bioRxiv preprint doi: https://doi.org/10.1101/2020.05.22.110627; this version posted May 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content. Cortnie Hartwig*1, Gretchen Macías Méndez*2, Shatabdi Bhattacharjee*3, Alysia D. Vrailas- Mortimer*4, Stephanie A. Zlatic1, Amanda A. H. Freeman5, Avanti Gokhale1, Mafalda Concilli6, Christie Sapp Savas1, Samantha Rudin-Rush1, Laura Palmer1, Nicole Shearing1, Lindsey Margewich4, Jacob McArthy4, Savanah Taylor4, Blaine Roberts7, Vladimir Lupashin8, Roman S. Polishchuk6, Daniel N. Cox3, Ramon A. Jorquera2,9#, Victor Faundez1# Abbreviated title: Copper Homeostasis Sustains Synaptic Mitochondria Departments of Cell Biology1 and Biochemistry7, and the Center for the Study of Human Health5 USA, 30322, Emory University, Atlanta, Georgia, USA, 30322. Neuroscience Department, Universidad Central del Caribe, Bayamon, Puerto Rico2. Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 303023. School of Biological Sciences Illinois State University, Normal, IL 6179014. Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy6. Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AK, 722058. Institute of Biomedical Sciences, Santiago, Chile9. #Address Correspondence to RJ (
[email protected]) and VF (
[email protected]) * These authors contributed equally Number of pages: 36 Number of figures: 9 plus 2 extended data Number of words for abstract, introduction, and discussion: 149, 650, and 1500 Acknowledgements This work was supported by grants from the National Institutes of Health 1RF1AG060285 to VF, R01NS108778 to RJ, R15AR070505 to AVM, TelethonTIGEM-CBDM9 to RP, R01NS086082 to DNC, R01GM083144 to VL, and 5K12GM000680-19 to CH.