julia Baumann4, Petra Haftaro1, 5 Nadine Steinmetz1, Martin Nave1, Anne-Katrin Eggert5, Wenbe Hwang6, Volker 6 Nehring1 7 1 Institute for Biology I, University of Freiburg, Hauptstraße 1, Freiburg, Germany 8 2 University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, 9 99775, USA 10 3 Canadian National Collection of Insects, Arachnids, and Nematodes, Agriculture and 11 Agri-Food Canada, 960 Carling Avenue, K.W. Neatby Building, Ottawa, Ontario, 12 K1A 0C6, Canada 13 4 Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria 14 5 School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA 15 6 Department of Ecology and Environmental Resources, National Univ. of Tainan, 33 16 Shulin St., Sec. 2, West Central Dist, Tainan 70005, Taiwan 17 Correspondence: [email protected] 1 1/50 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.443311; this version posted May 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Download Download
    Italian Journal of Food Safety 2020; volume 9:8774 Risks and critical issues related Chinese Mitten Crab. The presence of E. to the discovery on the market sinensis in Europe is reported since the early Correspondence: Federica Maria Sessa, Food 1900s plausibly due to the accidental Chain studio associato, via G. Guinizzelli 24, of unauthorized live alien species introduction of zoea larval stages through 50133, Firenze (FI), Italy. on the Italian territory: Chinese ballast waters (Bentley, 2011; Hopkins, Tel: +39 3495456481. E-mail: [email protected] crab (Eriocheir sinensis) 2001). The first survey was recorded in Germany in 1912, in the Aller river near the Key words: Eriocheir sinensis; Chinese city of Rethem and in 1914 in the Elbe river Federica Maria Sessa,1 Luca Cianti,2 Mitten Crab; invasive species; official control; (Hymanson et al., 1999). More recently, risks and critical issues. Nicola Brogelli,1 Lara Tinacci,3 3 alternatives routes for the introduction of the Alessandra Guidi species within the European borders has Contributions: The authors contributed equally. 1Food Chain Studio associato, Firenze; been hypothesized as consequence of its Conflicts of interest: The authors declare no 2Azienda USL Toscana Centro, Firenze; import for food purpose generally related to conflict of interest. 3Dipartimento di Scienze Veterinarie, Asian cuisine specialties (Robbins, et al., Università di Pisa, Italy 2003). Funding: none. Indeed, in East and South-East Asia E. sinensis is recognized as one of the most Received for publication: 18 December 2019. commercially valuable crabs and it is Revision received: 6 March 2020. Abstract presented on the market in various forms Accepted for publication: 30 March 2020.
    [Show full text]
  • Proximal Composition and Fatty Acid Profile of Hemigrapsus
    Brazilian Journal of Biology https://doi.org/10.1590/1519-6984.231834 ISSN 1519-6984 (Print) Original Article ISSN 1678-4375 (Online) Proximal composition and fatty acid profile ofHemigrapsus crenulatus (H. Milne Edwards, 1837) as one of the main foods of “patagonian blenny”Eleginops maclovinus (Cuvier, 1830) G. Figueroa-Muñoza,b,c , P. De los Ríos-Escalanted,e , P. Dantagnana,f , C. Toledog , R. Oyarzúnh , L. Vargas-Chacoffh , C. Essei and R. Vega-Aguayoa,f* aUniversidad Católica de Temuco, Facultad de Recursos Naturales, Departamento de Ciencias Agropecuarias y Acuícolas, Temuco, Chile bIlustre Municipalidad de Cisnes, Puerto Cisnes, Chile cUniversidad de Concepción, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Zoología, Genomics in Ecology, Evolution and Conservation Laboratory – GEECLAB, Concepción, Chile dUniversidad Católica de Temuco, Facultad de Recursos Naturales, Departamento de Ciencias Biológicas y Químicas, Temuco, Chile eUniversidad Católica de Temuco, Núcleo de Estudios Ambientales, Temuco, Chile fUniversidad Católica de Temuco, Núcleo de Investigación en Producción Alimentaria, Temuco, Chile gUniversidad Católica de Temuco, Facultad de Recursos Naturales, Programa de Doctorado en Ciencias Agropecuarias, Temuco, Chile hUniversidad Austral de Chile, Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias- FONDAP, Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes-IDEAL, Instituto de Ciencias Marinas y Limnológicas, Valdivia, Chile iUniversidad Autónoma de Chile, Facultad de Arquitectura y Construcción, Instituto de Estudios del Hábitat – IEH, Unidad de Cambio Climático y Medio Ambiente – UCCMA, Temuco, Chile *e-mail: [email protected] Received: December 05, 2019 - Accepted: April 07, 2020 - Distributed: August 31, 2021 Abstract The Patagonian blenny (Eleginops maclovinus) is species endemic to South America with physiological characteristics that would facilitate its incorporation into Chilean aquaculture.
    [Show full text]
  • Burrowing Activity of the Neohelice Granulata Crab (Brachyura, Varunidae) in Southwest Atlantic Intertidal Areas
    Ciencias Marinas (2018), 44(3): 155–167 http://dx.doi.org/10.7773/cm.v44i3.2851 Burrowing activity of the Neohelice granulata crab (Brachyura, Varunidae) in southwest Atlantic intertidal areas Actividad cavadora del cangrejo Neohelice granulata (Brachyura, Varunidae) en sitios intermareales del atlántico sudoccidental Sabrina Angeletti1*, Patricia M Cervellini1, Leticia Lescano2,3 1 Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Sur (CONICET-UNS), San Juan 670, 8000-Bahía Blanca, Argentina. 2 Departamento de Geología, Universidad Nacional del Sur, San Juan 670, 8000-Bahía Blanca, Argentina. 3 Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Calle 526 entre 10 y 11, 1900-La Plata, Argentina. * Corresponding author. E-mail: [email protected] A. The burrowing and semiterrestrial crab Neohelice granulata actively and constantly builds its burrows in the intertidal zone of the Bahía Blanca Estuary during low tide. Differences in structural morphology of N. granulata burrows and burrowing activities in contrasting microhabitats (saltmarsh and mudflat) were analyzed and related to several conditions, such as tide level, substrate type, sediment properties, and population density. In the mudflat the higher density of total burrows in autumn (172 burrows·m–2) was associated with molt timing, and the higher density of active burrows in summer (144 burrows·m–2) was associated with reproductive migration. Sediments from biogenic mounds (removed by crabs) showed higher water content and penetrability than surface sediments (control), suggesting that bioturbation increases the values of these parameters. Grain size distribution profiles and mineralogical composition did not vary between microhabitats or between seasons.
    [Show full text]
  • Studies on the Systematics and Life History of Polymorphous Altmani (Perry)
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1967 Studies on the Systematics and Life History of Polymorphous Altmani (Perry). John Edward Karl Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Karl, John Edward Jr, "Studies on the Systematics and Life History of Polymorphous Altmani (Perry)." (1967). LSU Historical Dissertations and Theses. 1341. https://digitalcommons.lsu.edu/gradschool_disstheses/1341 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 67-17,324 KARL, Jr., John Edward, 1928- STUDIES ON THE SYSTEMATICS AND LIFE HISTORY OF POLYMORPHUS ALTMANI (PERRY). Louisiana State University and Agricultural and Mechanical College, Ph.D., 1967 Zoology University Microfilms, Inc., Ann Arbor, Michigan Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. © John Edward Karl, Jr. 1 9 6 8 All Rights Reserved Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. -STUDIES o n t h e systematics a n d LIFE HISTORY OF POLYMQRPHUS ALTMANI (PERRY) A Dissertation 'Submitted to the Graduate Faculty of the Louisiana State University and Agriculture and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Zoology and Physiology by John Edward Karl, Jr, Mo S«t University of Kentucky, 1953 August, 1967 Reproduced with permission of the copyright owner.
    [Show full text]
  • Host Sharing and Host Manipulation by Larval Helminths in Shore Crabs: Cooperation Or Conflict?
    International Journal for Parasitology 33 (2003) 425–433 www.parasitology-online.com Host sharing and host manipulation by larval helminths in shore crabs: cooperation or conflict? Robert Poulin*, Katherine Nichol, A. David M. Latham Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand Received 13 November 2002; received in revised form 16 December 2002; accepted 20 December 2002 Abstract Larval helminths of different species that share the same intermediate host and are transmitted by predation to the same definitive host may cooperate in their attempts to manipulate the behaviour of the intermediate host, while at the same time having conflicts of interests over the use of host resources. A few studies have indicated that intermediate hosts harbouring larval helminths have altered concentrations of neurotransmitters in their nervous system, and thus measuring levels of neurotransmitters in host brains could serve to assess the respective and combined effect of different helminth species on host behaviour. Here, we investigate potential cooperation and conflict among three helminths in two species of crab intermediate hosts. The acanthocephalan Profilicollis spp., the trematode Maritrema sp. and an acuariid nematode, all use Macrophthalmus hirtipes (Ocypodidae) as intermediate host, whereas Profilicollis and Maritrema also use Hemigrapsus crenulatus (Grapsidae). All three helminths mature inside gulls or other shore birds. There was a significant decrease in the mean volume of Profilicollis cystacanths as the intensity of infection by this parasite increased in H. crenulatus, the only host in which this was investigated; however, there was no measurable effect of other helminth species on the size of acanthocephalans, suggesting no interspecific conflict over resource use within crabs.
    [Show full text]
  • Diet of Neotropic Cormorant (Phalacrocorax Brasilianus) in an Estuarine Environment
    Mar Biol (2008) 153:431–443 DOI 10.1007/s00227-007-0824-8 RESEARCH ARTICLE Diet of Neotropic cormorant (Phalacrocorax brasilianus) in an estuarine environment V. Barquete Æ L. Bugoni Æ C. M. Vooren Received: 3 July 2006 / Accepted: 17 September 2007 / Published online: 10 October 2007 Ó Springer-Verlag 2007 Abstract The diet of the Neotropic cormorant (Phala- temporary changes in diet in terms of food items, abun- crocorax brasilianus) was studied by analysing 289 dance and prey size were detected, revealing a high regurgitated pellets collected from a roosting site at Lagoa ecological plasticity of the species. Individual daily food dos Patos estuary, southern Brazil, between November intake of Neotropic cormorants estimated by pellets and 2001 and October 2002 (except April to June). In total, metabolic equations corresponded to 23.7 and 27.1% of 5,584 remains of prey items from 20 food types were their body mass, falling in the range of other cormorant found. Fish composed the bulk of the diet representing species. Annual food consumption of the population esti- 99.9% by mass and 99.7% by number. The main food items mated by both methods was 73.4 and 81.9 tonnes, were White croaker (Micropogonias furnieri) (73.7% by comprising mainly immature and subadult White croaker frequency of occurrence, 48.9% by mass and 41.2% by and Catfish which are commercially important. Temporal number), followed by Catfish (Ariidae) and anchovies variations in diet composition and fish size preyed (Engraulididae). In Lagoa dos Patos estuary the generalist by Neotropics cormorants, a widespread and generalist Neotropic cormorant fed mainly on the two most abundant species, suggest shifts according to fluctuations in the demersal fishes (White croaker and Catfish), which abundance of prey.
    [Show full text]
  • Atlantic Seabirds
    Atlantic Seabirds Vol. 2. /10 . 1 (2000) Journal ofThe Seabird Group and the Dutch Seabird Group Atlantic Seabirds Edited by c.J. Camphuysen & J.B. Reid ATLANTIC SEABJRDS is the official journal ofthe SEABIRD GROUP and the DUTCH SEABIRD GROUP (Nederlandse Zeevogelgroep, NZG), and is the continuance of their respective journals, SEA BIRD (following no. 20, 1998) and SULA (following vol. 12 no. 4, 1998). ATLANTIC SEABJRDS will publish papers and short communications on any aspect of seabird biology and these will be peer­ reviewed. The geographical focus of the journal is the Atlantic Ocean and adjacent seas at all latitudes, but contributions are' also welcome from other parts of the world provided they are of general interest. ATLANTIC SEA BIRDS is indexed in the Aquatic Sciences and Fisheries abstracts, Ecology Abstracts and Animal Behaviour Abstracts ofCambridge Scientific databases and journals. The SEABIRD GROUP and the DUTCH SEABIRD GROUP retain copyright and written permission must be sought from the editors before any figure, table or plate, or extensive part ofthe text is reproduced. Such permission will not be denied unreasonably, but will be granted only after consultation with the relevant author(s). Editors: C.J. Camphuysen (NZG), Ankerstraat 20, 1794 BJ Oosterend, Texel, The Netherlands, tel/fax + 31 222 318744, e-mail [email protected] Dr J.B. Reid (Seabird Group), c/o Joint Nature Conservation Committee (JNCC), Dunnet House, 7 Thistle Place, Aberdeen AB 10 IUZ, Scotland, Ll.Ki, e-mail [email protected]. Offers ofpapers should be addressed to either editor. Editorial board: H. Brazier, Ireland; Dr S.
    [Show full text]
  • The Stalk-Eyed Crustacea of Peru and the Adjacent Coast
    \\ ij- ,^y j 1 ^cj^Vibon THE STALK-EYED CRUSTACEA OF PERU AND THE ADJACENT COAST u ¥' A- tX %'<" £ BY MARY J. RATHBUN Assistant Curator, Division of Marine Invertebrates, U. S. National Museur No. 1766.—From the Proceedings of the United States National Museum, '<•: Vol.*38, pages 531-620, with Plates 36-56 * Published October 20, 1910 Washington Government Printing Office 1910 UQS3> THE STALK-EYED CRUSTACEA OF PERU AND THE ADJA­ CENT COAST. By MARY J. RATHBUN, Assistant Curator, Division of Marine Invertebrates, U. S. National Museum. INTKODUCTION. Among the collections obtained by Dr. Robert E. Coker during his investigations of the fishery resources of Peru during 1906-1908 were a large number of Crustacea, representing 80 species. It was the original intention to publish the reports on the Crustacea under one cover, but as it has not been feasible to complete them at the same time, the accounts of the barnacles a and isopods b have been issued first. There remain the decapods, which comprise the bulk of the collection, the stomatopods, and two species of amphipods. One of these, inhabiting the sea-coast, has been determined by Mr. Alfred O. Walker; the other, from Lake Titicaca, by Miss Ada L. Weckel. See papers immediately following. Throughout this paper, the notes printed in smaller type were con­ tributed by Doctor Coker. One set of specimens has been returned to the Peruvian Government; the other has been given to the United States National Museum. Economic value.—The west coast of South America supports an unusual number of species of large crabs, which form an important article of food.
    [Show full text]
  • Geographic Variation of Corynosoma Strumosum (Acanthocephala, Polymorphidae) - a Parasite of Marine Mammal
    111-, ISSN 0704-3716 Canadian Translation of Fisheries and Aquatic Sciences No. 5589 Geographic variation of Corynosoma Strumosum (Acanthocephala, Polymorphidae) - a parasite of marine mammal V.N. Popov et al. Original title: Geograficheskaya izmenchivost' Cory'hosoma Strumosum (Acanthocephala, Polymorphidae) parazita morskikh mlekopitayushchikh In: Zoologicheskii zhurnal; vol. 66, no. 1; 1987 Original language: Russian Available from: Canada Institute for Scientific and Technical Information National Research Council Ottawa, Ontario, Canada K1A 0S2 1993 15 typescript pages Department of the Secretary Sod:Marlin d'État PAPIER À EN-TETE of Stale of Canada du Canada TRANSLATION LETTERHEAD - 1H MULTILINGUAL TRANSLATION DIRECTOFtATE DIRECTION DE LA TRADUCTION MULTILINGUE TRANSLATION BUREAU BUREAU DE LA TRADUCTION City- OrigMaw File No. - Department - tentstère Division/Branch - DIvIsioniDlrecdon Référence du demandeur - DFO Scientific Pubs. Mont-Joli, Qué. Translation Request Pb.- Language - Lanus Translator (initials) - Traducteur (Initiales) N° de la dernande de traductIcn 3850587 Russian Gil Dazé Zoologicheskii zhurnal, Vol. 66, No. 1, 1987, pp 12 - 18, USSR. UDC 595.133 : 591.152 GEOGRAPHIC VARIATION OF COR YNOSOMA STRUMOSUM (ACANTHOCEPHALA, POLYMORPHIDAE) - A PARASITE OF MARINE MAMMALS By V.N. POPOV and M.E. FORTUNATO The geographic variation of plastic characters and alternative variations in the number of rows of hooks on the proboscis and the number of hooks in each row has been studied in 11 262 specimens of C. strumosum from the ringed seal from the Barents, East Siberian, Bering and Okhotsk seas. C. strumosum is a polymorphous species which comprises two large groups of populations: the Western Arctic and the Arctic Pacific. The spatial and age-sex structure of the two groups of populations has been analyzed.
    [Show full text]
  • First Record of the Invasive Chinese Mitten Crab, Eriocheir Sinensis H. Milne Edwards, 1853 (Crustacea: Brachyura: Varunidae) from Singapore
    BioInvasions Records (2013) Volume 2, Issue 1: 73–78 Open Access doi: http://dx.doi.org/10.3391/bir.2013.2.1.13 © 2013 The Author(s). Journal compilation © 2013 REABIC Short Communication First record of the invasive Chinese mitten crab, Eriocheir sinensis H. Milne Edwards, 1853 (Crustacea: Brachyura: Varunidae) from Singapore Bi Wei Low, Ngan Kee Ng and Darren C. J. Yeo* Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 E-mail: [email protected] (BWL), [email protected] (NKN), [email protected] (DCJY) *Corresponding author Received: 28 May 2012 / Accepted: 7 November 2012 / Published online: 14 November 2012 Handling editor: Vadim Panov Abstract The introduced Chinese mitten crab, Eriocheir sinensis H. Milne Edwards, 1853, considered amongst ‘100 of the world’s most invasive alien species’, has been well-documented in Europe and North America. Most recently, it was recorded in subtropical western Asia (northern Iran). Here, we report E. sinensis from Singapore; the first record of this species in the wild from the tropics. While the likelihood of establishment of this temperate species in the tropics is low, potentially high and sustained propagule pressure could still allow it to pose a potential threat to native ecosystems and biota, a scenario with precedence in Singapore. Efforts by regulatory agencies are urgently needed to monitor and prevent the introduction of this potential invasive alien species. Key words: Crustacea; Brachyura; Chinese mitten crab; Eriocheir sinensis; invasive alien species; tropics; Singapore Introduction 2005), interference with commercial fishing (Veldhuizen 2001), predation on native species The Chinese mitten crab, Eriocheir sinensis H.
    [Show full text]
  • Scavenging Crustacean Fauna in the Chilean Patagonian Sea Guillermo Figueroa-Muñoz1,2, Marco Retamal3, Patricio R
    www.nature.com/scientificreports OPEN Scavenging crustacean fauna in the Chilean Patagonian Sea Guillermo Figueroa-Muñoz1,2, Marco Retamal3, Patricio R. De Los Ríos 4,5*, Carlos Esse6, Jorge Pérez-Schultheiss7, Rolando Vega-Aguayo1,8, Luz Boyero 9,10 & Francisco Correa-Araneda6 The marine ecosystem of the Chilean Patagonia is considered structurally and functionally unique, because it is the transition area between the Antarctic climate and the more temperate Pacifc region. However, due to its remoteness, there is little information about Patagonian marine biodiversity, which is a problem in the face of the increasing anthropogenic activity in the area. The aim of this study was to analyze community patterns and environmental characteristics of scavenging crustaceans in the Chilean Patagonian Sea, as a basis for comparison with future situations where these organisms may be afected by anthropogenic activities. These organisms play a key ecological role in marine ecosystems and constitute a main food for fsh and dolphins, which are recognized as one of the main tourist attractions in the study area. We sampled two sites (Puerto Cisnes bay and Magdalena sound) at four diferent bathymetric strata, recording a total of 14 taxa that included 7 Decapoda, 5 Amphipoda, 1 Isopoda and 1 Leptostraca. Taxon richness was low, compared to other areas, but similar to other records in the Patagonian region. The crustacean community presented an evident diferentiation between the frst stratum (0–50 m) and the deepest area in Magdalena sound, mostly infuenced by Pseudorchomene sp. and a marked environmental stratifcation. This species and Isaeopsis sp. are two new records for science.
    [Show full text]