Nutrient Availability Affects Flowering Rate but Has Limited Influence on Morphology of the Hooded Pitcher Plant, Sarracenia Minor

Total Page:16

File Type:pdf, Size:1020Kb

Nutrient Availability Affects Flowering Rate but Has Limited Influence on Morphology of the Hooded Pitcher Plant, Sarracenia Minor UNF Digital Commons UNF Graduate Theses and Dissertations Student Scholarship 2013 Nutrient Availability Affects Flowering Rate but has Limited Influence on Morphology of the Hooded Pitcher Plant, Sarracenia minor. Justin M. Lemmons University of North Florida Suggested Citation Lemmons, Justin M., "Nutrient Availability Affects Flowering Rate but has Limited Influence on Morphology of the Hooded Pitcher Plant, Sarracenia minor." (2013). UNF Graduate Theses and Dissertations. 475. https://digitalcommons.unf.edu/etd/475 This Master's Thesis is brought to you for free and open access by the Student Scholarship at UNF Digital Commons. It has been accepted for inclusion in UNF Graduate Theses and Dissertations by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © 2013 All Rights Reserved NUTRIENT AVAILABILITY AFFECTS FLOWERING RATE BUT HAS LIMITED INFLUENCE ON MORPHOLOGY OF THE HOODED PITCHER PLANT, SARRACENIA MINOR By Justin Marc Lemmons A thesis submitted to the Department of Biology in partial fulfillment of the requirements for the degree of Master of Science in Biology UNIVERSITY OF NORTH FLORIDA COLLEGE OF ARTS AND SCIENCES December, 2013 Unpublished work © Justin Marc Lemmons CERTIFICATE OF APPROVAL The thesis “Nutrient Availability Affects Flowering Rate but has Limited Influence on Morphology of the Hooded Pitcher Plant, Sarracenia minor” submitted by Justin Marc Lemmons. Approved by the thesis committee: Date _____________________________ ___________________ Anthony M. Rossi, Ph.D. Committee Chair Person ______________________________ ____________________ Daniel C. Moon, Ph.D. ______________________________ _____________________ Dale A. Casamatta, Ph.D. Accepted for the Department: _______________________________ _______________________ Daniel C. Moon, Ph.D. Chairperson Accepted for the College: ________________________________ ________________________ Barbara A. Hetrick, Ph.D. Dean Accepted for the University: ___________________________________ _________________________ Len Roberson Dean of the Graduate School ACKNOWLEDGEMENTS Many thanks to Dr. Daniel Moon, Dr. Anthony Rossi and Dr. Dale Casamatta for their extraordinary mentorship and knowledge. Thanks to Dr. Rossi for also providing funds and help in the field. Thanks to my fantastic field assistants: Shantelle Johnson, Adam Bauernfeind, Nichole Bishop and Janice Blass Travis. Thanks to Jacksonville Electric Authority (JEA) and Michael Robinson, JEA Forester. Thanks to family and friends for their support. Special thanks to Javier “Bily-soke” Gonzalez for affording me the luxury of his guidance and parenthood, and for sharing his teachings and philosophy. iii TABLE OF CONTENTS Table of Contents ......................................................................................................................................... iv List of Tables ................................................................................................................................................. v List of Figures ............................................................................................................................................... vi Abstract ...................................................................................................................................................... viii Introduction .................................................................................................................................................. 1 History and Background ............................................................................................................................ 1 Trapping Mechanisms ............................................................................................................................... 4 Inquiline Community ................................................................................................................................. 6 Nutrients ................................................................................................................................................... 7 Sarracenia minor ....................................................................................................................................... 9 Methods ...................................................................................................................................................... 11 Experimental Field Design....................................................................................................................... 12 Ant Collection and Analyses .................................................................................................................... 13 Statistical Analyses of Treatments .......................................................................................................... 15 Results ......................................................................................................................................................... 15 Discussion.................................................................................................................................................... 16 Appendix I: Tables ....................................................................................................................................... 24 Appendix II: Figures ..................................................................................................................................... 26 Literature Cited ........................................................................................................................................... 42 Curriculum Vitae ......................................................................................................................................... 48 iv LIST OF TABLES Table Description Page Table 1 Mean ± SEM of nitrogen content (%) of fire ants 24 (Solenopsis invicta). Final mean of replicates equals 10.4%. Table 2 Mean ± SEM of morphological characteristics of S. 25 minor. Parameters were analyzed using a one-way ANOVA, except for number of flowers which was analyzed using a χ2-test (see text for details). v LIST OF FIGURES Figure Description Page Figure 1 Morphology of the hooded pitcher plant, Sarracenia 26 minor. Note photosynthetic phyllode and keel. Figure 2 Photosynthetic phyllode produced by S. minor. 27 Figure 3 Pitcher plant zones: Zone 1 = hood region with 28 directional hairs and fenestrations; Zone 2 = lip, mouth and neck region with nectar glands; Zone 3 = waxy region with enzyme glands; Zone 4 = fluid filled digestive region with downward pointing hairs. Figure 4 McGirt’s Creek research site after accidental fire on 29 March 2, 2012. Figure 5 Sarracenia minor pitchers plugged with cotton to 30 control ambient prey capture. Figure 6 Linear regression of fire ant, S. invicta, quantity vs. 31 mass (mg) (y = .359x - .385, r = .950). Figure 7 Percent change between the minimum and maximum 32 number of pitchers per ramet. Figure 8 Number of new phyllodia produced per ramet. 33 Figure 9 Number of flowers produced per ramet. 34 Figure 10 Percent change between the minimum and maximum 35 pitcher height (mm). Figure 11 Percent change between the minimum and maximum 36 pitcher width (mm). Figure 12 Percent change between the minimum and maximum 37 keel width (mm). Figure 13 Percent change between the minimum and maximum 38 mouth diameter (mm). Figure 14 Number of pitchers with E. semicrocea galleries per 39 ramet. Figure 15 Number of E. semicrocea galleries per tallest pitcher 40 per ramet. vi Figure 16 Solenopsis invicta patrolling pitcher and flower. Also 41 note S. invicta mound built at the base of the S. minor ramet. vii ABSTRACT Carnivorous plants perform as both producers and consumers. Botanical carnivory has evolved in sunny, moist, nutrient-poor environments, and the primary nutrient supplied by prey is proposed to be nitrogen. There is a trade-off between carnivorous and photosynthetic structures which corresponds to degree of carnivory expression and available nutrients. This study was conducted on the hooded pitcher plant, Sarracenia minor, which is a facultative wetland plant and Florida-threatened species. Sarracenia minor is considered a specialist myrmecophage and ants characterize the majority of attracted and captured prey. Ants not only provide nutritional benefit, but also protection against herbivory. A natural population of S. minor in northeast Florida was selected to test response to prey and fertilizer nitrogen in a press-experimental design. Introduced fire ants (Solenopsis invicta) and ammonium nitrate (NH4NO3) were used as prey and fertilizer nitrogen sources, respectively. Treatments included: 1) ant addition; 2) fertilizer addition; 3) ant addition/fertilizer addition; 4) no ants/no fertilizer; 5) control. Treatments were administered biweekly and morphological characteristics and herbivory were measured monthly from April-November 2012. Results indicated no significant treatment effects on plant performance and morphological characteristics, except for a significantly greater number of flowers displayed by the nutrient-deprived group (p < .005). Herbivory by Exyra semicrocea also showed a marginally significant negative effect on the tallest pitchers per ramet. Since nitrogen is primarily stored by pitchers and allocated to new growth in the following growing season, the predictive power of this study may be limited. However, increased flowering rate in the
Recommended publications
  • Deletion of Cephalotus Follicularis from Appendix II
    Prop. 11.6 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA A. PROPOSAL Deletion of Cephalotus follicularis from Appendix II. B. PROPONENT Commonwealth of Australia (Environment Australia) C. SUPPORTING STATEMENT The monotypic genus Cephalotus is an insectivorous plant endemic to south western Australia. It occurs on wetland margins throughout the southwest corner of Western Australia. This portion of Western Australia has a high rainfall and as a result there are extensive areas of suitable habitat, especially on the south coastal plain. Within its range are large areas of government owned forests, National Parks and other reserves where the species is common and is likely to occur in vast numbers. The species is easily propagated from small segments of rhizomes and, as a result, it is commonly traded and is widely cultivated. Morphological variation in wild populations is not evident. As the species is easily propagated, it is unlikely that cultivated stocks are derived from wild collections. Cephalotus follicularis has been identified by the CITES Plants Committee under the Ten Year Review as a candidate for deletion from Appendix II as there has been no recorded trade in wild taken specimens since the species was listed. The proposal received full endorsement of the 5th meeting of the CITES Plants Committee in Mexico, May 1994. 1. Taxonomy 1.1. Class Magnoliatae 1.2. Order Rosales 1.3. Family Cephalotaceae 1.4. Genus/species Cephalotus follicularis Labillardière 1806 1.5. Common name Western Australian pitcher plant; Albany pitcher plant 2. Biological data 2.1. Distribution The area of distribution ranges over 400 km from NW to SE and corresponds with the meso- mediterranean climate of the extreme south western part of Australia.
    [Show full text]
  • Carnivorous Plant Responses to Resource Availability
    Carnivorous plant responses to resource availability: environmental interactions, morphology and biochemistry Christopher R. Hatcher A doctoral thesis submitted in partial fulfilment of requirements for the award of Doctor of Philosophy of Loughborough University November 2019 © by Christopher R. Hatcher (2019) Abstract Understanding how organisms respond to resources available in the environment is a fundamental goal of ecology. Resource availability controls ecological processes at all levels of organisation, from molecular characteristics of individuals to community and biosphere. Climate change and other anthropogenically driven factors are altering environmental resource availability, and likely affects ecology at all levels of organisation. It is critical, therefore, to understand the ecological impact of environmental variation at a range of spatial and temporal scales. Consequently, I bring physiological, ecological, biochemical and evolutionary research together to determine how plants respond to resource availability. In this thesis I have measured the effects of resource availability on phenotypic plasticity, intraspecific trait variation and metabolic responses of carnivorous sundew plants. Carnivorous plants are interesting model systems for a range of evolutionary and ecological questions because of their specific adaptations to attaining nutrients. They can, therefore, provide interesting perspectives on existing questions, in this case trait-environment interactions, plant strategies and plant responses to predicted future environmental scenarios. In a manipulative experiment, I measured the phenotypic plasticity of naturally shaded Drosera rotundifolia in response to disturbance mediated changes in light availability over successive growing seasons. Following selective disturbance, D. rotundifolia became more carnivorous by increasing the number of trichomes and trichome density. These plants derived more N from prey and flowered earlier.
    [Show full text]
  • Giant Cephalotus of Unknown Origins
    Giant Cephalotus of unknown origins Dick Chan • P.O. Box 2252 • Pasadena • California 91102 • USA • [email protected] Introduction I have been growing Cephalotus follicularis for over 20 years. Initially, I was obsessed with grow- ing specimen-type Cephalotus of different clones and to prove once-and-for-all that this was not a difficult plant to grow. Countless plants have met their demise as I experimented with various meth- ods of cultivation. For those that have survived and flourished, I noticed one plant in particular that grew larger, more vigorous, and had a different pitcher/leaf morphology than Cephalotus ‘Hummer’s Giant’ and the typical Cephalotus. However, I do not believe this plant to be just a better-grown speci- men of ‘Hummer’s Giant’. Through the years, I have given and sold this plant to individuals calling it the “Bubble Giant”, however, I have not received nor heard any feedback as to the well-being of those plants. So, for those reading this article and have received this plant from me, I would appreciate seeing some photos. For the remainder of this article, this plant will be referred to as the “unknown”. Origins During my initial spark-of-entry into the hobby, I started collecting Cephalotus cuttings, plants, stems, and leaves from anyone who had the plant and was willing to give or sell a piece to me. Be- cause of that activity, this plant is of an unknown origin because of the feverish pace by which I went about amassing what I had hoped would become a genetically diverse collection of plants.
    [Show full text]
  • (Sarracenia) Provide a 21St-Century Perspective on Infraspecific Ranks and Interspecific Hybrids: a Modest Proposal* for Appropriate Recognition and Usage
    Systematic Botany (2014), 39(3) © Copyright 2014 by the American Society of Plant Taxonomists DOI 10.1600/036364414X681473 Date of publication 05/27/2014 Pitcher Plants (Sarracenia) Provide a 21st-Century Perspective on Infraspecific Ranks and Interspecific Hybrids: A Modest Proposal* for Appropriate Recognition and Usage Aaron M. Ellison,1,5 Charles C. Davis,2 Patrick J. Calie,3 and Robert F. C. Naczi4 1Harvard University, Harvard Forest, 324 North Main Street, Petersham, Massachusetts 01366, U. S. A. 2Harvard University Herbaria, Department of Organismic and Evolutionary Biology, 22 Divinity Avenue, Cambridge, Massachusetts 02138, U. S. A. 3Eastern Kentucky University, Department of Biological Sciences, 521 Lancaster Avenue, Richmond, Kentucky 40475, U. S. A. 4The New York Botanical Garden, 2900 Southern Boulevard, Bronx, New York 10458, U. S. A. 5Author for correspondence ([email protected]) Communicating Editor: Chuck Bell Abstract—The taxonomic use of infraspecific ranks (subspecies, variety, subvariety, form, and subform), and the formal recognition of interspecific hybrid taxa, is permitted by the International Code of Nomenclature for algae, fungi, and plants. However, considerable confusion regarding the biological and systematic merits is caused by current practice in the use of infraspecific ranks, which obscures the meaningful variability on which natural selection operates, and by the formal recognition of those interspecific hybrids that lack the potential for inter-lineage gene flow. These issues also may have pragmatic and legal consequences, especially regarding the legal delimitation and management of threatened and endangered species. A detailed comparison of three contemporary floras highlights the degree to which infraspecific and interspecific variation are treated inconsistently.
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E.
    [Show full text]
  • Ancistrocladaceae
    Soltis et al—American Journal of Botany 98(4):704-730. 2011. – Data Supplement S2 – page 1 Soltis, Douglas E., Stephen A. Smith, Nico Cellinese, Kenneth J. Wurdack, David C. Tank, Samuel F. Brockington, Nancy F. Refulio-Rodriguez, Jay B. Walker, Michael J. Moore, Barbara S. Carlsward, Charles D. Bell, Maribeth Latvis, Sunny Crawley, Chelsea Black, Diaga Diouf, Zhenxiang Xi, Catherine A. Rushworth, Matthew A. Gitzendanner, Kenneth J. Sytsma, Yin-Long Qiu, Khidir W. Hilu, Charles C. Davis, Michael J. Sanderson, Reed S. Beaman, Richard G. Olmstead, Walter S. Judd, Michael J. Donoghue, and Pamela S. Soltis. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98(4): 704-730. Appendix S2. The maximum likelihood majority-rule consensus from the 17-gene analysis shown as a phylogram with mtDNA included for Polyosma. Names of the orders and families follow APG III (2009); other names follow Cantino et al. (2007). Numbers above branches are bootstrap percentages. 67 Acalypha Spathiostemon 100 Ricinus 97 100 Dalechampia Lasiocroton 100 100 Conceveiba Homalanthus 96 Hura Euphorbia 88 Pimelodendron 100 Trigonostemon Euphorbiaceae Codiaeum (incl. Peraceae) 100 Croton Hevea Manihot 10083 Moultonianthus Suregada 98 81 Tetrorchidium Omphalea 100 Endospermum Neoscortechinia 100 98 Pera Clutia Pogonophora 99 Cespedesia Sauvagesia 99 Luxemburgia Ochna Ochnaceae 100 100 53 Quiina Touroulia Medusagyne Caryocar Caryocaraceae 100 Chrysobalanus 100 Atuna Chrysobalananaceae 100 100 Licania Hirtella 100 Euphronia Euphroniaceae 100 Dichapetalum 100
    [Show full text]
  • The Cost of Carnivory for Darlingtonia Californica (Sarraceniaceae): Evidence from Relationships Among Leaf Traits1
    American Journal of Botany 92(7): 1085±1093. 2005. THE COST OF CARNIVORY FOR DARLINGTONIA CALIFORNICA (SARRACENIACEAE): EVIDENCE FROM RELATIONSHIPS AMONG LEAF TRAITS1 AARON M. ELLISON2,4 AND ELIZABETH J. FARNSWORTH3 2Harvard University, Harvard Forest, P.O. Box 68, Petersham, Massachusetts 01366 USA; and 3New England Wild Flower Society, 180 Hemenway Road, Framingham, Massachusetts 01701 USA Scaling relationships among photosynthetic rate, foliar nutrient concentration, and leaf mass per unit area (LMA) have been observed for a broad range of plants. Leaf traits of the carnivorous pitcher plant Darlingtonia californica, endemic to southern Oregon and northern California, USA, differ substantially from the predictions of these general scaling relationships; net photosynthetic rates of Darlingtonia are much lower than predicted by general scaling relationships given observed foliar nitrogen (N) and phosphorus (P) concentrations and LMA. At ®ve sites in the center of its range, leaf traits of Darlingtonia were strongly correlated with elevation and differed with soil calcium availability and bedrock type. The mean foliar N : P of 25.2 6 15.4 of Darlingtonia suggested that these plants were P-limited, although N concentration in the substrate also was extremely low and prey capture was uncommon. Foliar N : P stoichiometry and the observed deviation of Darlingtonia leaf traits from predictions of general scaling relationships permit an initial assessment of the ``cost of carnivory'' in this species. Carnivory in plants is thought to have evolved in response to N limitation, but for Darlingtonia, carnivory is an evolutionary last resort when both N and P are severely limiting and photosynthesis is greatly reduced. Key words: carnivorous plants; Darlingtonia californica; fens; leaf mass area; leaf traits; photosynthesis; nitrogen; serpentine.
    [Show full text]
  • Genetics of Sarracenia Leaf and Flower Color PHIL SHERIDAN
    Genetics of Sarracenia leaf and flower color PHIL SHERIDAN Virginia Commonwealth Meadowview Biological Research University Station 8390 Fredericksburg Turnpike Department of Biology Woodford, VA 22580 816 Park Avenue Keywords: genetics: pigmentation-genetics: Sarracenia. Abstract Sarracenia is a genus of insectivorous plants confined to wetlands of eastern U.S. and Canada. Eight species are generally recognized with flower and leaf color ranging from yellow to red. Fertile hybrids occur in the wild under disturbed conditions and can be artificially produced in the greenhouse. Thus genetic barriers between species are weak. Normally when crosses occur or are induced between species or between different color types the progeny exhibit a blending of parental phenotypes called incomplete or partial dominance. In most species all-green mutants have been found which lack any red pigment in leaves, flowers or growth point. Controlled crosses were performed on all-green mutants from S. purpurea and two subspecies of the S. rubra complex. Self pollinated all-green plants Figure 1: A pink flowered hybrid in cultivation. This result in all-green offspring specimen was collected by Fred Case and is the cross S. and self pollinated wild-type rubra subsp. wherry) x S. alata. red plants result in red offspring. Crosses between red and all-green plants produce wild-type colored red progeny. These results suggest that the red alleles are "dominant" to the "recessive" all green mutant alleles in the three independent all-green variants tested. Since partial dominance is the usual genetic pattern in the genus, dominant/recessive characteristics are an unusual phenomenon. 1 Introduction The Sarraceniaceae (American pitcher plants) is a family of insectivorous pitcher plants restricted to wet, sunny, generally acid, nutrient poor habitats of the southeastern United States, Canada, northern California, southern Oregon, Venezuela, British Guiana (Lloyd, 1942), and Brazil (Maguire, 1978).
    [Show full text]
  • Carnivorous Plant Newsletter V50 N2, June 2021
    New Cultivars Keywords: cultvar, Cephalotus follicularis ‘Squat’, Dionaea ‘EEC Purple People Eater’, Dionaea ‘Magikarp’, Drosera ‘Avaricious Arugula’, Sarracenia ‘Talisman’. Abstract: Five new carnivorous plant cultivars are named and described: Cephalotus follicularis ‘Squat’, Dionaea ‘EEC Purple People Eater’, Dionaea ‘Magikarp’, Drosera ‘Avaricious Arugula’, Sarracenia ‘Talisman’. Cephalotus follicularis ‘Squat’ Submitted: 21 February 2021 Cephalotus follicularis ‘Squat’ (Fig. 1) originates from the late Dennis Hastings collection. The cultivar tends to grow with wide and short pitchers. There is a horizontal protrusion under the peri- stome giving the pitcher a squat appearance, which is also observable on newly emerging and de- veloping pitchers. Moreover, the base is rounded with a bullet like appearance, further contributing to its squat like characteristic. The peristome is round with short and thin teeth. The shape is stable and very different from the other Cephalotus, making it easy to distinguish even without a label. The name derives from the pitcher’s squat looking appearance. Asexual propagation (vegetative) is required in order to preserve the unique characteristics. —Dimitar Daskalov • Plovdiv 4013 • Bulgaria • [email protected] Figure 1: Cephalotus follicularis ‘Squat’. Volume 50 June 2021 87 Dionaea ‘EEC Purple People Eater’ Submitted: 15 February 2021 Dionaea ‘EEC Purple People Eater’ (Fig. 2) is the product of a collaboration between Evan Wang and Craig Heath. Hand pollination was performed in the summer of 2018 by Evan, Emmy, and Stephen Wang with isolation of flowers after pollination. The seed was the product of crossing D. ‘FTS Maroon Monster’ with D. ‘Jaws Smiley’. Numerous seeds from this cross were grown by both Evan Wang and Craig Heath.
    [Show full text]
  • A Preliminary List of the Vascular Plants and Wildlife at the Village Of
    A Floristic Evaluation of the Natural Plant Communities and Grounds Occurring at The Key West Botanical Garden, Stock Island, Monroe County, Florida Steven W. Woodmansee [email protected] January 20, 2006 Submitted by The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, Florida 33170 George D. Gann, Executive Director Submitted to CarolAnn Sharkey Key West Botanical Garden 5210 College Road Key West, Florida 33040 and Kate Marks Heritage Preservation 1012 14th Street, NW, Suite 1200 Washington DC 20005 Introduction The Key West Botanical Garden (KWBG) is located at 5210 College Road on Stock Island, Monroe County, Florida. It is a 7.5 acre conservation area, owned by the City of Key West. The KWBG requested that The Institute for Regional Conservation (IRC) conduct a floristic evaluation of its natural areas and grounds and to provide recommendations. Study Design On August 9-10, 2005 an inventory of all vascular plants was conducted at the KWBG. All areas of the KWBG were visited, including the newly acquired property to the south. Special attention was paid toward the remnant natural habitats. A preliminary plant list was established. Plant taxonomy generally follows Wunderlin (1998) and Bailey et al. (1976). Results Five distinct habitats were recorded for the KWBG. Two of which are human altered and are artificial being classified as developed upland and modified wetland. In addition, three natural habitats are found at the KWBG. They are coastal berm (here termed buttonwood hammock), rockland hammock, and tidal swamp habitats. Developed and Modified Habitats Garden and Developed Upland Areas The developed upland portions include the maintained garden areas as well as the cleared parking areas, building edges, and paths.
    [Show full text]
  • UPSTATE NATIVE NURSERY SPRING 2021 SALE PLANT PRICING & OPENING INVENTORY As of 26Mar21 Scientific Name Common Name Size Price
    South Carolina Native Plant Society THE UPSTATE NATIVE NURSERY SPRING 2021 SALE PLANT PRICING & OPENING INVENTORY as of 26Mar21 Scientific Name Common Name Size Price CARNIVOROUS PLANTS Size Price Dionaca muscipula Venus Flytrap 3” 10.00 Drosera binata Sundew 4” 12.00 Mixed variety plants Mixed variety in Large PlanterLgPot 50.00 Premixed soil for carnivorous plants Premixed soil (Gallon Bag) 1g 3.00 Sarracenia flava Yellow Pitcher Plant 4” 25.00 Sarracenia flava rugeli Yellow Pitcher Plant 4” 20.00 Sarracenia ‘Judith Hindle’ Pitcher Plant ‘Judith Hindle’ 4” 20.00 Sarracenia leucophylla White Pitcher Plant 4” 25.00 Sarracenia leucophylla tarnok White Pitcher Plant 4” 25.00 Sarracenia minor Hooded Pitcher Plant 4” 18.00 Sarracenia oreophila Green Pitcher Plant 4” 18.00 Sarracenia purpurea Purple Pitcher Plant 4” 10.00 Sarracenia purpurea Montana Purple Pitcher Plant 4” 15.00 Sarracenia rubra Sweet Pitcher Plant 3” 12.00 Sarracenia rubra Sweet Pitcher Plant 4” 12.00 Sarracenia rubra in Planter Sweet Pitcher Plant in Planter 6” 20.00 FERNS SizePrice Adiantum pedatum Fern, Northern Maidenhair Fern 3” 4.00 Asplenium platyneuron Fern, Ebony Spleenwort 1g 10.00 Athyrium filix-femina v. Asplenoides Fern, Southern Lady Fern 3” 4.00 Athyrium filix-femina v. Asplenoides Fern, Southern Lady Fern 1g 10.00 Diplazium pycnocarpon Fern, Narrow Leaf Glade Fern 1g 10.00 Dryopteris celsa Fern, Log Fern 3” 4.00 Dryopteris celsa Fern, Log Fern 1g 10.00 Dryopteris celsa Fern, Log Fern 3g 20.00 Dryopteris goldiana Fern, Goldies Giant Wood Fern 3” 4.00 Dryopteris
    [Show full text]
  • Pinguicula Vulgaris L. Butterwortbutterwort, Page 
    Pinguicula vulgaris L. butterwortbutterwort, Page 1 State Distribution Photo by Susan R. Crispin Best Survey Period Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Status: State special concern Recognition: Pinguicula vulgaris is a small, herbaceous, insectivorous perennial with rosettes of 3-6 Global and state rank: G5/S3 distinctly yellowish-green leaves. The blunt, oblong- ovate to elliptic leaves, which narrow to the base, range Other common names: common butterwort, bog- to ca. 8 cm in length, curling slightly inward along violet, violet butterwort their upper margins. The upper leaf surface is covered with numerous enzyme-secreting glands that aid in Family: Lentibulariaceae (bladderwort family) the breakdown and digestion of small insects, and give the leaves a sticky-greasy feel when touched. This Range: Butterwort is a circumpolar species ranging slimy, watery surface also serves to attract and capture around the world in temperate and boreal regions. It is insect prey. The spurred purple flowers are solitary of widespread occurrence from Europe through Siberia. on 1.5-12 cm long, leafless peduncles (stalks) and Elsewhere this species occurs in the Arctic from Alaska have a white spot at the mouth. In addition to a well to Canada and East Greenland, extending southward developed basal spur, the flowers have a 3-lobed upper in North America to northeast Minnesota, northwest lip and 2-lobed lower lip, thus superficially resembling a Wisconsin, and through the Lake Superior region east violet. A single rosette may have produce up to three or to New York and New England. It is considered rare more flowering stalks.
    [Show full text]