Alzheimer's Disease

Total Page:16

File Type:pdf, Size:1020Kb

Alzheimer's Disease J Pharm Pharm Sci (www.cspsCanada.org) 20, 184 - 225, 2017 Alzheimer’s Disease: Dawn of a New Era? Farideh Amirrad, Emira Bousoik, Kiumars Shamloo, Hassan Al-Shiyab, Viet-Huong V. Nguyen, Hamidreza Montazeri Aliabadi. School of Pharmacy, Chapman University, Irvine, CA, USA. Received, March 29, 2017; Revised, June 20, 2017; Accepted, July 8, 2017; Published, July 9, 2017. ABSTRACT - Alzheimer’s disease (AD) is an irreversible neurodegenerative disease characterized by a progressive decline in cognition and memory, leading to significant impairment in daily activities and ultimately death. It is the most common cause of dementia, the prevalence of which increases with age; however, age is not the only predisposing factor. The pathology of this cognitive impairing disease is still not completely understood, which has limited the development of valid therapeutic options. Recent years have witnessed a wide range of novel approaches to combat this disease, so that they greatly increased our understanding of the disease and of the unique drug development issues associated with this disease. In this paper, we provide a brief overview of the history, the clinical presentation and diagnosis, and we undertake a comprehensive review of the various approaches that have been brought to clinical trials in recent years, including immunotherapeutic approaches, tau-targeted strategies, neurotransmitter-based therapies, neurotropic and hematopoietic growth factors, and antioxidant therapies, trying to highlight the lessons learned from these approaches. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. _______________________________________________________________________ INTRODUCTION approaches. In this manuscript, we focus mainly on the therapeutic approaches that have entered clinical The progressive growth of the elderly population trials. associated with constant increase in life expectancy, our limited understanding of the underlying History mechanisms involved in the etiology of the disease, Age-related dementia has been recognized since and the lack of reliable and effective preventive and ancient times. One of the earliest references to disease-modifying therapies available, has rendered dementia occurring with age is attributed to Alzheimer’s disease (AD) one of the great health Pythagoras, a 7th century BC Greek physician. challenges of the 21st century. AD is an Pythagoras divided the human life cycle into five irreversible neurological disorder that destroys stages commencing at ages 7, 21, 49, 63, and 81 cognitive function including loss of memory, years-old, describing the last two stages of life as judgment, reasoning, and behavioral control (1). It the “senium”, a period characterized by a regression has serious impact on social functioning, disruption in mental capacity and a return to the “imbecility of of quality of life, and impairment of activities of the first epoch of infancy” (4). In 500 BC, the daily living. It is the most common cause of Greek Judge Solon recognized the impairments on dementia that begins slowly and worsens over time decision making process that could be brought upon with a prevalence that increases with age (2). A by old age, revised laws regarding inheritances and complex set of cellular events, including feedback added the provision that “judgment … [be] not and feedforward responses of astrocytes, microglia, _________________________________________ and vasculature might be involved in the etiology of Corresponding Authors: Hamidreza Montazeri Aliabadi, AD, which has recently been reviewed by Strooper PhD, School of Pharmacy Chapman University; #211, 9401 Jeronimo Road; Irvine, CA 92618, USA. E-mail: and Karran (3). Increased understanding of the [email protected]; Viet-Huong V. Nguyen, PharmD, underlying mechanisms involved in the etiology of MPH, MS, BCPS, Chapman University School of Pharmacy; the disease during past two decades has led to the 9401 Jeronimo Road Rm 221; Irvine, CA 92618, USA. E-mail: development of a wide range of novel therapeutic [email protected] - The first three authors contributed equally to this work. 184 J Pharm Pharm Sci (www.cspsCanada.org) 20, 184 - 225, 2017 impaired by pain, violence, drugs, old age, or the cause of death calling it a “major killer” (7). In persuasion of a woman” in the making of wills (5). 1993, apolipoprotein E (APOE), which is located on In the 13th Century, Friar Roger Bacon recognized chromosome 19, was the first gene found to be that “age is the home of forgetfulness” and that loss related to the risk of Alzheimer`s. Other genes of memory and cognitive function was related to a were subsequently found to be linked to AD (8) disorder of the brain and not the heart, dispelling identifying possible genetic etiologies for some common notions of that time (4). However, he forms of AD. further recognized that specific cognitive deficits may be attributed to injuries in different brain areas Epidemiology (6). Dementia, as an abnormal process of aging It is estimated that approximately 44 million people was first recognized in 1901 by Dr. Alois worldwide are living with Alzheimer's disease. Alzheimer, after whom Alzheimer’s disease is However, only 11 million have been officially named. At that time, Dr. Alzheimer began treating a diagnosed with AD. Women are more likely to 51-year old woman named Auguste who had develop Alzheimer's disease than men of the same symptoms of short-term memory loss and age. Alzheimer's disease is most common in confusion. Dr. Alzheimer followed her case until Western Europe, followed by North America, and is she died in 1906, after which he studied her brain least prevalent in sub-Saharan Africa (9). The and determined that her problem was not caused by global cost of AD and dementia was estimated at normal dementia due to aging, but a larger health 605 billion dollars in 2015. From 2000-2013, AD issue. She was the first confirmed case of was the 6th leading cause of death in the United Alzheimer’s disease. In 1976, neurologist Dr. States (10), and it is expected to be the third leading Robert Katzman, a pioneer in Alzheimer’s research, cause of death of elderly after cancer and heart identified Alzheimer’s as the most common form of disease. AD is also the only disease in the top ten dementia and proposed that it may be a common causes of death that cannot be stopped, Figure 1. Statistical data for Alzheimer’s disease in United States, based on the data extracted from [10]. 185 J Pharm Pharm Sci (www.cspsCanada.org) 20, 184 - 225, 2017 cured, or prevented. Among 5.3 million Americans of AD include amyloid deposits consisting of with AD, 5.1 million are aged 65 and older. Figure amorphous aggregates of misfolded amyloid-beta 1 summarizes the distribution of AD based on age, (Aβ) protein (29). The “Amyloid Hypothesis” gender, and race. assumes a central role for Aβ in the pathogenesis of AD and characterizes AD as a “protein misfolding Etiology disease” which leads to aggregation and toxic The etiology of AD is uncertain; however, genetics, accumulation of Aβ in the brain (17, 18). However, environmental, and developmental components are although accumulation of Aβ has been linked to likely to play a role. The greatest risk factor for AD AD; the role of the protein in AD is not entirely is advancing age, although genetics has also been clear. extensively studied. Mutations in three genes, Aβ is produced from a precursor protein known amyloid precursor protein (APP), presenilin (PS)-1 as amyloid precursor protein (APP), a highly and PS-2 (both affecting APP processing and conserved membrane protein mainly expressed production of amyloid-beta peptides), cause early- around the synapse of neuronal tissue (19). APP onset (<60 years) autosomal dominant AD. Early seems to be involved in neuronal plasticity and onset-AD, however, accounts for only 1% of AD synapse formation (20). It is metabolized via two cases (11). Late-onset AD (>60 years) has most distinct pathways: (i) non-amyloidogenic pathway often been genetically linked to apolipoprotein (due to the non-aggregating nature of the products); (Apo) E ɛ4. Apo E4 has a gene-dose effect on and (ii) amyloidogenic pathway responsible for Aβ increasing the risk and lowering the age of both synthesis. The non-amyloidogenic metabolic familial and sporadic forms of late-onset AD. pathway is initiated by α-secretase and further While Apo E4 is the top gene associated with late processed by γ-secretase, which are members of a onset-AD gene, other genes that may modulate the family of proteolytic proteins with a disintegrin and risk of late-onset AD include CLU, CR1, PICALM, metalloprotease domain (ADAM) (21). The BIN1, SORL1, GAB2, ABCA7, MS4A4/MS4A6E, amyloidogenic pathway is initiated through CD2AP, CD33, APHA1, and HLA-DRB1/5. Other cleavage of APP by β-secretase (also known as risk factors for AD include head trauma, female beta-site APP cleaving enzyme; BACE1), and again gender, learning disabilities, education level, processed by γ-secretase (22). The Aβ fragments homocysteine levels, socioeconomic status, and from the amyloidogenic pathway accumulate to previous depression (12). Importantly, vascular risk form hard, insoluble plaques that are toxic to factors including diabetes and hyperlipidemia are neurons, and can lead to neuronal death. additional risk factors for AD (13, 14). However, Aβ clearance is also affected by the age and the Apo E4 allele continue to be the most Apoliprotein E (ApoE), a lipid binding protein significant risk factors for the development of AD involved in the transportation of cholesterol and along with female sex (15). The greater prevalence triglycerides to different tissues, including brain of AD in women could be attributed to the higher (23). Aβ binds to various regions of ApoE, and life expectancy in women, since the incidence of each Aβ-ApoE complex then participates in a AD in earlier ages is comparable between sexes different metabolic pathway, which includes: (1) (16).
Recommended publications
  • Alzheimer's Disease Clinical Trials
    Clinical Trial Perspective 5 Clinical Trial Perspective Alzheimer’s disease clinical trials: past failures and future opportunities Clin. Invest. (Lond.) Over a decade has elapsed since the US FDA has approved a medication for Alzheimer’s Roy Yaari*,1,2 & Ann Hake1,2 disease (AD) despite clinical trials of numerous agents over a wide array of mechanisms 1Eli Lilly & Company, Lilly Corporate including neurotransmitter modulation and disease modifying therapy targeting Center, Indianapolis, IN 46285, USA 2Indiana University School of Medicine, amyloid and tau. The failures of clinical trials in AD may be due to inadequate Department of Neurology, Indianapolis, understanding of mechanisms of action and/or poor target engagement; however, IN 46202, USA other factors could include inadequate study design, stage of AD along the continuum *Author for correspondence: studied, inclusion of participants without Alzheimer’s pathology into clinical trials Tel.: +1 317 651 6163 and limited power of endpoint measures. Future studies will need to carefully assess [email protected] these possible shortcomings in design of upcoming trials, especially as the field moves toward studies of disease modifying agents (as opposed to symptomatic treatment) of AD and to patients that are very early in the disease spectrum. Keywords: Alzheimer’s disease • Alzheimer’s disease biomarkers • amyloid • clinical trials • preclinical Alzheimer’s disease • tau US FDA approved medications continue to provide significant, but modest More than three decades ago, the choliner- symptomatic benefit[5–7] . gic hypothesis proposed that degeneration The compound memantine introduced a of cholinergic neurons in the basal fore- second mechanism for symptomatic treat- brain and the associated loss of cholinergic ment of AD into clinical practice.
    [Show full text]
  • TESE FINAL.Pdf
    FACULDADE DE MEDICINA DA UNIVERSIDADE DE COIMBRA TRABALHO FINAL DO 6º ANO MEDICO COM VISTA A ATRIBUIÇÃO DO GRAU DE MESTRE NO ÂMBITO DO CICLO DE ESTUDOS DO MESTRADO INTEGRADO EM MEDICINA ANA ALEXANDRA BRIGA CERQUEIRA ESTRATÉGIAS FARMACOLÓGICAS PARA AS ALTERAÇÕES PRECOCES DO COMPORTAMENTO NA DOENÇA DE ALZHEIMER TRABALHO DE REVISÃO ÁREA CIENTÍFICA DE FARMACOLOGIA TRABALHO REALIZADO SOBRE A ORIENTAÇÃO DE: PROFESSORA DOUTORA TICE DOS REIS ANASTÁCIO DE MACEDO MARÇO, 2009 ÍNDICE GERAL Agradecimentos.................................................................................................................3 Resumo..............................................................................................................................4 Abstract..............................................................................................................................6 Lista de Siglas....................................................................................................................8 Introdução........................................................................................................................11 Clínica e Diagnóstico……………...……………………………………………………11 Neuropatologia e Genética..............................................................................................15 Estratégias terapêuticas actuais...................................…………………………………23 Inibidores das colinesterases……………………………………………………23 Memantina……………………………………………………………………...27 Novas estratégias farmacológicas………………………………………………………30 Imunoterapia……………………………………………………………………34
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,005,660 B2 Tygesen Et Al
    USOO9005660B2 (12) United States Patent (10) Patent No.: US 9,005,660 B2 Tygesen et al. (45) Date of Patent: Apr. 14, 2015 (54) IMMEDIATE RELEASE COMPOSITION 4,873,080 A 10, 1989 Bricklet al. RESISTANT TO ABUSEBY INTAKE OF 4,892,742 A 1, 1990 Shah 4,898,733. A 2f1990 DePrince et al. ALCOHOL 5,019,396 A 5/1991 Ayer et al. 5,068,112 A 11/1991 Samejima et al. (75) Inventors: Peter Holm Tygesen, Smoerum (DK); 5,082,655 A 1/1992 Snipes et al. Jan Martin Oevergaard, Frederikssund 5,102,668 A 4, 1992 Eichel et al. 5,213,808 A 5/1993 Bar Shalom et al. (DK); Joakim Oestman, Lomma (SE) 5,266,331 A 11/1993 Oshlack et al. 5,281,420 A 1/1994 Kelmet al. (73) Assignee: Egalet Ltd., London (GB) 5,352.455 A 10, 1994 Robertson 5,411,745 A 5/1995 Oshlack et al. (*) Notice: Subject to any disclaimer, the term of this 5,419,917 A 5/1995 Chen et al. patent is extended or adjusted under 35 5,422,123 A 6/1995 Conte et al. U.S.C. 154(b) by 473 days. 5,460,826 A 10, 1995 Merrill et al. 5,478,577 A 12/1995 Sackler et al. 5,508,042 A 4/1996 OShlack et al. (21) Appl. No.: 12/701.248 5,520,931 A 5/1996 Persson et al. 5,529,787 A 6/1996 Merrill et al. (22) Filed: Feb. 5, 2010 5,549,912 A 8, 1996 OShlack et al.
    [Show full text]
  • (12) United States Patent (10) Patent N0.: US 7,964,607 B2 Verhoest Et A1
    US007964607B2 (12) United States Patent (10) Patent N0.: US 7,964,607 B2 Verhoest et a1. (45) Date of Patent: Jun. 21, 2011 (54) PYRAZOLO[3,4-D]PYRIMIDINE FOREIGN PATENT DOCUMENTS COMPOUNDS EP 1460077 9/2004 WO 02085904 10/2002 (75) Inventors: Patrick Robert Verhoest, Old Lyme, CT WO 2004037176 5/2004 (US); Caroline ProulX-Lafrance, Ledyard, CT (US) OTHER PUBLICATIONS Wunder et a1, M01. PharmacoL, v01. 28, N0. 6, (2005), pp. 1776 (73) Assignee: P?zer Inc., New York, NY (U S) 1781. van der Staay et a1, Neuropharmacology, v01. 55 (2008), pp. 908 ( * ) Notice: Subject to any disclaimer, the term of this 918. patent is extended or adjusted under 35 USC 154(b) by 562 days. Primary Examiner * Susanna Moore (74) Attorney, Agent, or Firm * Jennifer A. Kispert; (21) Appl.No.: 12/118,062 Michael Herman (22) Filed: May 9, 2008 (57) ABSTRACT (65) Prior Publication Data The invention provides PDE9-inhibiting compounds of For US 2009/0030003 A1 Jan. 29, 2009 mula (I), Related US. Application Data (60) Provisional application No. 60/917,333, ?led on May 11, 2007. (51) Int. Cl. C07D 48 7/04 (2006.01) A61K 31/519 (2006.01) A61P 25/28 (2006.01) (52) US. Cl. ................................... .. 514/262.1; 544/262 (58) Field of Classi?cation Search ................ .. 544/262; 5 1 4/2 62 .1 See application ?le for complete search history. and pharmaceutically acceptable salts thereof, Wherein R, R1, (56) References Cited R2 and R3 are as de?ned herein. Pharmaceutical compositions containing the compounds of Formula I, and uses thereof in U.S.
    [Show full text]
  • Methods and Combination Therapies for Treating Alzheimer's Disease
    (19) & (11) EP 2 420 235 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 22.02.2012 Bulletin 2012/08 A61K 31/437 (2006.01) A61K 31/445 (2006.01) A61K 45/06 (2006.01) A61P 25/28 (2006.01) (21) Application number: 11181674.0 (22) Date of filing: 26.10.2007 (84) Designated Contracting States: • Protter, Andrew Asher AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Palo Alto, CA California CA 94301 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Sexton, Jane Helen J.A. Kemp & Co. (30) Priority: 27.10.2006 US 854866 P 14 South Square Gray’s Inn (62) Document number(s) of the earlier application(s) in London WC1R 5JJ (GB) accordance with Art. 76 EPC: 07867284.7 / 2 086 538 Remarks: This application was filed on 16-09-2011 as a (71) Applicant: Medivation Neurology, Inc. divisional application to the application mentioned San Francisco, CA 94105 (US) under INID code 62. (72) Inventors: • Hung, David T. Redwood City, CA California CA 94062 (US) (54) Methods and combination therapies for treating alzheimer’s disease (57) The invention provides methods and combina- bon) in conjunction with another compound, pharmaceu- tion therapies for treating and/or preventing and/or slow- tically acceptable salt thereof or therapy for Alzheimer’s ing the onset and/or development of Alzheimer’s disease disease. using a hydrogenated pyrido (4,3-b) indole (e.g., dime- EP 2 420 235 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 420 235 A1 Description CROSS-REFERENCE TO RELATED APPLICATIONS 5 [0001] This application claims priority to U.S.
    [Show full text]
  • Trend Is Reported on a Per Member Per Year (PMPY) Basis
    2007 2007 1 Controlling Cost, Delivering Value, Transforming Care CVS Caremark—Our new organization and role as your pharmacy benefit manager 3 A New Approach to Care and Cost Making healthcare simpler, more personal, cost effective, and connected 9 Single-Digit Trend Continues in 2006 Making the most of market opportunities Specialty Pharmacy: 2006 Trend Analysis, 2007 Forecast 27 Dynamic growth continues with a flourishing pipeline and expanding utilization Index 36 2007 Trends Rx® Report Cost, Value & Care Controlling Cost, Delivering Value, Transforming Care In this, the 2007 TrendsRx® Report, we address you as part of a new organization— CVS Caremark Corporation. Our recent merger brings exciting possibilities and new opportunities to impact pharmacy services and improve the value we provide to you, our pharmacy benefit management (PBM) clients. In an environment ever more conscious of the importance of the pharmacy benefit to health and healthcare cost management, our new company is uniquely positioned to serve our PBM customers. As part of CVS Caremark Corporation, Caremark will strive to deliver more cost-effective management for payors; provide greater access, information and choice to consumers; and improve the quality and safety of total healthcare. We’ll share more about this new vision with you in the pages that follow. Herein, we also provide an in-depth look at the factors that drove pharmacy trend in 2006 and preview factors that will affect trend in 2007. Notably, in 2006 we marked ourfourth 2006 Caremark Book of straight year of single-digit Book of Business (BOB) pharmacy benefit gross trend. Business Gross Trend: At 5.2 percent per member per year (PMPY), our 2006 trend declined by well over 2 percent from our 2005 number.
    [Show full text]
  • Granule Cells in the CA3 Area
    8296 • The Journal of Neuroscience, June 16, 2010 • 30(24):8296–8307 Cellular/Molecular Granule Cells in the CA3 Area Ja´nos Szabadics,1,2* Csaba Varga,1*Ja´nos Brunner,2 Kang Chen,1 and Ivan Soltesz1 1Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California 92697, and 2Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1083, Hungary A fundamental property of neuronal networks in Ammon’s horn is that each area comprises a single glutamatergic cell population and various types of GABAergic neurons. Here we describe an exception to this rule, in the form of granule cells that reside within the CA3 area and function as glutamatergic nonprincipal cells with distinct properties. CA3 granule cells in normal, healthy rats, similarly to dentate gyrus granule cells, coexpressed calbindin and the homeobox protein Prox1. However, CA3 granule cells were located outside of the dentate gyrus, often hundreds of micrometers from the hilar border, in the lucidum and radiatum layers. CA3 granule cells were present in numbers that were comparable to the rarer GABAergic neuronal subtypes, and their somato-dendritic morphology, intrinsic properties, and perforant path inputs were similar to those of dentate gyrus granule cells. CA3 granule cell axons displayed giant mossy fiber terminals with filopodial extensions, demonstrating that not all mossy fibers originate from the dentate gyrus. Somatic paired recordings revealed that CA3 granule cells innervated CA3 pyramidal and GABAergic cells similarly to conventional mossy fiber synapses. However, CA3 granule cells were distinct in the specific organization of their GABAergic inputs. They received GABAergic synapses from cholecystokinin-expressing mossy fiber-associated cells that did not innervate the dentate granule cell layer, and these synapses demonstrated unusually strong activity-dependent endocannabinoid- mediated inhibition of GABA release.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Revisiting the Pharmacodynamics Uroselectivity of Alpha1-Adrenergic
    JPET Fast Forward. Published on July 8, 2019 as DOI: 10.1124/jpet.119.260216 This article has not been copyedited and formatted. The final version may differ from this version. JPET # 260216 TITLE PAGE Revisiting the pharmacodynamics uroselectivity of Alpha1-Adrenergic Receptor Antagonists Downloaded from Authors: Bruna Maria Castro Salomão Quaresma, Amanda Reis Pimenta, Anne Caroline jpet.aspetjournals.org Santos da Silva, André Sampaio Pupo, Luiz Antonio S. Romeiro, Claudia Lucia Martins Silva and François Noël* *Corresponding author at ASPET Journals on September 29, 2021 1 JPET Fast Forward. Published on July 8, 2019 as DOI: 10.1124/jpet.119.260216 This article has not been copyedited and formatted. The final version may differ from this version. JPET # 260216 RUNNING TITLE PAGE Running Title: Uroselectivity of alpha1-adrenergic antagonists Corresponding author: François Noël Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av Carlos Chagas Filho, 373. Zip code 21941-902, Rio de Janeiro, Brazil. Downloaded from Phone number: +55 (21) 3938-6732 e-mail: [email protected] jpet.aspetjournals.org Av Carlos Chagas Filho, 373. Zip code 21941-902, Rio de Janeiro, Brazil. Number of text pages: 28 (including legends for figures) at ASPET Journals on September 29, 2021 Number of tables: 4 Number of figures: 2 (+ 1 in Supplemental material) Number of references: 48 Number of words: Abstract: 238 Introduction: 667 Discussion: 1233 Non-standard abbreviations: AARA, α1-AR antagonists; AR, α1-adrenoceptor; BPH, benign prostatic hyperplasia; DMEM, Dulbecco’s Modified Eagle Medium; DMSO, dimethyl 2 JPET Fast Forward.
    [Show full text]
  • The Management of Motor Neurone Disease
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.suppl_4.iv32 on 1 December 2003. Downloaded from THE MANAGEMENT OF MOTOR NEURONE DISEASE P N Leigh, S Abrahams, A Al-Chalabi, M-A Ampong, iv32 L H Goldstein, J Johnson, R Lyall, J Moxham, N Mustfa, A Rio, C Shaw, E Willey, and the King’s MND Care and Research Team J Neurol Neurosurg Psychiatry 2003;74(Suppl IV):iv32–iv47 he management of motor neurone disease (MND) has evolved rapidly over the last two decades. Although still incurable, MND is not untreatable. From an attitude of nihilism, Ttreatments and interventions that prolong survival have been developed. These treatments do not, however, arrest progression or reverse weakness. They raise difficult practical and ethical questions about quality of life, choice, and end of life decisions. Coordinated multidisciplinary care is the cornerstone of management and evidence supporting this approach, and for symptomatic treatment, is growing.1–3 Hospital based, community rehabilitation teams and palliative care teams can work effectively together, shifting emphasis and changing roles as the needs of the individuals affected by MND evolve. In the UK, MND care centres and regional networks of multidisciplinary teams are being established. Similar networks of MND centres exist in many other European countries and in North America. Here, we review current practice in relation to diagnosis, genetic counselling, the relief of common symptoms, multidisciplinary care, the place of gastrostomy and assisted ventilation, the use of riluzole, and end of life issues. c TERMINOLOGY c Motor neurone disease (MND) is a synonym for amyotrophic lateral sclerosis (ALS).
    [Show full text]
  • Pharmaceutical Composition and Dosage Forms for Administration of Hydrophobic Drugs
    (19) & (11) EP 2 246 049 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 03.11.2010 Bulletin 2010/44 A61K 31/355 (2006.01) A61K 31/56 (2006.01) C07J 53/00 (2006.01) (21) Application number: 10173114.9 (22) Date of filing: 24.05.2004 (84) Designated Contracting States: • Fikstad, David T. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Salt Lake City, UT 84102 (US) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • Zhang, Huiping Salt Lake City, UT 844121 (US) (30) Priority: 22.05.2003 US 444935 • Giliyar, Chandrashekar Salt Lake City, UT 84102 (US) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: (74) Representative: Walker, Ross Thomson 04753162.9 / 1 624 855 Potts, Kerr & Co. 15 Hamilton Square (71) Applicant: Lipocine, Inc. Birkenhead Salt Lake City, UT 84103 (US) Merseyside CH41 6BR (GB) (72) Inventors: Remarks: • Chen, Feng-Jing This application was filed on 17-08-2010 as a Salt Lake City, UT 84111 (US) divisional application to the application mentioned • Patel, Mahesh V. under INID code 62. Salt Lake City, UT 84124 (US) (54) Pharmaceutical composition and dosage forms for administration of hydrophobic drugs (57) Pharmaceutical compositions and dosage tion with improved dispersion of both the active agent forms for administration of hydrophobic drugs, particu- and the solubilizer. As a result of the improved dispersion, larly steroids, are provided. The pharmaceutical compo- the pharmaceutical composition has improved bioavail- sitions include a therapeutically effective amount of a hy- ability upon administration.
    [Show full text]
  • BDNF Pathway in Rat Model of Depression Through Chronic Unpredictable Stress Chunye Wang1, Jianyou Guo2* and Rongjuan Guo1*
    Wang et al. BMC Complementary and Alternative Medicine (2017) 17:73 DOI 10.1186/s12906-016-1543-9 RESEARCH ARTICLE Open Access Effect of XingPiJieYu decoction on spatial learning and memory and cAMP-PKA-CREB- BDNF pathway in rat model of depression through chronic unpredictable stress Chunye Wang1, Jianyou Guo2* and Rongjuan Guo1* Abstract Background: Depression is a mental disorder characterized by a pervasive low mood and loss of pleasure or interest in usual activities, and often results in cognitive dysfunction. The disturbance of cognitive processes associated with depression, especially the impairment of learning and memory, exacerbates illness and increases recurrence of depression. XingPiJieYu (XPJY) is one of the most widely clinical formulas of traditional Chinese medicine (TCM) and can improve the symptoms of depression, including learning and memory. However, its regulatory effects haven’t been comprehensively studied so far. Recently, some animal tests have indicated that the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-cAMP response element-binding protein (CREB)- brain derived neurotrophic factor (BDNF) signaling pathway in hippocampus is closely related to depression and the pathogenesis of cognitive function impairments. The present study was performed to investigate the effect and mechanism of XPJY on depression and learning and memory in animal model. Materials: The rat model of depression was established by chronic unpredictable stress (CUS) for 21 days. The rats were randomly divided into six groups: control group, CUS group, CUS + XPJY (1.4 g/kg, 0.7 g/kg and 0.35 g/kg) groups, and CUS + sertraline (10 mg/kg) group. The sucrose preference, open field exploration and Morris water maze (MWM) were tested.
    [Show full text]