Carmoviruses (Tombusviridae) Feng Qu University of Nebraska-Lincoln, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Carmoviruses (Tombusviridae) Feng Qu University of Nebraska-Lincoln, Qu.28@Osu.Edu University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 1999 Carmoviruses (Tombusviridae) Feng Qu University of Nebraska-Lincoln, [email protected] Thomas Jack Morris University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscifacpub Part of the Immunology and Infectious Disease Commons, Molecular Biology Commons, and the Virology Commons Qu, Feng and Morris, Thomas Jack, "Carmoviruses (Tombusviridae)" (1999). Faculty Publications in the Biological Sciences. 414. https://digitalcommons.unl.edu/bioscifacpub/414 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Encyclopedia of Virology, 2nd edition, ed. R.G. Webster & A. Granoff, Academic Press, 1999. Copyright © 1999 Academic Press. Used by permission digitalcommons.unl.edudigitalcommons.unl.edu Carmoviruses (Tombusviridae) Feng Qu and T. Jack Morris School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska, USA Taxonomy, Classification and Evolutionary necrotic mosaic virus, RCNMV) are significant and include Relationships sequence similarity of CP as well as similarity in subunit to- pology and interactions within the virion. There also exists Carmovirus is one of two officially recognized genera of a marked sequence similarity in the RNA-dependent RNA Tombusviridae. Members of Tombusviridae all have icosahe- polymerase (RDRP) genes of carmoviruses and viruses of the dral virions of about 30 nm in diameter with T = 3 symmetry following genera: Dianthovirus, Necrovirus (e.g. tobacco ne- that consists of 180 coat protein (CP) subunits of about 38- crosis virus, TNV), Machlomovirus (e.g. maize chlorotic mot- 43 kDa and a single-stranded (ss) RNA genome ranging in tle virus, MCMV) and Luteovirus (e.g. barley yellow dwarf size from 4.0 to 4.7 kb. Carmoviruses share recognizable se- viruses of the PAV type). Several newly sequenced viruses quence similarity in both the polymerase and structural genes have been proposed for consideration as new genera of Tom- with members of the other genus, Tombusvirus. Sequence busviridae, based primarily on similarities of nucleotide se- comparisons and phylogenetic analysis of these genes sup- quences and genome organization (e.g. pathos latent virus, oat port the view that the genera are distinct but closely related. chlorotic stunt virus and panicum mosaic virus). In a broader In addition, the genome organization of the carmoviruses is context, phylogenetic comparisons of viral RNA polymerase characteristically different from that of the tombusviruses. genes have identified the Tombusviridae as a representative Carmoviruses contain a single-component positive-sense plant virus cluster for one of three RNA virus supergroups genome of about 4.0 kb. The genome, as exemplified by tur- with relatedness to animal viruses of Flaviviridae and the fam- nip crinkle virus (TCV) in Figure 1, consists of five open ily of small RNA phage (Leviviridae). reading frames (ORFs) which encode proteins of about 28, 88, 8, 9 and 38 kDa from the 5’ to the 3’ end, respectively. Distribution, Host Range, Transmission and The virions are icosahedral and consist of 180 CP subunits of Economic Significance approximately 38 kDa. The genus name is derived from the first member of the genus to be sequenced, carnation mot- Carmoviruses occur worldwide and are generally reported to tle virus (CarMV). Much more detailed knowledge about vi- cause mild asymptomatic infections on relatively restricted rus structure and genome function is, however, known for natural host ranges. Most accumulate to high concentrations TCV because its crystal structure has been determined and in infected tissues and are mechanically transmitted with fa- it was the first carmovirus for which infectious transcripts cility. Beetle transmission has been reported for a number of were produced from a cDNA clone of the genome. To date, members, as has transmission in association with soil and/or the nucleotide sequences of six definitive carmoviruses have irrigation water, and in some cases in association with fungal been determined (Table 1). These sequenced members share zoospores. Most of the viruses have been reported to cause similar morphological and physicochemical properties with diseases in a limited number of plants or plant types. about 20 other viruses listed in Table 1 that are recognized A number of carmoviruses have been identified in asso- as species or tentative species, depending on the character- ciation with ornamental hosts and have been widely distrib- ized molecular detail of the viruses. Unlike the majority of uted in such hosts by vegetative propagation. CarMY is the tombusviruses, carmoviruses are sufficiently distant from most noteworthy, being widespread in cultivated carnations, each other to prevent them cross reacting in standard RNA and recognized as one of the more important components of hybridization or serological tests. viral disease complexes in this crop worldwide. It accumu- Carmoviruses and tombusviruses share properties with nu- lates to high concentrations without producing severe symp- merous other small spherical RNA viruses. Structural similar- toms and spreads primarily by contact transmission and veg- ities with members of the Dianthovirus genus (e.g. red clover etative propagation. It has a broad experimental host range 243 244 Qu & Morris in Encyclopedia of Virology, 1999 Figure 1. Genome organization of a typical carmovirus as represented by turnip crinkle virus. The genomic and subgenomic RNAs are depicted as solid lines and the sizes of the RNAs are noted. The ORFs are indicated by the boxes, with the numbers in the boxes identifying the polypeptide encoded by the ORF. The numbers above and below the diagrams give the transcriptional start sites for the sgRNAs and the nucleotide locations of the codons defining each ORF. that includes over 30 species in 15 plant families. PFBV is concentrations, often approaching a level equivalent to 0.5% widespread in vegetatively propagated Pelargonium species, of the fresh weight of the plant tissue. CCFV was first dis- causing disease in association with other viruses. The inci- covered in the Mount Kosiusko alpine region of Australia dence of NTNV in Narcissus cultivars and HCRSV in Hibis- in Cardamine lilacina, a wild perennial Brassica. It has also cus primarily reflects distribution of infected nursery stock. been shown to infect Arabidopsis and other Brassica species. Numerous small RNA viruses have been reported to nat- urally infect cucurbits, causing significant disease problems. Table 1. List of species in the genus Carmovirus Several of these viruses are recognized tombusviruses, while Sequenced species others—such as MNSV, CLSV, and CSBV—have been iden- Carnation mottle (CarMV) tified as carmoviruses based on sequence and genome or- Cardamine chlorotic fleck (CCFV) ganization properties. MNSV occurs worldwide in green- Cowpea mottle (CPMoV) Melon necrotic spot (MNSV) house cucurbits and is both soil and seed transmitted, while Saguaro cactus (SCV) CSBV has been primarily restricted to infrequent outbreaks Turnip crinkle (TCV) around the Mediterranean. All three viruses have been re- Classified species ported to be transmitted in association with the fungus Ol- Ahlum water-borne (AWBV) pidium bornovanus. Bean mild mosaic (BMMV) Several carmoviruses have been discovered in natural le- Cucumber leaf spot (CLSV) guminous hosts, with GMoV being potentially the most im- Cucumber soil-borne (CSBV) portant, causing serious disease losses in legumes in Africa. Galinsoga mosaic (GaMV) BMMV has been reported to be a latent virus widely distrib- Hibiscus chlorotic ringspot (HCRSV) uted in bean cultivars in El Salvador, and BMoV has been Pelargonium flower break (PFBV) found in Vigna species in Asia. Beetle vectors have been Weddel water-borne (WWBV) identified for these viruses, but seed transmission may also Tentative species be an important factor in their distribution. Blackgram mottle (BMoV) TCV is neither common nor widespread in nature in spite Elderberry latent (ELV) of the fact that it is reportedly beetle transmitted. It has a Glycine mottle (GMoV) Narcissus tip necrosis (NTNV) relatively wide experimental host range in some 20 plant Plaintain 6 (PIV-6) families, including experimentally useful Arabidopsis and Squash necrosis (SqNV) Brassica species, in which it accumulates to extremely high Tephrosia symptomless (TeSV) Carmoviruses (Tombusviridae) 245 Other carmoviruses have been isolated worldwide from bly” for this virus identified two possible sites based on natural hosts with little apparent disease and are presum- the identification of RNA fragments in the rp-complex pro- ably of little agricultural concern. These include TeSV from tected from RNase digestion by CP. Further in vivo studies legumes in Kenya, GMoV from glycine in Australia, SCV narrowed the assembly origin site to a bulged hairpin loop from saguaro cactus in Arizona, GaMV from potato weed in of 28 nt within a 180 nt region at the 3’ end of the CP gene. Australia and PIV-6 from plantain weed in England. The in- frequent isolation of these genetically similar viruses in
Recommended publications
  • 2014.008Ap Officers) Short Title: One New Sequence-Only Species, Trailing Lespedeza Virus 1, in the Family Tombusviridae (E.G
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2014.008aP officers) Short title: One new sequence-only species, Trailing lespedeza virus 1, in the family Tombusviridae (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Kay Scheets ([email protected]) and Ulrich Melcher ([email protected]) List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp . If in doubt, contact the appropriate subcommittee Tombusviridae and Umbravirus Study Group chair (fungal, invertebrate, plant, prokaryote or vertebrate viruses) ICTV-EC or Study Group comments and response of the proposer: SG comment: The decision to accept this proposal was unanimous. EC comment: This proposal, which is related to the proposal suggesting the creation of the genus Pelarspovirus, was coded “Ud” because of concerns associated with the creation of the genus (see comments on the related proposal). However, the proposal for creation of the species could be approved this year if the proposal was modified to propose that the species remains unassigned in the family Tombusviridae or possibly be assigned to the current genus Carmovirus.
    [Show full text]
  • Journal of Virology
    JOURNAL OF VIROLOGY Volume 80 March 2006 No. 6 SPOTLIGHT Articles of Significant Interest Selected from This Issue by 2587–2588 the Editors STRUCTURE AND ASSEMBLY Crystal Structure of the Oligomerization Domain of the Haitao Ding, Todd J. Green, 2808–2814 Phosphoprotein of Vesicular Stomatitis Virus Shanyun Lu, and Ming Luo Subcellular Localization of Hepatitis C Virus Structural Yves Rouille´, Franc¸ois Helle, David 2832–2841 Proteins in a Cell Culture System That Efficiently Replicates Delgrange, Philippe Roingeard, the Virus Ce´cile Voisset, Emmanuelle Blanchard, Sandrine Belouzard, Jane McKeating, Arvind H. Patel, Geert Maertens, Takaji Wakita, Czeslaw Wychowski, and Jean Dubuisson A Small Loop in the Capsid Protein of Moloney Murine Marcy R. Auerbach, Kristy R. 2884–2893 Leukemia Virus Controls Assembly of Spherical Cores Brown, Artem Kaplan, Denise de Las Nueces, and Ila R. Singh Identification of the Nucleocapsid, Tegument, and Envelope Jyh-Ming Tsai, Han-Ching Wang, 3021–3029 Proteins of the Shrimp White Spot Syndrome Virus Virion Jiann-Horng Leu, Andrew H.-J. Wang, Ying Zhuang, Peter J. Walker, Guang-Hsiung Kou, and Chu-Fang Lo GENOME REPLICATION AND REGULATION OF VIRAL GENE EXPRESSION Epitope Mapping of Herpes Simplex Virus Type 2 gH/gL Tina M. Cairns, Marie S. Shaner, Yi 2596–2608 Defines Distinct Antigenic Sites, Including Some Associated Zuo, Manuel Ponce-de-Leon, with Biological Function Isabelle Baribaud, Roselyn J. Eisenberg, Gary H. Cohen, and J. Charles Whitbeck The ␣-TIF (VP16) Homologue (ETIF) of Equine Jens von Einem, Daniel 2609–2620 Herpesvirus 1 Is Essential for Secondary Envelopment Schumacher, Dennis J. O’Callaghan, and Virus Egress and Nikolaus Osterrieder Suppression of Viral RNA Recombination by a Host Chi-Ping Cheng, Elena Serviene, 2631–2640 Exoribonuclease and Peter D.
    [Show full text]
  • The Retromer Is Co-Opted to Deliver Lipid Enzymes for the Biogenesis of Lipid-Enriched Tombusviral Replication Organelles
    The retromer is co-opted to deliver lipid enzymes for the biogenesis of lipid-enriched tombusviral replication organelles Zhike Fenga, Jun-ichi Inabaa, and Peter D. Nagya,1 aDepartment of Plant Pathology, University of Kentucky, Lexington, KY 40546 Edited by George E. Bruening, University of California, Davis, CA, and approved November 5, 2020 (received for review July 29, 2020) Biogenesis of viral replication organelles (VROs) is critical for repli- TBSV infections include extensive membrane contact sites (vMCSs) cation of positive-strand RNA viruses. In this work, we demonstrate and harbor numerous spherules (containing VRCs), which are that tomato bushy stunt virus (TBSV) and the closely related carna- vesicle-like invaginations in the peroxisomal membranes (8, 11–13). tion Italian ringspot virus (CIRV) hijack the retromer to facilitate A major gap in our understanding of the biogenesis of VROs, in- building VROs in the surrogate host yeast and in plants. Depletion cluding vMCSs and VRCs, is how the cellular lipid-modifying en- of retromer proteins, which are needed for biogenesis of endosomal zymes are recruited to the sites of viral replication. tubular transport carriers, strongly inhibits the peroxisome-associ- Tombusviruses belong to the large Flavivirus-like supergroup ated TBSV and the mitochondria-associated CIRV replication in yeast that includes important human, animal, and plant pathogens. in planta. and In vitro reconstitution revealed the need for the ret- Tombusviruses have a small single-component (+)RNA genome romer for the full activity of the viral replicase. The viral p33 repli- of ∼4.8 kb that codes for five proteins. Among those, there are cation protein interacts with the retromer complex, including Vps26, two essential replication proteins, namely p33 and p92pol, the Vps29, and Vps35.
    [Show full text]
  • Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies
    viruses Review Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies Varvara I. Maliogka 1,* ID , Angelantonio Minafra 2 ID , Pasquale Saldarelli 2, Ana B. Ruiz-García 3, Miroslav Glasa 4 ID , Nikolaos Katis 1 and Antonio Olmos 3 ID 1 Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 2 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126 Bari, Italy; [email protected] (A.M.); [email protected] (P.S.) 3 Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia, Spain; [email protected] (A.B.R.-G.); [email protected] (A.O.) 4 Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovak Republic; [email protected] * Correspondence: [email protected]; Tel.: +30-2310-998716 Received: 23 July 2018; Accepted: 13 August 2018; Published: 17 August 2018 Abstract: Perennial crops, such as fruit trees, are infected by many viruses, which are transmitted through vegetative propagation and grafting of infected plant material. Some of these pathogens cause severe crop losses and often reduce the productive life of the orchards. Detection and characterization of these agents in fruit trees is challenging, however, during the last years, the wide application of high-throughput sequencing (HTS) technologies has significantly facilitated this task. In this review, we present recent advances in the discovery, detection, and characterization of fruit tree viruses and virus-like agents accomplished by HTS approaches.
    [Show full text]
  • Diversity of Plant Virus Movement Proteins: What Do They Have in Common?
    processes Review Diversity of Plant Virus Movement Proteins: What Do They Have in Common? Yuri L. Dorokhov 1,2,* , Ekaterina V. Sheshukova 1, Tatiana E. Byalik 3 and Tatiana V. Komarova 1,2 1 Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; [email protected] (E.V.S.); [email protected] (T.V.K.) 2 Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia 3 Department of Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; [email protected] * Correspondence: [email protected] Received: 11 November 2020; Accepted: 24 November 2020; Published: 26 November 2020 Abstract: The modern view of the mechanism of intercellular movement of viruses is based largely on data from the study of the tobacco mosaic virus (TMV) 30-kDa movement protein (MP). The discovered properties and abilities of TMV MP, namely, (a) in vitro binding of single-stranded RNA in a non-sequence-specific manner, (b) participation in the intracellular trafficking of genomic RNA to the plasmodesmata (Pd), and (c) localization in Pd and enhancement of Pd permeability, have been used as a reference in the search and analysis of candidate proteins from other plant viruses. Nevertheless, although almost four decades have passed since the introduction of the term “movement protein” into scientific circulation, the mechanism underlying its function remains unclear. It is unclear why, despite the absence of homology, different MPs are able to functionally replace each other in trans-complementation tests. Here, we consider the complexity and contradictions of the approaches for assessment of the ability of plant viral proteins to perform their movement function.
    [Show full text]
  • Genome-Wide Screen Identifies Host Genes Affecting Viral RNA Recombination
    Genome-wide screen identifies host genes affecting viral RNA recombination Elena Serviene, Natalia Shapka, Chi-Ping Cheng, Tadas Panavas, Bencharong Phuangrat, Jannine Baker, and Peter D. Nagy* Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546 Communicated by Paul Ahlquist, University of Wisconsin, Madison, WI, June 9, 2005 (received for review October 12, 2004) Rapid evolution of RNA viruses with mRNA-sense genomes is a in vitro replication͞recombination studies with a small replicon major concern to health and economic welfare because of the RNA, termed defective interfering 72 (DI-72) RNA (21, 22), devastating diseases these viruses inflict on humans, animals, and established a role for RNA sequences͞structures and viral replicase plants. To test whether host genes can affect the evolution of RNA proteins in RNA recombination. Coexpression of the replicon viruses, we used a Saccharomyces cerevisiae single-gene deletion RNA with the two essential tombusviral replicase proteins (see Fig. library, which includes Ϸ80% of yeast genes, in RNA recombination 1A) resulted in robust DI RNA replication in Saccharomyces studies based on a small viral replicon RNA derived from tomato cerevisiae (23, 24), which is a model eukaryotic host. Yeast also bushy stunt virus. The genome-wide screen led to the identifica- supported viral RNA recombination, giving rise to recombinants tion of five host genes whose absence resulted in the rapid similar to those in plants and plant protoplasts (23). Therefore, generation of new viral RNA recombinants. Thus, these genes yeast could be a useful host to study viral RNA recombination and normally suppress viral RNA recombination, but in their absence, to identify host proteins involved in this process.
    [Show full text]
  • Emerging Viral Diseases of Fish and Shrimp Peter J
    Emerging viral diseases of fish and shrimp Peter J. Walker, James R. Winton To cite this version: Peter J. Walker, James R. Winton. Emerging viral diseases of fish and shrimp. Veterinary Research, BioMed Central, 2010, 41 (6), 10.1051/vetres/2010022. hal-00903183 HAL Id: hal-00903183 https://hal.archives-ouvertes.fr/hal-00903183 Submitted on 1 Jan 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Vet. Res. (2010) 41:51 www.vetres.org DOI: 10.1051/vetres/2010022 Ó INRA, EDP Sciences, 2010 Review article Emerging viral diseases of fish and shrimp 1 2 Peter J. WALKER *, James R. WINTON 1 CSIRO Livestock Industries, Australian Animal Health Laboratory (AAHL), 5 Portarlington Road, Geelong, Victoria, Australia 2 USGS Western Fisheries Research Center, 6505 NE 65th Street, Seattle, Washington, USA (Received 7 December 2009; accepted 19 April 2010) Abstract – The rise of aquaculture has been one of the most profound changes in global food production of the past 100 years. Driven by population growth, rising demand for seafood and a levelling of production from capture fisheries, the practice of farming aquatic animals has expanded rapidly to become a major global industry.
    [Show full text]
  • RNA-Based Technologies for Engineering Plant Virus Resistance
    plants Review RNA-Based Technologies for Engineering Plant Virus Resistance Michael Taliansky 1,2,*, Viktoria Samarskaya 1, Sergey K. Zavriev 1 , Igor Fesenko 1 , Natalia O. Kalinina 1,3 and Andrew J. Love 2,* 1 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; [email protected] (V.S.); [email protected] (S.K.Z.); [email protected] (I.F.); [email protected] (N.O.K.) 2 The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK 3 Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia * Correspondence: [email protected] (M.T.); [email protected] (A.J.L.) Abstract: In recent years, non-coding RNAs (ncRNAs) have gained unprecedented attention as new and crucial players in the regulation of numerous cellular processes and disease responses. In this review, we describe how diverse ncRNAs, including both small RNAs and long ncRNAs, may be used to engineer resistance against plant viruses. We discuss how double-stranded RNAs and small RNAs, such as artificial microRNAs and trans-acting small interfering RNAs, either produced in transgenic plants or delivered exogenously to non-transgenic plants, may constitute powerful RNA interference (RNAi)-based technology that can be exploited to control plant viruses. Additionally, we describe how RNA guided CRISPR-CAS gene-editing systems have been deployed to inhibit plant virus infections, and we provide a comparative analysis of RNAi approaches and CRISPR-Cas technology. The two main strategies for engineering virus resistance are also discussed, including direct targeting of viral DNA or RNA, or inactivation of plant host susceptibility genes.
    [Show full text]
  • A Research Review on Tomato Bushy Stunt Virus Disease Complex
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.4, No.5, 2014 A Research Review on Tomato Bushy Stunt Virus Disease Complex Hafiz Husnain Nawaz, Muhammad Umer, Sadia Bano, Anam Usmani, Memoona Naseer Institute of Agricultural Sciences, University of the Punjab, Lahore *corresponding e-mail: [email protected] Abstract: Tomato Bushy Stunt Virus (TBSV) was firstly reported on tomatoes by Smith in 1935 in England. The virus belongs to genus Tombusvirus and family Tombusviridae , is a soil-borne virus with isometric particle about 30 nm in diameter. Tomato Bushy Stunt Virus can cause chlorosis, necrosis, stunting, leaf yellowing, leaf mottling, leaf crinkling and fruit setting may be reduced or become zero. These symptoms were depending upon the host morphology. Transmission of this virus is naturally through infected seeds, propagative material and manually by the use of infective cutting tools. A numbers of varieties were affected. But it’s also observed that Lycopersicon pimpinellifolium not susceptible host plant. Gel Electropherotic analysis shows that virus distantly related serologically with several other viral species in the genus Tombusvirus . In phosphotungstic acid, the particles show an angular outline and unresolved surface structure but when mounted in uranyl acetate, they exhibit a rounded outline and somewhat knobby surface and edges. The viral genome is monopartite and TBSV- Ch has been completely sequenced and shown to contain 4,776 nucleotides.
    [Show full text]
  • An Insect Nidovirus Emerging from a Primary Tropical Rainforest
    RESEARCH ARTICLE An Insect Nidovirus Emerging from a Primary Tropical Rainforest Florian Zirkel,a,b,c Andreas Kurth,d Phenix-Lan Quan,b Thomas Briese,b Heinz Ellerbrok,d Georg Pauli,d Fabian H. Leendertz,c W. Ian Lipkin,b John Ziebuhr,e Christian Drosten,a and Sandra Junglena,c Institute of Virology, University of Bonn Medical Center, Bonn, Germanya; Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USAb; Research Group Emerging Zoonosesc and Center for Biological Safety-1,d Robert Koch Institute, Berlin, Germany; and Institute of Medical Virology, Justus Liebig University Gießen, Gießen, Germanye ABSTRACT Tropical rainforests show the highest level of terrestrial biodiversity and may be an important contributor to micro- bial diversity. Exploitation of these ecosystems may foster the emergence of novel pathogens. We report the discovery of the first insect-associated nidovirus, tentatively named Cavally virus (CAVV). CAVV was found with a prevalence of 9.3% during a sur- vey of mosquito-associated viruses along an anthropogenic disturbance gradient in Côte d’Ivoire. Analysis of habitat-specific virus diversity and ancestral state reconstruction demonstrated an origin of CAVV in a pristine rainforest with subsequent spread into agriculture and human settlements. Virus extension from the forest was associated with a decrease in virus diversity (P < 0.01) and an increase in virus prevalence (P < 0.00001). CAVV is an enveloped virus with large surface projections. The RNA genome comprises 20,108 nucleotides with seven major open reading frames (ORFs). ORF1a and -1b encode two large pro- teins that share essential features with phylogenetically higher representatives of the order Nidovirales, including the families Coronavirinae and Torovirinae, but also with families in a basal phylogenetic relationship, including the families Roniviridae and Arteriviridae.
    [Show full text]
  • Synthesis of Potato Virus X Rnas by Membrane- Containing Extracts
    JOURNAL OF VIROLOGY, July 1996, p. 4795–4799 Vol. 70, No. 7 0022-538X/96/$04.0010 Copyright q 1996, American Society for Microbiology Synthesis of Potato Virus X RNAs by Membrane- Containing Extracts SERGEY V. DORONIN AND CYNTHIA HEMENWAY* Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622 Received 16 October 1995/Accepted 30 March 1996 Membrane-containing extracts isolated from tobacco plants infected with the plus-strand RNA virus, potato virus X (PVX), supported synthesis of four major, high-molecular-weight PVX RNA products (R1 to R4). Nuclease digestion and hybridization studies indicated that R1 and R2 are a mixture of partially single- stranded replicative intermediates and double-stranded replicative forms. R3 and R4 are double-stranded products containing sequences typical of the two major PVX subgenomic RNAs. The newly synthesized RNAs were demonstrated to have predominantly plus-strand polarity. Synthesis of these products was remarkably stable in the presence of ionic detergents. Potato virus X (PVX), the type member of the Potexvirus tracts were derived from Nicotiana tabacum leaves at 7 days genus, is a flexuous rod-shaped particle containing a single, postinoculation by a procedure similar to that described by genomic RNA of 6.4 kb that is capped and polyadenylated (21, Lurie and Hendrix (15). Inoculated and upper leaves (50 g) 27). Of the five open reading frames (ORFs), the first encodes were homogenized in 150 ml of buffer I (50 mM Tris-HCl [pH a 165-kDa protein (P1) that has homology to other known 7.5], 250 mM sucrose, 5 mM MgCl2, 1 mM EDTA, 10 mM RNA-dependent RNA polymerase (RdRp) proteins (23).
    [Show full text]
  • Icosahedral Viruses Defined by Their Positively Charged Domains: a Signature for Viral Identity and Capsid Assembly Strategy
    Support Information for: Icosahedral viruses defined by their positively charged domains: a signature for viral identity and capsid assembly strategy Rodrigo D. Requião1, Rodolfo L. Carneiro 1, Mariana Hoyer Moreira1, Marcelo Ribeiro- Alves2, Silvana Rossetto3, Fernando L. Palhano*1 and Tatiana Domitrovic*4 1 Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. 2 Laboratório de Pesquisa Clínica em DST/Aids, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil 3 Programa de Pós-Graduação em Informática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. 4 Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. *Corresponding author: [email protected] or [email protected] MATERIALS AND METHODS Software and Source Identifier Algorithms Calculation of net charge (1) Calculation of R/K ratio This paper https://github.com/mhoyerm/Total_ratio Identify proteins of This paper https://github.com/mhoyerm/Modulate_RK determined net charge and R/K ratio Identify proteins of This paper https://github.com/mhoyerm/Modulate_KR determined net charge and K/R ratio Data sources For all viral proteins, we used UniRef with the advanced search options (uniprot:(proteome:(taxonomy:"Viruses [10239]") reviewed:yes) AND identity:1.0). For viral capsid proteins, we used the advanced search options (proteome:(taxonomy:"Viruses [10239]") goa:("viral capsid [19028]") AND reviewed:yes) followed by a manual selection of major capsid proteins. Advanced search options for H.
    [Show full text]