Strengthening Inland Waterway Transport Transport Pan-European Co-Operation for Progress

Total Page:16

File Type:pdf, Size:1020Kb

Strengthening Inland Waterway Transport Transport Pan-European Co-Operation for Progress STRENGTHENING EUROPEAN CONFERENCE OF MINISTERS OF TRANSPORT INLAND WATERWAY STRENGTHENING INLAND WATERWAY TRANSPORT STRENGTHENING INLAND WATERWAY TRANSPORT PAN-EUROPEAN CO-OPERATION FOR PROGRESS This publication is a complete collection of the papers presented at the workshop on Pan-European Co-operation towards Strong Inland Waterway Transport: On the Move held in Paris on 22 and 23 September 2005. The purpose of the workshop was to establish what progress had been made since the Pan-European Conference on PAN-EUROPEAN CO-OPERATION FOR PROGRESS CO-OPERATION PAN-EUROPEAN Inland Waterways in Rotterdam in 2001 in preparation for the Bucharest Ministerial Conference, scheduled for September 2006. The papers focus essentially on the development of the inland waterway market in a pan-European context, conditions of competition, infrastructure development STRENGTHENING and the environment. A summary of the discussions at the workshop and INLAND WATERWAY its conclusions are also given. The workshop was jointly organised by TRANSPORT the ECMT, UNECE, the Central Commission for Navigation on the Rhine PAN-EUROPEAN CO-OPERATION and the Danube Commission. FOR PROGRESS -:HSTCSC=VVXZY\: (75 2006 15 1 P) ISBN 92-821-1354-X 2006 UNECE EUROPEAN CONFERENCE OF MINISTERS OF TRANSPORT STRENGTHENING INLAND WATERWAY TRANSPORT PAN-EUROPEAN CO-OPERATION FOR PROGRESS UNECE EUROPEAN CONFERENCE OF MINISTERS OF TRANSPORT (ECMT) The European Conference of Ministers of Transport (ECMT) is an inter-governmental organisation established by a Protocol signed in Brussels on 17 October 1953. It comprises the Ministers of Transport of 43 full Member countries: Albania, Armenia, Austria, Azerbaijan, Belarus, Belgium, Bosnia-Herzegovina, Bulgaria, Croatia, the Czech Republic, Denmark, Estonia, Finland, France, FRY Macedonia, Georgia, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Moldova, Netherlands, Norway, Poland, Portugal, Romania, Russia, Serbia and Montenegro, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, Ukraine and the United Kingdom. There are seven Associate member countries (Australia, Canada, Japan, Korea, Mexico, New Zealand and the United States) and one Observer country (Morocco). The ECMT is a forum in which Ministers responsible for transport, and more specifically the inland transport sector, can co-operate on policy. Within this forum, Ministers can openly discuss current problems and agree upon joint approaches aimed at improving the utilization and at ensuring the rational development of European transport systems of international importance. At present, ECMT has a dual role. On one hand it helps to create an integrated transport system throughout the enlarged Europe that is economically efficient and meets environmental and safety standards. In order to achieve this, it is important for ECMT to help build a bridge between the European Union and the rest of the European continent at a political level. On the other hand, ECMT's mission is also to develop reflections on long-term trends in the transport sector and to study the implications for the sector of increased globalisation. The activities in this regard have recently been reinforced by the setting up of a New Joint OECD/ECMT Transport Research Centre. Also available in french under the title: Renforcer le transport par voies navigables Further information about the ECMT is available on Internet at the following address: www.cemt.org © ECMT 2006 – ECMT Publications are distributed by: OECD Publications Service, 2, rue André Pascal, 75775 PARIS CEDEX 16, France FOREWORD “Pan-European Co-operation towards Strong Inland Waterway Transport: On the Move” was a workshop organised by the ECMT, together with the UNECE, the Central Commission for Navigation on the Rhine and the Danube Commission and held on 22 and 23 September 2005. The purpose of this event, which was aimed at both public and private sector decision-makers in inland waterway transport, was to prepare for the Pan-European Conference on Inland Waterway Transport to be held in Bucharest on 13 and 14 September 2006. The main aim of the workshop was to take stock of developments since the previous Pan-European Conference, which had been held in Rotterdam in September 2001. That conference had stressed the need for a concerted effort to strengthen inland waterway transport at pan-European level and, with that purpose in view, the Ministers at the time adopted a Declaration setting out the goals to be achieved and the action to be taken. The workshop organised on the above basis reported on progress made in implementing the Rotterdam Declaration as well as on outstanding problems and possible future initiatives. This publication contains the papers presented at the workshop. The first of these addresses the state of development of the inland waterway market in the European Union, on the Rhine, in the Danube basin, and in the Ukraine and Russia. The following papers review the conditions of competition in this sector, including market access conditions, harmonisation of social, technical and environmental legislation, the integration of the labour market at pan-European level, and infrastructure user charging. Development and its impact on the environment was the third topic addressed by the papers presented at the workshop. As well as the keynote papers, this publication gives a summary of discussions at the workshop and the conclusions it reached. The ample statistics to be found in the many annexes will also be of great interest to readers. All of the papers presented will be distributed as reference documents to participants at the Bucharest Conference. STRENGTHENING INLAND WATERWAY TRANSPORT: PAN-EUROPEAN CO-OPERATION – ISBN 92-821-1354-x – © ECMT 2006 TABLE OF CONTENTS FOREWORD............................................................................................................................................ 3 INTRODUCTION .................................................................................................................................... 9 PART I. INLAND WATERWAY MARKET DEVELOPMENT IN A PAN-EUROPEAN CONTEXT .................................................................................... 15 CHAPTER 1. EU AND RHINE MARKETS........................................................................................ 16 Preliminary remark.............................................................................................................................. 16 1.1. Market development: themes, problems......................................................................... 16 1.2. Logistics and intermodality ............................................................................................ 18 1.3. Co-operation between interest groupings ....................................................................... 19 1.4. Action required by the governments............................................................................... 20 CHAPTER 2. DANUBE MARKET...................................................................................................... 22 CHAPTER 3. RUSSIAN MARKET ..................................................................................................... 24 Overview of the Russian market of inland waterways transport..................................................... 24 Main inland navigation problems and possible solutions................................................................ 28 CHAPTER 4. UKRAINIAN MARKET................................................................................................ 30 Danube navigation problems............................................................................................................... 31 PART II. LEVELLING THE PLAYING FIELD........................................................................... 35 CHAPTER 1. IS THE LEGAL FRAMEWORK OF EUROPEAN INLAND NAVIGATION SUITABLY ADAPTED? ............................................................................................. 36 1.1. Heterogeneous or uniform nature of legal instruments applicable to inland navigation.......... 36 1.2. Access to markets..................................................................................................................... 37 1.3. Contract law governing transport on inland waterways........................................................... 38 1.4. Alignment of liability or tort law ............................................................................................. 38 1.5. Tax harmonisation................................................................................................................... 39 1.6. Social legislation ...................................................................................................................... 39 1.7. Prospects for simplifying and reducing the legal framework................................................... 40 Conclusion .......................................................................................................................................... 41 CHAPTER 2. IMPLEMENTING THE DECISIONS OF THE ROTTERDAM PAN-EUROPEAN CONFERENCE ON INLAND WATER TRANSPORT ............. 42 2.1. Restrictions on transport rights of “foreign” vessels................................................................ 45 2.2. Restrictions on access to and use of inland waterways and ports ............................................ 46 2.3. Existence of different regimes for technical requirements
Recommended publications
  • Ports Rail 3
    68693 Public Disclosure Authorized Caucasus Transport Corridor for Oil and Oil Products Public Disclosure Authorized Public Disclosure Authorized Prepared by: ECSSD The World Bank Public Disclosure Authorized December 2008 Abbreviations and Acronyms ACG Azeri, Chirag and deepwater Gunashli (oil fields) ADDY Azerbaijan Railway AIOC Azerbaijan International Oil Consortium bpd Barrels per day BTC Baku-Tbilisi-Ceyhan (pipeline) CA or CAR Central Asian Region Caspar Azerbaijan State Caspian Shipping Company CIS Commonwealth of Independent States CNPC China National Petroleum Corporation CPC Caspian Pipeline Consortium (pipeline) dwt Deadweight ton FOB Free on board FSU Former Soviet Union GDP Gross Domestic Product GR Georgian Railway km Kilometer KCTS Kazakhstan Caspian Transport System KMG KazMunaiGaz KMTP Kazmortransflot kV Kilovolt MEP Middle East Petroleum MOU Memorandum of Understanding OECD Organization for Economic Co-operation and Development RTC Rail tank-car RZD Russian Railway SOCAR State Oil Company of Azerbaijan tpa Tons per annum (per year), metric TRACECA Transport Corridor Europe-Caucasus-Asia Vice President, Europe and Central Asia: Shigeo Katsu, ECAVP Country Director: Donna Dowsett-Coirolo, ECCU3 Sector Director: Peter D. Thomson, ECSSD Sector Manager, Transport: Motoo Konishi, ECSSD Task Team Leader: Martha Lawrence, ECSSD I II Table of Contents EXECUTIVE SUMMARY 1. CASPIAN OIL TRANSPORT MARKET DYNAMICS Outlook for Caspian Oil Production Transport Options for Caspian Oil 2. CAUCASUS RAIL CORRIDOR—PHYSICAL CONSTRAINTS Ports
    [Show full text]
  • Hydraulic and Structural Design of Navigational Locks
    nvironm E en l & ta Dhanuka et al., J Civil Environ Eng 2018, 8:1 i l iv E C n f g o i n DOI: 10.4172/2165-784X.1000297 l Journal of Civil & Environmental e a e n r r i n u g o J ISSN: 2165-784X Engineering Research Article Open Access Hydraulic and Structural Design of Navigational Locks Amit Dhanuka1*, Shivendra Kumar Agrawal2 and Honey Mehra1 1Howe Projects Engineering Pvt Ltd, Ahmedabad, Gujarat, India 2Department of Irrigation and Hydraulics, Punjab Engineering College, Chandigarh, India Abstract Navigation lock is a structure in the waterway provided to create a safe navigation passage between two water pools which are not at the same level. The reason for difference in water levels can be natural such as tidal variations or can be manmade such as construction of dam or barrage across the river. The main components of Navigation lock comprise of approach channels, lock pit, filling/emptying arrangement. Design of lock depends on lockage time, water level variations, Lock capacity requirements, design vessel size. filling/emptying system shall be designed to work under gravity flow without any pumping requirements. Filling/emptying system is chosen to get appropriate filling/ emptying time. The optimum time for filling and emptying is generally kept between 8.0-10.0 minutes. The size of filling culverts are so computed to attain the optimum time for filling/emptying. Every lock is unique in terms of its geology, location, size, requirements and water level differences. Here typical design aspects of a navigational Lock in inland waterway have been described.
    [Show full text]
  • Caspian Oil and Gas Complements Other IEA Studies of Major Supply Regions, Such As Middle East Oil and Gas and North African Oil and Gas
    3 FOREWORD The Caspian region contains some of the largest undeveloped oil and gas reserves in the world. The intense interest shown by the major international oil and gas companies testifies to its potential. Although the area is unlikely to become “another Middle East”, it could become a major oil supplier at the margin, much as the North Sea is today. As such it could help increase world energy security by diversifying global sources of supply. Development of the region’s resources still faces considerable obstacles. These include lack of export pipelines and the fact that most new pipeline proposals face routing difficulties due to security of supply considerations,transit complications and market uncertainties. There are also questions regarding ownership of resources, as well as incomplete and often contradictory investment regimes. This study is an independent review of the major issues facing oil and gas sector developments in the countries along the southern rim of the former Soviet Union that are endowed with significant petroleum resources: Azerbaijan, Kazakstan,Turkmenistan and Uzbekistan. Caspian Oil and Gas complements other IEA studies of major supply regions, such as Middle East Oil and Gas and North African Oil and Gas. It also expands on other IEA studies of the area, including Energy Policies of the Russian Federation and Energy Policies of Ukraine. The study was undertaken with the co-operation of the Energy Charter Secretariat, for which I would like to thank its Secretary General, Mr. Peter Schütterle. Robert Priddle Executive Director 5 ACKNOWLEDGEMENTS The IEA wishes to acknowledge the very helpful co-operation of the Energy Charter Secretariat, with special thanks to Marat Malataev, Temuri Japaridze, Khamidulah Shamsiev and Galina Romanova.
    [Show full text]
  • Water Navigation
    US Army Corps of Engineers NAVIGATION is travel or transportation over water. Many different kinds of boats and ships are used on rivers and oceans to move people and products from one place to another. River Vessels: ACTIVITY Poster Series Navigation was extremely important for foreign and domestic trade and travel in the early Comparing Different Modes of Transportation days of our country before cars, trucks, trains, and airplanes were invented. In those days, The most common way of transporting products on rivers is by TOW. A tow consists of one This poster is the sixth in a series of water-resources education posters developed through rivers were used as "roads" to connect inland settlements to river and coastal ports. Com­ TOWBOAT and one or more BARGEs. Towboats push different kinds of barges, depending on the the Water Resources Education Initiative. The Water Resources Education Initiative is a munities established at these commercial ports became important economic, cultural, and cargo. Three of the four basic types of barges are shown below. The fourth type is a DECK barge, Introduction cooperative effort between public and private education interests. Partners in the program include which carries almost any kind of equipment, materials, or products that can be tied down and do not the U.S. Geological Survey and the U.S. Fish and Wildlife Service of the U.S. Department of the social hubs in the development of our Nation. Transportation oi domestic cargo by barge is relatively slow, but it is efficient and cost effective Many of the products we use and eat today are still transported by vessels on deep need protection from the weather.
    [Show full text]
  • Argus Nefte Transport
    Argus Nefte Transport Oil transportation logistics in the former Soviet Union Volume XVI, 5, May 2017 Primorsk loads first 100,000t diesel cargo Russia’s main outlet for 10ppm diesel exports, the Baltic port of Primorsk, shipped a 100,000t cargo for the first time this month. The diesel was loaded on 4 May on the 113,300t Dong-A Thetis, owned by the South Korean shipping company Dong-A Tanker. The 100,000t cargo of Rosneft product was sold to trading company Vitol for delivery to the Amsterdam-Rotter- dam-Antwerp region, a market participant says. The Dong-A Thetis was loaded at Russian pipeline crude exports berth 3 or 4 — which can handle crude and diesel following a recent upgrade, and mn b/d can accommodate 90,000-150,000t vessels with 15.5m draught. 6.0 Transit crude Russian crude It remains unclear whether larger loadings at Primorsk will become a regular 5.0 occurrence. “Smaller 50,000-60,000t cargoes are more popular and the terminal 4.0 does not always have the opportunity to stockpile larger quantities of diesel for 3.0 export,” a source familiar with operations at the outlet says. But the loading is significant considering the planned 10mn t/yr capacity 2.0 addition to the 15mn t/yr Sever diesel pipeline by 2018. Expansion to 25mn t/yr 1.0 will enable Transneft to divert more diesel to its pipeline system from ports in 0.0 Apr Jul Oct Jan Apr the Baltic states, in particular from the pipeline to the Latvian port of Ventspils.
    [Show full text]
  • Chapter 4. Oil and Gas Accidents – Prevention and Liquidation
    Chapter 4. Oil and gas accidents – prevention and liquidation. In this chapter we take a theoretical approach towards accidents and incidents. This reason is twofold: In Soviet times, statistics were often used as political tools, and this makes it difficult to make a completely reliable analysis. To a certain extent, this legacy still applies to Russia today. We are therefore careful not to use too many official statistics. Secondly, there is still little offshore activity in Arctic waters, thus limiting the amount of empiric data available. Nonetheless, in this chapter we examine some accidents which occurred in the Arctic, such as the Usinsk oil spill in 1994 . This chapter also describes the emergency rescue routines in Murmansk oblast, together with regulations for emergency preparedness and response for the oil and gas sector. All the information presented in this chapter is accompanied by reference data, opinions from specialists, legal notes and illustrations. Several situations are examined using Murmansk oblast as an example. 4.1. Accidents and incidents: causes and consequences Here’s a thought… Oleg Mitvol, deputy director of the Russian federal service managing the oversight of natural resources (Rosprirodnadzor) said in an interview that spills of oil and other oil products take place every two weeks in Russia, RBC Daily Russian news agency reported in September 2005. According to RBC, Russian experts estimate that 3-7 per cent of all extracted oil is lost during extraction and transportation. The official numbers are much lower. 4,1,1 Accidents involving oil pipelines In 2003, according to data from Russia’s Ministry of Civil Defence, Emergencies and Disaster Relief, there were 48 accidents on main and intrafield pipelines which led to emergency situations (compared with 55 in 2002).1 However, other sources states that the number of accidents involving oil pipelines has increased by 20% over the course of several years.
    [Show full text]
  • The Montreal/Lake Ontario Section of the Seaway
    THE MONTREAL/LAKE ONTARIO SECTION OF THE SEAWAY he St. Lawrence Seaway, in its broadest of the deep waterway, the St. Lawrence Seaway sense, is a deep waterway extending some proper extends from Montreal to Lake Erie. 3,700 km (2,340 miles) from the Atlantic T The Montreal/Lake Ontario section Ocean to the head of the Great Lakes, at the encompasses a series of 7 locks from Montreal heart of North America. Strictly speaking, how- (Quebec) to Iroquois (Ontario) enabling ships to ever, within the meaning of the legislation which navigate between the lower St. Lawrence River provided for the construction and maintenance and Lake Ontario. Laker under Mercier Bridge 1 HISTORY he opening of the Seaway, in April of 1959, The building of the Erie Canal, in the marked the full realization of a 400 year-old United States, early in the 19th century, provided T dream. In the early part of the 16th century, the incentive for the construction of additional and Jacques Cartier, the French explorer, was turned deeper canals and locks along the St. Lawrence. back by the rushing waters of the Lachine Rapids, The American waterway, which offered a fast, just west of what is now Montreal, and thus denied uninterrupted link between the growing industrial his dream of finding the Northwest Passage and the heartland of North America and the Atlantic Ocean route to the East. At various times during the inter- through New York posed a serious threat to vening 300 years, canals have been dug and locks Canadian shipping and, in particular, to the develop- built around the natural barriers to navigation in the ment of the City of Montreal as a major port.
    [Show full text]
  • Small Scale Dredging of Lakes and Streams
    STATE OF WISCONSIN DEPARTMENT OF NATURAL RESOURCES GENERAL PERMIT FOR SMALL SCALE DREDGING OF LAKES AND STREAMS PERMITTEE: The General Public in Wisconsin PERMIT NO.: GP17-2017-WI (WDNR-GP17-2017) ISSUING OFFICE: Waterways & Wetland Protection Section, Bureau of Watershed Management, Water Division, Wisconsin Department of Natural Resources (DNR or Department) ISSUANCE DATE: 06/30/2017 EXPIRATION DATE: 06/30/2022 GENERAL PERMIT AUTHORIZATIONS: In compliance with the provision(s) of Wis. Stats. 30.20(1)(b), no person may remove any material from the bed of a natural navigable lake or navigable stream unless an individual or a general permit has been issued under s. 30.20 or authorization has been granted by the legislature. Wis. Stats. s. 30.206(1)(a) requires and authorizes the Department to issue general permits that authorize any person in the State of Wisconsin to perform work in accordance with the terms and conditions of the general permit specified below after satisfying all applicable permit terms and conditions. Please refer to the following sections of this permit for the specific eligibility standards, application requirements, certification requirements and responsibilities, conditions, findings of fact, conclusions of law, and definitions required by WDNR-GP17-2017. Note: Projects involving the removal and lease or sale of any material from the bed of any navigable lake or of any outlying waters are ineligible for this general permit and must obtain a contract from the department under Wis. Stats. 30.20(2)(a) and (b). OTHER AUTHORIZATIONS NECESSARY: WDNR-GP17-2017 authorizations are subject to all applicable terms and conditions specified in this permit.
    [Show full text]
  • State Waterway Navigability Determination
    BODY OF WATER & LOCATION NAV CG NON-NAV CG REMARKS yellow highlight = apply to USCG for permit up to RM stipulated Alsea Bay, OR X Estuary of Pacific Ocean. Alsea River, OR X Flows into Alsea Bay, Waldport, OR. Navigable to mile 13. Ash Creek, OR X Tributary of Willamette River at Independence, OR. Barrett Slough, OR X Tributary of Lewis and Clark River. Bayou St. John, OR X Court decision, 1935 AMC 594, 10 Mile Lake, Coos County, OR. Bear Creek (Coos County), OR X Tributary of Coquille River (tidal at mile 0.5) Beaver Creek, OR X Tributary of Nestucca River. Beaver Slough, OR X See Clatskanie River. Big Creek (Lane County), OR X At U.S. 101 bridge (tidal). Big Creek (Lincoln County), OR X Flows into Pacific Ocean. Big Creek Slough, OR X Upstream end at Knappa, OR (tidal). At site of Birch Creek (Sparks) Bridge on Canyon Road near Birch Creek, OR X Pendleton, OR. Side channel of Yaquina River. 3 mi. downstream from Toledo, Blind Slough, OR X OR (tidal). Tributary of Knappa Slough. 10 mi. upstream from Astoria, OR Blind Slough/ Gnat Creek, OR X (tidal at mile 2.0). Boone Slough, OR X Tributary of Yaquina River between Newport and Toledo, OR. Side channel of Willamette River. 3 miles upstream from Booneville Channel, OR X Corvallis, OR. Boulder Creek, OR X 7 miles N of Lake Quinalt. Side channel of Columbia River. 5 miles N of Clatskanie, OR Bradbury Slough, OR X (tidal). Brownlee Reservoir, ID /OR X See Snake River. Also known as South Channel.
    [Show full text]
  • Inland Waterway Transport in the Baltic Sea Region
    Inland waterway transport in the Baltic Sea region Service implementation guideline © HHM © EUREX s.r.o. © RCNK February 2019 CONTENT Introduction 3 Best practices: how to make IWT operationally and economically possible? 5 How to increase Inland navigation in the BSR? 8 How to set-up a new inland waterway service? 12 Business case: Sweden 16 Business case: Lithuania 18 This guideline is part of the Interreg Baltic Sea region project EMMA, work package 4 “Making the market more acquainted with the potentials of inland waterway transport in the Baltic Sea Region”, activity 4.4. For more information please visit www.project-emma.eu. 2 INTRODUCTION Inland waterway transport (IWT) is safe, Small inland ships generally carry up to 500 t of environmentally friendly and economically bulk commodities, whereas medium and large feasible. However, for many decision makers ships carry up to 2 000 t of dry bulk and up to responsible for setting up transport chains in the 3 000 t of liquid bulk. A pusher convoy with two Baltic Sea Region (BSR), IWT is not considered barges can carry over 7 000 t of dry bulk. This as an alternative to rail and mainly road equals approximately 175 railway wagons of transportation. This has also to do with limited 40 t each or 280 road trucks of 25 t payload knowledge about IWT and its integration into each. The largest inland container ships can international transport chains. They see it as too today load over 400 TEUs. Large shipments complicated and too risky. Furthermore, make sense with a deliberate policy of bundling acquisition efforts of inland navigation shipping volumes driven by digitalisation and fed by lines are often weak.
    [Show full text]
  • Inland Waterways Audit Techniques Guide
    Inland Waterways Audit Techniques Guide NOTE: This document is not an official pronouncement of the law or the position of the Service and can not be used, cited, or relied upon as such. This guide is current through the publication date. Since changes may have occurred after the publication date that would affect the accuracy of this document, no guarantees are made concerning the technical accuracy after the publication date. Contents Preface............................................................................................................................................. 2 Chapter 1 - Overview of the Inland Waterway Industry................................................................. 3 I. General.................................................................................................................................... 3 II. Economic Impact.................................................................................................................... 3 III. Reporting Requirements ....................................................................................................... 4 IV. Industry Organizations and Trade Associations ................................................................... 4 V. Useful Internet Sites .............................................................................................................. 4 Chapter 2 - Pre-Audit Analysis ....................................................................................................... 6 I. Pre-Audit Planning .................................................................................................................
    [Show full text]
  • DESIGN GUIDELINES for INLAND WATERWAY DIMENSIONS by Bernhard Söhngen1, Y
    PIANC-World Congress Panama City, Panama 2018 DESIGN GUIDELINES FOR INLAND WATERWAY DIMENSIONS by Bernhard Söhngen1, Y. Cordier2, J.-M. Deplaix3, K. Eloot4, J. Iribarren5, P.-J. Pompee6, K. Rettemeier7 ABSTRACT The PIANC INCOM WG 141 was founded in 2010 to provide planners of inland waterways with design standards for inland waterways. The report with the title “Design Guidelines for of Inland Waterway Dimensions” will be published in 2018. In 18 meetings and three interim meetings on special questions, the group has undertaken a comprehensive view on guidelines and practice examples as well as methods for detailed design. International standards as well as practice examples show a wide scatter of recommended waterway dimensions. One reason for the differences is the great variety in traffic density but also the tradition of shipping in different countries. Furthermore, especially waterways with significant flow velocities as rivers are a complex system influenced by its varying bathymetry and currents to mention just a few aspects. So it is not appropriate to give just “one” design waterway dimension. Instead a special design method was developed, basing generally on the application of three design methods: “Concept Design Method” (coming from conceptual), “Practice Approach” and “Detailed Design”. Special recommendations will be provided for designing fairways in canals and rivers, bridge opening widths, lock approach length’s and widths and the dimensions of turning basins, junctions and berthing places. The “Concept Design Method” provides basic dimensions for designing the necessary waterway dimensions. The data come mostly from existing guidelines. In a next step, called "Extended Concept Design Method", special aspects as wind or currents will be accounted for by providing formulae, derived from approximations of the driving dynamics of inland vessels.
    [Show full text]