Feeltone Flyer 2017

Total Page:16

File Type:pdf, Size:1020Kb

Feeltone Flyer 2017 Bass Tongue Drums Monchair 40 monochord strings in either monochord tuning New improved design and a new developed tuning ( bass and overtone) or Tanpura (alternating set of 4 technique which improves the sound volume and strings ) which are easy to play by everyone intuitively Natural Acoustic Musical Instrument for: intensifies the vibration. These Giant Bass Tongue Drums without any prior musical experience. Therapy, Music making, Music Therapy , were created especially for music therapists. Soundhealing, Wellness, Meditaions…. Approaching the chair with a gentle and supportive made in Germany Great drumming experience for small and big people attitude can bring joy and healing to your client and alone or together. yourself. The elegant appearance and design is the perfect The feeltone Line fit and addition for a variety of locations, such as: modern • Monochord Table The vibration can be felt very comfortably throughout the offices, clinics, therapeutic facilities, private practices, 60 strings, rich vibration and overtones, body. All tongue drums have an additional pair of feet on wellness center and in your very own home. for hand on treatments. the side enabling them to be flipped over 90 degrees Here is what one of our therapist working with the • Soundwave allowing a person to lay on the drum while you are monchair is saying: combines the power of monochords with a "....monchair both doubles as an office space saver and a playing. Feel the vibration and the rhythm in your body. bass tongue drum, in Ash or Padouk therapeutic vibrational treatment chair for my patients. monchair- Singing Chair 40 Because of its space saving feature I am able to also use • This therapeutic musical furniture has been used in many monochord or tempura strings hospitals, clinics, kindergartens, senior homes and homes the overtone rich Monochord instruments while the client is Bass Tongue drums in a seated position. Playing them monchair allows me to • for the handicapped with amazing results for many fine tuned in Padouk, or open tuned in ash, different kinds of people. quickly get my clients into a relax state without the need different sizes from large enough to lay on to to change position. The harmonious sounds support my handheld Some people enjoy the vibration massage. Hyperactive work with more ease and brings joy to myself and my • Monochords children can be calmed with the experience of the deep clients. They confirm this experience with their feedback from 60 strings mediation monochord to sound. Acoustically handicapped people can experience and their radiant and beaming faces after each session. " KoTaMo Concert monochords sound through vibration. Claudia D., a speech therapist from germany • Monolina & Monolini 34 or 21 string Body Therapy monochords in These Drums are available with precision pentatonic You can chose between two four different flavors A,C,F,D, can be placed tuning in Padouk or open tuned in ash. different tunings for the 40 onto the body for sound massage. Please check our website for available tunings and sizes. strings • feeltone training • Monochord Tuning free 30 min Skype training monochord B-8TP-120 Bass-8-tones Padouk 18 overtone, 22 bass , d training with each purchase D pentat. DEGABdeg 47 x 16 x 18’ • Tambura tuning • Level I & II Monochord trainings $1950 set of 4 strings A d d D with our feeltone certified trainer alternating. B-8Te-120U Bass-8-tones Ash available @ feeltoneusa: open tuned 47 x 16 x 18 $1690 monchair $2150 shipping $250 • Hokema Kalimbas 2 mallets included with each drum. • Zenko drums Metal Sound shipping $250 for more information visit our website: www.feeltoneusa.com feeltone USA Distribution Gabriele Schwibach [email protected] www.feeltoneusa.com 707-972-0196 POBox 690 Woodacre CA 94973 Type to enter text Type to enter text Monolina, Monolini Soundwave in sustainable Monochord table Therapy Monochords harvested Padouk or ergonomically ash version Like a boat surfing on waves of sound and vibration, the Soundwave is carrying you safe and secure on your We redesigned the structural elements inside the table Monolini & Monolina Sound journey. and improved the resonance and the duration of the Easy to play and transport for vibration for the table. The table now supports clients up therapy, meditation Since its introduction in 2003 the Soundwave found its way to 330 pounds, while at the same time we where able to and music-making. into hospitals, rehabilitation centers, homes of the elderly, reduce the weight of the Monochord Table by 30%, so it Monolini - 4 flavours C, A ,F, D $775 - $799 schools, kindergarten and people with special needs. is easier for you to move the table. 21 strings, bass-overtone-fifth The Soundwave is the first instrument that combines a Your choice of wood ( Ash and Cherry) for the visible Monolina - 4 flavours C, A ,F, D $1150 - $1250 Monochord and a Tongue Drum –a real multi-tone instru- frame, legs and the cross bar connecting the legs. 34 strings, bass-overtone-fifth ment for Soundmassage that affects both, body and mind Your choice of Height (28” - 32”) for the table so you • 5 Koto bridges and creates deep relaxation and a mediative state. can work on it standing upright. Our table has • universal template for minor or major tuning The Soundwave has a 40 stringed Monochord with 18 engineered self supporting structure that allows our table • use it for mediation, sound massage, concerts or place blank, 18 covered and 4 extra thick golden strings which to be height enough you can work on your client standing it on the body to feel the vibration in a sound are tuned on the same tone but with one octave difference up. While at the same time support the weight of the massage to the key note and create a rich variety of sound and vibration. between the blank and the covered strings. A smooth and person laying on the table, and holds the sound quality steady play unfolds overtone sounds which opens the mind; wether someone lays on the table or not. shipping $99 the humming of the thick, covered strings stimulate the We rearrange the spacing of the strings which gives you Carry on Bag $95 body through vibration. The sound and feeling will carry you more distance between the strings. That allows you to Larger Monochords like a wave into a deep relaxation and open the mind to play the strings slow and evenly with more space for your • Concert Monochord allow you to explore new places inside. hand to move from string to string. The Tongue Drum with 4 tones is giving structure and • Octave -Tanpura Monochord • Mediation Monochord bringing you “back on the ground”. The deep and earthy For the KLL-2 60 string version has 30 blank steel strings • can be played in two positions: standing tunes vibrate like the heartbeat. in the middle, and each 15 Bass Phosphor Bronze strings upright or horizontal. on both sides. • All Monochords now have an enhanced The Soundwave with a straight surface has an additional corpus size combined with a changed hole for the face, allowing the client to lay face down for You can flip the top of the monochord over so the strings interior structure as well as more and special strings that effectuates a brilliant Hands on treatment. can be tuned more easily and you can also use the and long lingering sound. Monochord table as a large music instruments. • All monochords are made of ash- and Configure your own version( only available in Ash) New added accessories and choices to personalize your cherrywood. - flat (with face hole) or curved surface, Monochord table. Contact us for more information. • White pearls can be used to pitch the - Monochord side only www.feeltoneusa.com. tone quick and easy for fine-tuning. - Drum side only $5850, shipping $1850 • included tuning key, tuner, replacement - Monochord & Drum side strings.. Monochords $1250 - $1850 Ash Soundwave with monochord & drum side $5875 shipping $150 shipping $1850 feeltone USA Distribution Gabriele Schwibach [email protected] www.feeltoneusa.com 707-972-0196 POBox 690 Woodacre CA 94973.
Recommended publications
  • The Science of String Instruments
    The Science of String Instruments Thomas D. Rossing Editor The Science of String Instruments Editor Thomas D. Rossing Stanford University Center for Computer Research in Music and Acoustics (CCRMA) Stanford, CA 94302-8180, USA [email protected] ISBN 978-1-4419-7109-8 e-ISBN 978-1-4419-7110-4 DOI 10.1007/978-1-4419-7110-4 Springer New York Dordrecht Heidelberg London # Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Contents 1 Introduction............................................................... 1 Thomas D. Rossing 2 Plucked Strings ........................................................... 11 Thomas D. Rossing 3 Guitars and Lutes ........................................................ 19 Thomas D. Rossing and Graham Caldersmith 4 Portuguese Guitar ........................................................ 47 Octavio Inacio 5 Banjo ...................................................................... 59 James Rae 6 Mandolin Family Instruments........................................... 77 David J. Cohen and Thomas D. Rossing 7 Psalteries and Zithers .................................................... 99 Andres Peekna and Thomas D.
    [Show full text]
  • Fretted Instruments, Frets Are Metal Strips Inserted Into the Fingerboard
    Fret A fret is a raised element on the neck of a stringed instrument. Frets usually extend across the full width of the neck. On most modern western fretted instruments, frets are metal strips inserted into the fingerboard. On some historical instruments and non-European instruments, frets are made of pieces of string tied around the neck. Frets divide the neck into fixed segments at intervals related to a musical framework. On instruments such as guitars, each fret represents one semitone in the standard western system, in which one octave is divided into twelve semitones. Fret is often used as a verb, meaning simply "to press down the string behind a fret". Fretting often refers to the frets and/or their system of placement. The neck of a guitar showing the nut (in the background, coloured white) Contents and first four metal frets Explanation Variations Semi-fretted instruments Fret intonation Fret wear Fret buzz Fret Repair See also References External links Explanation Pressing the string against the fret reduces the vibrating length of the string to that between the bridge and the next fret between the fretting finger and the bridge. This is damped if the string were stopped with the soft fingertip on a fretless fingerboard. Frets make it much easier for a player to achieve an acceptable standard of intonation, since the frets determine the positions for the correct notes. Furthermore, a fretted fingerboard makes it easier to play chords accurately. A disadvantage of frets is that they restrict pitches to the temperament defined by the fret positions.
    [Show full text]
  • Mersenne and Mixed Mathematics
    Mersenne and Mixed Mathematics Antoni Malet Daniele Cozzoli Pompeu Fabra University One of the most fascinating intellectual ªgures of the seventeenth century, Marin Mersenne (1588–1648) is well known for his relationships with many outstanding contemporary scholars as well as for his friendship with Descartes. Moreover, his own contributions to natural philosophy have an interest of their own. Mersenne worked on the main scientiªc questions debated in his time, such as the law of free fall, the principles of Galileo’s mechanics, the law of refraction, the propagation of light, the vacuum problem, the hydrostatic paradox, and the Copernican hypothesis. In his Traité de l’Harmonie Universelle (1627), Mersenne listed and de- scribed the mathematical disciplines: Geometry looks at continuous quantity, pure and deprived from matter and from everything which falls upon the senses; arithmetic contemplates discrete quantities, i.e. numbers; music concerns har- monic numbers, i.e. those numbers which are useful to the sound; cosmography contemplates the continuous quantity of the whole world; optics looks at it jointly with light rays; chronology talks about successive continuous quantity, i.e. past time; and mechanics concerns that quantity which is useful to machines, to the making of instruments and to anything that belongs to our works. Some also adds judiciary astrology. However, proofs of this discipline are The papers collected here were presented at the Workshop, “Mersenne and Mixed Mathe- matics,” we organized at the Universitat Pompeu Fabra (Barcelona), 26 May 2006. We are grateful to the Spanish Ministry of Education and the Catalan Department of Universities for their ªnancial support through projects Hum2005-05107/FISO and 2005SGR-00929.
    [Show full text]
  • BRO 5 Elements Sounds 2020-08.Indd
    5 ELEMENTS SOUNDS SOUND HEALING and NEW WAVES INSTRUMENTS ANCIENT SOURCES SOUND HEALING Ancient wisdom traditions realized that our human The role of sound and music in the process of body, as well as the entire cosmos, is built and func- growth, regeneration, healing and integration has tions according to primal chaordic principles – unify- filled the human understanding with wonder and awe ing apparent chaos in an ordered matrix- and that since ancient times. Facing today’s world of tremen- music is a direct reflection of the order and harmony dous inner, social and global challenges, it is not of the cosmos and therefore offers a means and op- surprising that this has been coming to the fore portunity to experience playfully, or in concentrated again. Rediscovered and revived it now finds now ritual, these elementary parameters of creation. On expression in manifold innovative applications of our amazingly diverse planet we can still can observe vibrational, energetic and consciousness based new and hear musical expressions of the different stages disciplines of light and sound healing, reconnecting of the development of human civilization, and its role archaic practices, sacred science traditions and the in archaic tribal cultures, orthodox religious communi- latest quantum field approaches. ties, mystic practices, all the way to contemporary urban youth rave parties and trance dances. Through this living heritage we gain a genuine impression of the role of music in civilization and its function in ceremony, ritual, healing, education and celebration. The important role and magic of music in the different stages of the human evolutionary journey and cycles of life have inspired us to explore the functioning and the effects of sound and music on our psycho-physi- ological constitution and social life.
    [Show full text]
  • Experimental Investigations of T¯Anpur¯A Acoustics
    Experimental investigations of t¯anpur¯aacoustics Rahul Pisharody and Anurag Gupta Department of Mechanical Engineering, Indian Institute of Technology Kanpur, 208016, India. [email protected] 44 1 Summary shown in the bottom-most picture in the right side of Figure 1. The purpose of this brief note is to present 45 2 High-speed video camera recordings are used to ob- certain experimental results which elucidate the na- 46 3 serve dynamics of an actual t¯anpur¯astring. The tem- ture of t¯anpur¯asound while emphasizing the role of 47 4 poral evolution of the frequency spectrum is obtained j¯ıv¯a. 48 5 by measuring the nut force during the string vibra- We use high-speed video camera recordings of the 49 6 tion. The characteristic sonorous sound of t¯anpur¯ais vibration of a single t¯anpur¯astring to capture the 50 7 attributed to not only the presence of a large num- string motion close to the bridge and at the nut (see 51 8 ber of overtones but also to the dominance of certain the videos provided as supplementary material). The 52 9 harmonics over the fundamental, the latter manifest- latter is used to measure the nut force and to subse- 53 10 ing itself as a certain cascading effect. The nature of quently plot 3-dimensional spectrograms. The previ- 54 11 sound is shown to be strongly dependent on the ini- ous t¯anpur¯aexperimental measurements were based 55 12 tial plucking amplitude of the string. The stability either on the audio signals [7, 8] or the sensors placed 56 13 of the in-plane vertical motion of the string is also between the string and the nut [9].
    [Show full text]
  • AN INTRODUCTION to MUSIC THEORY Revision A
    AN INTRODUCTION TO MUSIC THEORY Revision A By Tom Irvine Email: [email protected] July 4, 2002 ________________________________________________________________________ Historical Background Pythagoras of Samos was a Greek philosopher and mathematician, who lived from approximately 560 to 480 BC. Pythagoras and his followers believed that all relations could be reduced to numerical relations. This conclusion stemmed from observations in music, mathematics, and astronomy. Pythagoras studied the sound produced by vibrating strings. He subjected two strings to equal tension. He then divided one string exactly in half. When he plucked each string, he discovered that the shorter string produced a pitch which was one octave higher than the longer string. A one-octave separation occurs when the higher frequency is twice the lower frequency. German scientist Hermann Helmholtz (1821-1894) made further contributions to music theory. Helmholtz wrote “On the Sensations of Tone” to establish the scientific basis of musical theory. Natural Frequencies of Strings A note played on a string has a fundamental frequency, which is its lowest natural frequency. The note also has overtones at consecutive integer multiples of its fundamental frequency. Plucking a string thus excites a number of tones. Ratios The theories of Pythagoras and Helmholz depend on the frequency ratios shown in Table 1. Table 1. Standard Frequency Ratios Ratio Name 1:1 Unison 1:2 Octave 1:3 Twelfth 2:3 Fifth 3:4 Fourth 4:5 Major Third 3:5 Major Sixth 5:6 Minor Third 5:8 Minor Sixth 1 These ratios apply both to a fundamental frequency and its overtones, as well as to relationship between separate keys.
    [Show full text]
  • III IIHIII USOO5581043A United States Patent (19) 11 Patent Number: 5,581,043 Bowar 45) Date of Patent: Dec
    III IIHIII USOO5581043A United States Patent (19) 11 Patent Number: 5,581,043 Bowar 45) Date of Patent: Dec. 3, 1996 (54) OVERTONE ENHANCING MUSICAL 5,355,756 10/1994 Geiger ............ ... 84/270 INSTRUMENT 5,497,688 3/1996 Ruiz-carrero ............................. 84/29 76 Inventor: RichardS. D. Bowar, 1305 Navajo Trail, Primary Examiner-Patrick J. Stanzione 76 Alabaster, Ala. 35.007 Attorney, Agent, or Firm-Wm. Randall May (57) ABSTRACT 2121 Appl. No.:NO. 605,55 7 An acoustical instrument designed to promote and enhance 22 Filed: Feb. 20, 1996 the production of musical overtones is disclosed. The instru 6 ment is capable of reinforcing, and thereby enhancing, the (51) int. Cl. ....................................................... G10D 3/00 resonance of naturally produced musical overtones and can 52) U.S. Cl. ................................... 84/291; 84/294 be adjusted to fine tune the overtone frequency of the 58) Field of Search .............................. 84/270, 275, 291, instrument to ambient atmospheric conditions. Adjustment 84/294, 267 baffles within the tone box of the instrument enable the user to change or adjust the wavelength of the music produced by 56 References Cited the instrument to more closely coincide with the overtone U.S. PATENT DOCUMENTS transmission capability of the ambient environment. Strings of specific length, diameter and placement are used to D. 161,075 12/1950 Alkire. achieve optimal production, enhancement and transmission 2,535,252 12/1950 Alkire ....................................... 34,267 of overtones with the device. 4,172,404 10/1979 Dopyera. ... 84,291 4,206,678 6/1980 Guerrero . ... 84/267 4,539,887 9/1985 Bjerkas ..................................... 84/314 10 Claims, 3 Drawing Sheets N-- N A - U.S.
    [Show full text]
  • Guitar Harmonics - Wikipedia, the Free Encyclopedia Guitar Harmonics from Wikipedia, the Free Encyclopedia
    3/14/2016 Guitar harmonics - Wikipedia, the free encyclopedia Guitar harmonics From Wikipedia, the free encyclopedia A guitar harmonic is a musical note played by preventing or amplifying vibration of certain overtones of a guitar string. Music using harmonics can contain very high pitch notes difficult or impossible to reach by fretting. Guitar harmonics also produce a different sound quality than fretted notes, and are one of many techniques used to create musical variety. Contents Basic and harmonic oscillations of a 1 Technique string 2 Overtones 3 Nodes 4 Intervals 5 Advanced techniques 5.1 Pinch harmonics 5.2 Tapped harmonics 5.3 String harmonics driven by a magnetic field 6 See also 7 References Technique Harmonics are primarily generated manually, using a variety of techniques such as the pinch harmonic. Another method utilizes sound wave feedback from a guitar amplifier at high volume, which allows for indefinite vibration of certain string harmonics. Magnetic string drivers, such as the EBow, also use string harmonics to create sounds that are generally not playable via traditional picking or fretting techniques. Harmonics are most often played by lightly placing a finger on a string at a nodal point of one of the overtones at the moment when the string is driven. The finger immediately damps all overtones that do not have a node near the location touched. The lowest-pitch overtone dominates the resulting sound. https://en.wikipedia.org/wiki/Guitar_harmonics 1/6 3/14/2016 Guitar harmonics - Wikipedia, the free encyclopedia Overtones When a guitar string is plucked normally, the ear tends to hear the fundamental frequency most prominently, but the overall sound is also 0:00 MENU colored by the presence of various overtones (integer multiples of the Tuning a guitar using overtones fundamental frequency).
    [Show full text]
  • LCC for Guitar - Introduction
    LCC for Guitar - Introduction In order for guitarists to understand the significance of the Lydian Chromatic Concept of Tonal Organization and the concept of Tonal Gravity, one must first look at the nature of string vibration and what happens when a string vibrates. The Lydian Chromatic concept is based in the science of natural acoustics, so it is important to understand exactly what happens acoustically to a note and the harmonic overtones that nature creates. A guitar string (or any string from any stringed instrument) vibrates when plucked or struck, producing a tone. The vibrating string creates a natural resonant series of vibration patterns which are called Harmonics. When you strike the string by itself, it vibrates back and forth and moves air molecules, producing sound. This is called a FUNDAMENTAL. (See fig 1.01a) Fig 1.01a – FUNADAMENTAL/OPEN STRING = A 440hz/440cps The fundamental vibration pattern on a single string. This is the FUNDAMENTAL vibration or tone and can be equated to a fixed amount of vibrations or cycles per second (cps) For example, consider this to be the open ‘A’ string producing the note A which in turn a universally considered to vibrate at 440cps or the equivalent of 440hz. If you loosen a guitar string you can visually see the result of the vibrations; the string makes a wide arc near the center and it narrows towards each end. When you touch the string exactly in the center (exactly between both ends or on the guitar the physical location is at the 12 th fret) it divides the vibration exactly in half and produces a note or tone exactly one octave higher in pitch.
    [Show full text]
  • Setu Kannel (Zither) Roland Suits Estonian National Museum Citole
    Reconstructing and making replicas of musical instruments from the conservator ´s/ instrument maker’s viewpoint Roland Suits Estonian National Museum Beginning from the second half of the 20th century people all soundbox, neck, fingerboard, bridge and nut have been made over the world started to take an interest in playing traditional from maple, the cover is sprucewood and the tuning pins are and folk music on the so-called authentic instruments. This made from pear-tree. created the necessity for making duplicates or reconstructions of instruments. Therefore it is only natural that people turn also Moldpill (Psalmodicone) to museums where this kind of instruments can be found. Moldpill, which is of Swedish origin and spread in Western Unfortunately, very few musical instruments have been pre- and Northern Estonia in the 19th century, has usually only one served in the world dating from the Middle Ages and earlier string (monochord) and is played with a bow. The instrument Renaissance period in Europe; yet, abundant iconographic ma- was used at learning and accompanying songs at schools and terial can be found about them – paintings, sculptures, mini- prayer houses and it was also used for the same purpose at atures, stained glass, and so on. Written records are also avail- home. At the beginning of the 19th century the moldpill was able. Photo No. 2 Photo No. 3 adjusted from the ancient monochord for schools. As concerns folk instruments, in Estonia they started to be col- to a violin and was given to Queen Elizabeth I as a present by lected at about the beginning of the 20th century, yet, many of Earl Leicester.
    [Show full text]
  • Marin Mersenne: Minim Monk and Messenger; Monotheism, Mathematics, and Music
    Marin Mersenne: Minim Monk and Messenger; Monotheism, Mathematics, and Music Karl-Dieter Crisman (Gordon College) Karl-Dieter Crisman is Professor of Mathematics at Gordon Col- lege, but first heard of Mersenne in both math and music courses as an undergraduate at Northwestern University. His main scholarly work focuses on open software resources for mathematics, and the mathematics of voting. He is certain Mersenne would see as many connections between those topics and faith as he did with the math of music and physics. Abstract Marin Mersenne is one of many names in the history of mathematics known more by a couple of key connections than for their overall life and accomplishments. Anyone familiar with number theory has heard of ‘Mersenne primes’, which even occasionally appear in broader media when a new (and enormous) one is discovered. Instructors delving into the history of calculus a bit may know of him as the interlocutor who drew Fermat, Descartes, and others out to discuss their methods of tangents (and more). In most treatments, these bare facts are all one would learn about him. But who was Mersenne, what did he actually do, and why? This paper gives a brief introduction to some important points about his overall body of work, using characteristic examples from his first major work to demonstrate them. We’ll especially look into why a monk from an order devoted to being the least of all delved so deeply into (among other things) exploratory math- ematics, practical acoustics, and defeating freethinkers, and why that might be of importance today. 1 Introduction The seventeenth century was a time of ferment in the sciences in Western Europe.
    [Show full text]
  • The Overtone Fiddle: an Actuated Acoustic Instrument
    Aalborg Universitet The Overtone Fiddle: an Actuated Acoustic Instrument Overholt, Daniel Published in: Proceedings of 11th International Conference on New Interfaces for Musical Expression Publication date: 2011 Document Version Accepted author manuscript, peer reviewed version Link to publication from Aalborg University Citation for published version (APA): Overholt, D. (2011). The Overtone Fiddle: an Actuated Acoustic Instrument. In A. Refsum Jensenius, A. Tveit, R. Inge Godøy, & D. Overholt (Eds.), Proceedings of 11th International Conference on New Interfaces for Musical Expression (pp. 4-7). University of Oslo. http://www.nime2011.org/ General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from vbn.aau.dk on: October 01, 2021 The Overtone Fiddle: an Actuated Acoustic Instrument Dan Overholt Department of Architecture, Design and Media Technology Aalborg University, Denmark Niels Jernes Vej 14, 3-107 [email protected] ABSTRACT 2.
    [Show full text]