R&D Needs and Required Facilities for the Development of Fusion As

Total Page:16

File Type:pdf, Size:1020Kb

R&D Needs and Required Facilities for the Development of Fusion As R&D Needs and Required Facilities for the Development of Fusion as an Energy Source Report of the Fusion Facilities Review Panel October 2008 LEGAL NOTICE Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information. The views expressed in this publication are the sole responsibility of the author and do not necessarily reflect the views of the European Commission. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu). Cataloguing data can be found at the end of this publication. Luxembourg: Office for Official Publications of the European Communities, 2008 ISBN 978-92-79-10057-4 DOI 10.2777/22014 © European Communities, 2008 Reproduction is authorised provided the source is acknowledged. Printed in Belgium PRINTED ON WHITE CHLORINE-FREE PAPER Foreword In December 2007 the European Commission established an independent Panel for a review of the R&D visions and the required facilitiesi of the European fusion programme. This review which is stipulated by the EURATOM FP7 Specific Programme on Fusion Researchii has the “motivations to support the rapid and efficient development of fusion as an energy source and to maintain in the programme the facilities needed to fulfil its medium and long term objectives”. A vision of the R&D required to make fusion energy production ready for commercial exploitation shall be developed and all significant facilities, existing or under construction including proposed or considered upgrades, shall be reviewed. The required facilities should be incorporated in a road map; and prioritised according to the corresponding benefits, costs and risks. Non priority facilities should be identified. The full terms of reference to the panel are given in Annex I. Following its constitution in December 2007 the Panel, composed of five European members with a professional background outside fusion and four international members with experience in fusion R&Diii, took up its work in a first meeting on February 26/27, 2008. The Panel was provided with input papers established by EFDAiv and the Associated Fusion Laboratories and received during its meetings and visits in-depth presentations by representatives of the Commission, EFDA, Fusion for Energy (F4E), ITER and the Associated Laboratories of the Programme. Furthermore, coordinated by EFDA, comprehensive written information was provided in response to specific questions raised by the Panel. The Panel met for four plenary meetings in Brussels, held several video conferencesv, and delegations visited most of the major laboratories for which the input documents refer to substantial intended investments in facilitiesvi. The Panel concluded its work in October 2008 unanimously endorsing the present report. When conducting its work, the Panel took account of the particular situation of fusion research as a long-term endeavour of great promise and substantial challenges. The assessment is based on the programme’s objective to achieve the ultimate goal of enabling the entry of fusion into the commercial regime in a fast track approach with the creation of prototype reactors in approximately 30 or 35 years. Specifically, the periods until completion of ITER construction and the first phase of ITER operation are in the forefront of deliberations and developments which can maximise the success of ITER. When assessing research needs and necessary facilities, the Panel had to acknowledge the multidisciplinary nature of R&D tasks and the resulting complexity of the programme. Furthermore, account had to be taken of the specific organisational structure in fusion R&D where the overall programme management at European level is ensured through committees, the Commission services as well as F4E (for dedicated ITER, Broader Approach and DEMO work) and EFDA, (for R&D on JET and coordinated research by European task forces and joint topical teams which rely on the strength and resource basis of the national associated laboratories). The Panel was deeply impressed by the progress achieved in fusion R&D, the scientific- technical quality of the work being undertaken, the sharing of tasks among the partners and the commitment of all parties in the Programme towards achieving the goal of useful fusion power. During the course of its work the Panel has been made informally aware of near-term funding constraints which possibly might have an impact on the EURATOM fusion programme or parts of it. The Panel was of the opinion that any consequences from this information on its work do not alter the analysis and the conclusions contained in its report if a rapid and efficient development of fusion as an energy source, as stipulated in the Terms of Reference, 3 shall continue to be the programmatic objective of Europe’s effort in fusion research. Should it not be possible in the foreseeable future to pursue this objective then some of the conclusions would have to be re-examined. The Panel wishes to thank the European Commission, EFDA, the Associations, Fusion for Energy and ITER for their constructive support, the quality of the input provided and their readiness in responding to the questions which were raised by the Panel. Brussels, October 8, 2008 Prof. Dr.-Ing. Thomas Hartkopf Chairman of the Panel --------------------------- i For the purpose of this review, “facility” is taken to mean any device or installation, including high performance computers, built and operated for the purpose of fusion R&D, and funded through the fusion programme. ii “At an early stage of the Framework programme, a review will be carried out of the facilities in the programme, examining the possibility of phasing out existing facilities, and considering the need for new devices in parallel to ITER exploitation. The review will be used a basis for the possible support of new or upgraded devices in order to ensure that the programme will maintain an adequate set of fusion facilities for the relevant R&D.” iii The Panel membership is listed in Annex III. ivEFDA: European Fusion Development Agreement. Fusion for Energy (F4E): Joint Undertaking, European domestic agency for ITER. An explanation of acronyms is provided in Annex V v Meetings of the Panel in Brussels took place on February 26/27, May 27/28, July16/17 and September 23/24, 2008. Additionally four video conferences were arranged with international members during visits to facilities and meetings. vi Visits by delegations of the Panel were undertaken to FZK (Karlsruhe, DE, December 2007), JET / MAST (EFDA, UKAEA, Culham Laboratory, UK, April 2008), ASDEX-UG (IPP Garching, DE, May 2008), Wendelstein 7-X (IPP Greifswald, DE, June 2008), TORE SUPRA (CEA Cadarache, FR, June 2008), FTU (ENEA Frascati, IT, July 2008) 4 Executive Summary Security of energy supply and mitigation of Global Warming require vigorous efforts with a strong boost to energy research. Fusion energy using the ubiquitously available deuterium and lithium fuel could make a major contribution to future environmentally friendly and safe electricity generation without long-term storage of radioactive waste. The long-term goal of European fusion research is the joint creation of prototype reactors for power stations1. The Panel acknowledges the remarkable progress in fusion R&D already achieved. Still, pivotal developments have to be achieved on the path towards reliable and efficient fusion electricity production at high availability. The Panel is impressed by the quality of the research community and the coherence of the programme, and supports its thrust for a rapid and efficient development towards the ultimate objective. The launch of the ITER project in an international partnership is the most recent major advance, one which introduces a step change in the European programme requiring reorientation and concentration on core activities with an increasing emphasis on fusion technology. The European fusion laboratories will play the essential role for the necessary R&D, for fusion engineering, and for providing skilled staff and a pool of expertise. Interaction with industry, based on the large-scale industrial contributions to ITER construction, should be developed in the longer term towards industrial leadership. I. An integrated vision on the required R&D The Panel strongly supports the determination of EFDA, F4E and the fusion laboratories in pursuing a streamlined, vigorous fusion energy oriented programme and addressing consistently the complex range of interconnected R&D objectives in fusion physics, technology and engineering. This necessary core programme can be structured in seven interrelated missions along the path from ITER towards DEMO and a commercial fusion power plant2. For this core programme the Panel, with a particular view to optimise the progress on ITER and accelerate the development of fusion, provides the following recommendations. During the period of ITER construction the key strategic R&D emphasis should be on A1) Supporting ITER construction and preparation for operation specifically by • Accomplishing outstanding R&D issues and exploiting recent R&D progress for the design and construction of ITER systems and components; • Resolving ITER physics issues which might limit the performance, constrain the accessible parameter space and/or impact on the operational reliability; 1 For details see Annex I. 2 First it is necessary to achieve (1) burning plasmas in ITER which must then be shown (2) to allow reliable operation; the future devices must be equipped with suitable (3) first wall materials and should operate in (4) long pulses and (ultimately in) steady-state. Furthermore, it is simultaneously necessary to (5) predict fusion performance for ITER and the further development steps towards a commercial plant and to develop and qualify (6) materials and components suitable for the ultimate full-power nuclear operation. Progress on ITER and by accompanying R&D should be brought together in a (7) DEMO integrated design oriented towards high availability and efficient electricity production.
Recommended publications
  • Engineering Optimization of Stellarator Coils Lead to Improvements in Device Maintenance
    2015 IEEE 26th Symposium on Fusion Engineering (SOFE 2015) Austin, Texas, USA 31 May – 4 June 2015 IEEE Catalog Number: CFP15SOF-POD ISBN: 978-1-4799-8265-3 Copyright © 2015 by the Institute of Electrical and Electronics Engineers, Inc All Rights Reserved Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved. ***This publication is a representation of what appears in the IEEE Digital Libraries. Some format issues inherent in the e-media version may also appear in this print version. IEEE Catalog Number: CFP15SOF-POD ISBN (Print-On-Demand): 978-1-4799-8265-3 ISBN (Online): 978-1-4799-8264-6 ISSN: 1078-8891 Additional Copies of This Publication Are Available From: Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: [email protected] Web: www.proceedings.com TABLE OF CONTENTS ENGINEERING OPTIMIZATION OF STELLARATOR COILS LEAD TO IMPROVEMENTS IN DEVICE MAINTENANCE ..................................................................................................................................................1 T. Brown, J. Breslau, D. Gates, N. Pomphrey, A. Zolfaghari NSTX TOROIDAL FIELD COIL TURN TO TURN SHORT DETECTION .................................................................7 S. Ramakrishnan, W.
    [Show full text]
  • Overview of Versatile Experiment Spherical Torus (VEST)
    Overview of Versatile Experiment Spherical Torus (VEST) Y.S. Hwang and VEST team March 29, 2017 CARFRE and CATS Dept. of Nuclear Engineering Seoul National University 23rd IAEA Technical MeetingExperimental on Researchresults and plans of Using VEST Small Fusion Devices, Santiago, Chille Outline Versatile Experiment Spherical Torus (VEST) . Device and discharge status Start-up experiments . Low loop voltage start-up using trapped particle configuration . EC/EBW heating for pre-ionization . DC helicity injection Studies for Advanced Tokamak . Research directions for high-beta and high-bootstrap STs . Preparation of long-pulse ohmic discharges . Preparation for heating and current drive systems . Preparation of profile diagnostics Long-term Research Plans Summary 1/36 VEST device and Machine status VEST device and Machine status 2/36 VEST (Versatile Experiment Spherical Torus) Objectives . Basic research on a compact, high- ST (Spherical Torus) with elongated chamber in partial solenoid configuration . Study on innovative start-up, non-inductive H&CD, high and innovative divertor concept, etc Specifications Present Future Toroidal B Field [T] 0.1 0.3 Major Radius [m] 0.45 0.4 Minor Radius [m] 0.33 0.3 Aspect Ratio >1.36 >1.33 Plasma Current [kA] ~100 kA 300 Elongation ~1.6 ~2 Safety factor, qa ~6 ~5 3/36 History of VEST Discharges • #2946: First plasma (Jan. 2013) • #10508: Hydrogen glow discharge cleaning (Nov. 2014) Ip of ~70 kA with duration of ~10 ms • #14945: Boronization with He GDC (Mar. 2016) Maximum Ip of ~100 kA • # ??:
    [Show full text]
  • Time Evaluation of Diamagnetic Loop and Mirnov Oscillations in a Major Plasma Disruption and Comparison with a Normal Shot
    International Nano Letters https://doi.org/10.1007/s40089-018-0259-x ORIGINAL ARTICLE Time evaluation of diamagnetic loop and Mirnov oscillations in a major plasma disruption and comparison with a normal shot R. Sadeghi1 · Mahmood Ghoranneviss1 · M. K. Salem1 Received: 21 November 2018 / Accepted: 7 December 2018 © The Author(s) 2018 Abstract In this paper, plasma disruption was investigated in IR-T1 tokamak. Moreover, the time evaluation of plasma parameters such as plasma current, Ip; loop voltage, Vloop; power heating; and safety factor was illustrated. The results of diamagnetic loop and Mirnov oscillations in a major disruption were compared with their results in a normal shot. In addition, plasma disruption in diferent tokamaks was investigated and the results were compared with the IR-T1 tokamak. Keywords Disruption · Runaway electrons · Mirnov coils · Diamagnetic loop · Tokamak · MHD instability Introduction tokamak disruptions cause plasma confinement to be destroyed by restriction of current and density which ends Among various tools of magnetic confnement, tokamak to large mechanical stresses. Plasma disruption is caused containing hot plasma is one of the best and developed by strong stochastic magnetic feld formed due to nonlin- devices [1]. Tokamaks are divided into two groups: frst, the earity excited low-mode number magneto–hydro–dynamics large tokamaks for studying large plasmas such as DIII-D (MHD) modes. The safety factor (q) is very important in [2] and Tore–Supra [3] with high-cost testing conditions and determining stability and transport theory [9–13]. The paper second, small tokamaks such as STOR-M [4] and ISTTOK is organized as follows: in Sect.
    [Show full text]
  • Edge Turbulence in ISTTOK: a Multi-Code Fluid Validation B Dudson, W Gracias, R Jorge, a Nielsen, J Olsen, P Ricci, C Silva, P
    Edge turbulence in ISTTOK: a multi-code fluid validation B Dudson, W Gracias, R Jorge, A Nielsen, J Olsen, P Ricci, C Silva, P. Tamain, G. Ciraolo, N Fedorczak, et al. To cite this version: B Dudson, W Gracias, R Jorge, A Nielsen, J Olsen, et al.. Edge turbulence in ISTTOK: a multi-code fluid validation. Plasma Physics and Controlled Fusion, IOP Publishing, 2021. hal-03179634 HAL Id: hal-03179634 https://hal.archives-ouvertes.fr/hal-03179634 Submitted on 24 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Edge turbulence in ISTTOK: a multi-code fluid validation B. D. Dudson1, W. A. Gracias2, R. Jorge3;4, A. H. Nielsen5, J. M. B. Olsen5, P. Ricci3, C. Silva4, P. Tamain6, G. Ciraolo6, N. Fedorczak6, D. Galassi3;7, J. Madsen5, F. Militello8, N. Nace6, J. J. Rasmussen5, F. Riva3;8, E. Serre7 1York Plasma Institute, Department of Physics, University of York YO10 5DQ, UK 2Universidad Carlos III de Madrid, Leganés, 28911, Madrid, Spain 3École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland 4Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal 5Department of Physics, Technical University of Denmark, Fysikvej, DK-2800 Kgs.-Lyngby, Denmark 6IFRM, CEA Cadarache, F-13108 St.
    [Show full text]
  • H-Mode Transition Physics Close to DN on MAST and Its Applications to Other Tokamaks
    20th IAEA FUSION ENERGY CONFERENCE 1-6 November 2004 Vilamoura, Portugal Organized by the International Atomic Energy Agency Hosted by the Government of Portugal through: INSTITUTO SUPERIOR TÉCNICO Centro de Fusão Nuclear www.cfn.ist.utl.pt Book of Abstracts IAEA-CN-116 20th IAEA Fusion Energy Conference 2004 Book of Abstracts Contents Overview (OV) 1 OV/1-1 ·Overview of JT-60U Progress towards Steady-state Advanced Tokamak . 2 OV/1-2 ·Overview of JET results . 2 OV/1-3 ·Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak 2 OV/1-4 ·Confinement and MHD stability in the Large Helical Device . 2 OV/1-5 ·Overview of ASDEX Upgrade Results . 3 OV/2-1 ·Overview of Zonal Flow Physics . 3 OV/2-2 ·Steady-state operation of Tokamaks: key physics and technology developments on Tore Supra. 3 OV/2-3 ·Progress Towards High Performance Plasmas in the National Spherical Torus Experiment (NSTX) . 4 OV/2-4 ·Overview of MAST results . 4 OV/2-5 ·Overview of Alcator C-Mod Research Program . 5 OV/3-1 ·Recent Advances in Indirect Drive ICF Target Physics . 5 OV/3-2 ·Laser Fusion research with GEKKO XII and PW laser system at Osaka . 5 OV/3-3 ·Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics: Charting the Path to Thermonuclear Ignition . 5 OV/3-4 ·Acceleration Technology and Power Plant Design for Fast Ignition Heavy Ion Inertial Fusion Energy . 6 OV/3-5Ra ·Progress on Z-Pinch Inertial Fusion Energy . 6 OV/3-5Rb ·Wire Array Z pinch precursors, implosions and stagnation .
    [Show full text]
  • Italy . Frascati Tokamak Upgrade . Superconductors
    it enea the italian fusion programme is coordinated by EnEa (agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile). EnEa works with linked third parties: universities, research institutes, and industries. institutes carrying out fusion research along with EnEa include plasma physics institute (ifp), Consorzio rfX, national research Council of italy (Cnr), national institute for nuclear physics (infn) and university of padova. about 600 professionals work on fusion research in institutions across italy. enea • EnEa centre at frascati houses the frascati tokamak upgrade (ftu) tokamak, a high- magnetic-field, high-plasma-density tokamak; it investigates radio-frequency plasma heating, control techniques and plasma-wall interaction with liquid metal walls • frascati neutron generator, a medium intensity 14-mev neutron generator, is used for experimental validation of fusion nuclear data and codes. • studies and development of superconductor materials are carried out at the EnEa superconductivity laboratory • EnEa’s high heat flux Components laboratory set up and tested the manufacturing process and a dedicated facility for the fabrication of full scale itEr divertor target prototypes • Design and experimental validation of liquid metal technology for breeding blankets can be done at EnEa centre at Brasimone. ConsoRZio RFX • Consorzio rfX staff are involved in the scientific exploitation and upgrade of the rfX-mod experiment, a flexible device which can be operated both as a high current reversed field pinch
    [Show full text]
  • Tokamak Energy April 2019
    Faster Fusion through Innovations M Gryaznevich and Tokamak Energy Ltd. Team FusionCAT Webinar 14 September 2020 © 2020 Tokamak Energy Tokamak 20202020 © Energy Tokamak Fusion Research – Public Tokamaks JET GLOBUS-M Oxford, UK StPetersburg, RF COMPASS KTM Prague, CZ (1) Kurchatov, KZ (3) T15-M Alcator C-Mod Moscow STOR-M Cambridge, MA MAST Saskatoon, SK Oxford, UK ASDEX KSTAR ITER(1)(2) / WEST Garching, DE Daejeon, KR LTX / NSTX Cadarache, FR FTU HL-2 (1) Pegasus Princeton, NJ Frascati, IT JT-60SA DIII-D Madison, WI TCV Chengdu, CN QUEST Naka, JP San Diego, CA ISTTOK Lausanne, CH Kasuga, JP Lisbon, PT SST-1 / ADITY EAST Gandhinagar, IN Hefei, CN Conventional Tokamak • Fusion research is advancing Spherical Tokamak • However, progress towards Fusion Power is constrained Note: Tokamaks are operating unless indicated otherwise. (1) Under construction. (2) The International Thermonuclear Experimental Reactor (“ITER”) megaproject is supported by China, the European Union, India, Japan, Korea, Russia and the United States. © 2020© Energy Tokamak (3) No longer in use. 2 Fusion Development – Private Funding Cambridge, MA Langfang, PRC Vancouver, BC Los Angeles, CA Orange County, CA • Common goal of privately and publicly Oxford, UK Oxford, UK funded Fusion research is to develop technologies and Fusion Industry • At TE, we have identified the key technology Conventional Tokamak Spherical Tokamak gaps needed to create a commercial fusion Non-Tokamak Technology reactor and then used Technology Roadmapping as an approach chart our path. © 2020©
    [Show full text]
  • Interface of EPICS with Marte for Real-Time Application
    1 Interface of EPICS with MARTe for Real-time Application October 23, 2012 Sangwon Yun Interface of EPICS with MARTe for Real-time Applications, October 23, 2012 2 Outlines Introduction ITER Task Overview of main technical subjects Multi-threaded Application Real-Time executor (MARTe) Portable Channel Access Server (pCAS) Interface of EPICS with MARTe The result of performance evaluation of MARTe Conclusions Acknowledgements and references Interface of EPICS with MARTe for Real-time Applications, October 23, 2012 3 Introduction ITER Task CODAC HPC (High Performance Computer) Dedicated computers running plasma control algorithms The Plasma Control System(PCS) requires the hard real-time operation The hard real-time control system requires the predictability in response time and deterministic upper bound in latency. In this regard, RTOS and real-time software framework are required to achieve those ITER Task : Evaluation and Demonstration of ITER CODAC Technologies at KSTAR Subtask : Implement density feedback control and verify its performance in a running device • To collect elements for decision making on PCS software framework • Deploy different PCS software framework based on KSTAR PCS on modified Linux and MARTe on RTOS for comparison KSTAR PCS Modified Linux RTOS (Based on RHEL) (MRG Realtime) See: Fast Controller Workshop, Feb 28, 2011. ITER IO Interface of EPICS with MARTe for Real-time Applications, October 23, 2012 4 Introduction MARTe framework for Hard Real-time Control System MARTe is a solution to be considered for a Real-time control system • The three considered system histogram The optimized reference program EPICS IOC MARTe application • Test conditions Run the system by providing an external sampling clock of 1 kHz 30,000 cycles Priority of the thread for ADC has been set to Latency distribution the highest CPU affinity (excepts EPICS IOC) • Result Reference EPICS IOC MARTe MARTe provides a shorter and, above all, Prog.
    [Show full text]
  • Imaging and Probe Techniques for Wave Dispersion Estimates in Magnetized Plasmas
    Imaging and Probe Techniques for Wave Dispersion Estimates in Magnetized Plasmas by A. D. Light B.A./B.S., Case Western Reserve University, 2005 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics 2013 This thesis entitled: Imaging and Probe Techniques for Wave Dispersion Estimates in Magnetized Plasmas written by A. D. Light has been approved for the Department of Physics Prof. Tobin Munsat Prof. Martin Goldman Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Light, A. D. (Ph.D., Physics) Imaging and Probe Techniques for Wave Dispersion Estimates in Magnetized Plasmas Thesis directed by Prof. Tobin Munsat Fluctuations in magnetized laboratory plasmas are ubiquitous and complex. In addition to deleterious effects, like increasing heat and particle transport in magnetic fusion energy devices, fluctuations also provide a diagnostic opportunity. Identification of a fluctuation with a particular wave or instability gives detailed information about the properties of the underlying plasma. In this work, diagnostics and spectral analysis techniques for fluctuations are developed and applied to two different laboratory plasma experiments. The first part of this dissertation discusses imaging measurements of coherent waves in the Controlled Shear Decorrelation Experiment (CSDX) at the University of California, San Diego. Visible light from ArII line emission is collected at high frame rates using an intensified digital camera.
    [Show full text]
  • Book of Abstracts Contribution: T1 / Beam Plasmas and Inertial Fusion
    Book of Abstracts Contribution: T1 / Beam Plasmas and Inertial Fusion Exploring HED physics, ICF dynamics and lab astrophysics with advanced nuclear diagnostics Chikang Li Massachusetts Institute of Technology, Cambridge, MA 02139, USA Significant progress has recently been made in developing advanced nuclear diagnostics for the OMEGA laser facility and the National Ignition Facility (NIF). Both self-emitted fusion products and backlighting nuclear particles have been measured and used to study a large range of basic physics of high-energy-density (HED) plasmas. The highlights of these achievements are manifested by numerous recent publications. For ignition science in inertial-confinement fusion (ICF) experiments, for example, these works have helped to advance our understanding of kinetic effects in exploding-pusher ICF implosions and our understanding of NIF capsule implosion dynamics and symmetry. For basic physics in HED plasmas and laboratory astrophysics, our research contributed to the understanding of nuclear plasma science, the generation and reconnection of self-generated spontaneous electromagnetic fields and associated plasma instabilities, high-Mach-number plasma jets, Weibel-mediated electromagnetic collisionless shocks, and charged-particle stopping power in various laser-produced HED plasmas. In this Tutorials and Topical Lecture, we will present details of these researches. The work described herein was performed in part at the LLE National Laser User’s Facility (NLUF), and was supported in part by US DOE, LLNL and LLE. 3rd European Conference on Plasma Diagnostics (ECPD), 6-9 May 2019, Lisbon, Portugal https://www.ipfn.tecnico.ulisboa.pt/ECPD2019/ Contribution: T2 / Basic and Astrophysical Plasmas Detection of the missing baryons by studying the lines from the Warm Hot Intergalactic Medium (WHIM) F.
    [Show full text]
  • EX/P5-8 Effects of Viscosity on Magnetohydrodynamic Behaviour
    1 EX/P5-8 Effects of Viscosity on Magnetohydrodynamic Behaviour During Limiter Biasing on the CT-6B Tokamak P. Khorshid 1), L. Wang 2), M. Ghoranneviss 3), X.Z. Yang 2), C.H. Feng 2) 1) Department of Physics, Islamic Azad University, Mashhad, Iran, 2) Institute of Physics, Chinese Academy of Sciences, Beijing, China 3) Plasma Physics Research Center, Islamic Azad University, Tehran, Iran E-mail: [email protected] Abstract. Effects of viscosity on magnetohydrodynamics behaviour during limiter biasing in the CT-6B Tokamak has been investigated. The results shown that subsequent to the application of a positive bias, a decrease followed by an increase in the frequency of magnetic field fluctuations was observed. With contribution of viscous force effects in the radial force balance equation for Limiter Biasing, in terms of the nonstationarity model, it allows us to identify the understanding physics responsible for change in the Mirnov oscillations that could be related to poloidal rotation velocity and radial electric field. It could be seen that the time scale of responses to biasing is important. The response of ∇pi, decrease of poloidal rotation velocity, the edge electrostatics and magnetic fluctuations to external field have been investigated. The results shown that momentum balance equation with considering viscous force term can be use for modeling of limiter biasing in the tokamak. 1. Introduction Many experiments have shown the importance of the radial electric field in improved confinement states and several theories can explain the transition mechanism. There are several methods for controlling the radial electric field externally [1,2]. Edge biasing experiments have been found to be important in modifying edge turbulence and transport, but the mechanism of biasing penetration in edge fluctuations and its levels are different with respect to devices operation.
    [Show full text]
  • THE BIG STEP from ITER to DEMO J. Ongena , R.Koch, Ye.O
    THE BIG STEP FROM ITER TO DEMO J. Ongena , R.Koch, Ye.O.Kazakov Laboratorium voor Plasmafysica - Laboratoire de Physique des Plasmas Koninklijke Militaire School - Ecole Royale Militaire Association"EURATOM - Belgian State", B-1000 Brussels, Belgium Partner in the Trilateral Euregio Cluster (TEC) N. Bekris European Fusion Development Agreement JET Close Support Unit, Culham Science Centre Culham, OX14 3DB, United Kingdom D.Mazon Institut de Recherche sur la Fusion par Confinement Magnetique CEA Cadarache, 13108 St Paul-lez-Durance, France ABSTRACT ITER. Reactor studies are also being developed for Helical Devices (see e.g. [1-4]). However, a decision on a next step Extrapolation of the knowledge base towards a future stellarator/helical device can only take place when the main fusion power reactor is discussed. Although fusion research results of the current large helical devices in operation or has achieved important milestones since the start and construction have been obtained. The largest helical device continues achieving successes, we show that there are still currently in operation is LHD (Large Helical Device, in the important challenges that have to be addressed before the National Institute for Fusion Science (NIFS), close to construction and operation of an economical fusion power Nagoya, Japan). The construction of the largest stellarator reactor. Both physics and technological questions have to in the world Wendelstein 7-X (Max-Planck Institute, be solved. ITER is a significant step that will lead to major Greifswald, Germany) is nearly finished with first progress; for a DEMO reactor however, there will still be operations foreseen for beginning 2015. In this paper, we outstanding physics and engineering questions that require will therefore restrict ourselves to the discussion of a further R&D.
    [Show full text]