Leishmania Donovani Exploits Tollip, a Multitasking Protein, to Impair TLR/IL-1R Signaling for Its Survival in the Host

Total Page:16

File Type:pdf, Size:1020Kb

Leishmania Donovani Exploits Tollip, a Multitasking Protein, to Impair TLR/IL-1R Signaling for Its Survival in the Host Leishmania donovani Exploits Tollip, a Multitasking Protein, To Impair TLR/IL-1R Signaling for Its Survival in the Host This information is current as Naveen Parmar, Pragya Chandrakar, Preeti Vishwakarma, of September 30, 2021. Kavita Singh, Kalyan Mitra and Susanta Kar J Immunol 2018; 201:957-970; Prepublished online 15 June 2018; doi: 10.4049/jimmunol.1800062 http://www.jimmunol.org/content/201/3/957 Downloaded from References This article cites 46 articles, 12 of which you can access for free at: http://www.jimmunol.org/content/201/3/957.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 30, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Leishmania donovani Exploits Tollip, a Multitasking Protein, To Impair TLR/IL-1R Signaling for Its Survival in the Host Naveen Parmar,*,† Pragya Chandrakar,*,† Preeti Vishwakarma,*,† Kavita Singh,‡ Kalyan Mitra,†,‡ and Susanta Kar*,† IL-1R/TLR signaling plays a significant role in sensing harmful foreign pathogens and mounting effective innate and adaptive immune responses. However, the precise mechanism by which Leishmania donovani, an obligate intramacrophagic pathogen, breaches IL-1R/TLR signaling and host-protective immunity remains obscure. In this study, we report the novel biphasic role of Toll-interacting protein (Tollip), a negative regulator of the IL-1R/TLR pathway, in the disease progression of experimental visceral leishmaniasis. We observed that during early hours of infection, L. donovani induced phosphorylation of IRAK-1, resulting in the release of Tollip from the IL-1R–associated kinase (IRAK)-1 complex in J774 macrophages, which then acted as an endocytic adaptor on cell surface IL-1R1 and promoted its lysosomal degradation. In the later stage, Tollip shuttled back to Downloaded from IRAK-1, thereby inhibiting IRAK-1 phosphorylation in association with IRAK-M to neutralize downstream TLR signaling in infected macrophages. Moreover, during late infection, L. donovani enhanced nuclear translocation and recruitment of transcrip- tion factors early growth response protein 2, NF erythroid 2–related factor 2, and Ahr on Tollip promoter for its induction. Small interfering RNA–mediated silencing of Tollip in infected macrophages significantly enhanced NF-kB activation and induced host- defensive IL-12 and TNF-a synthesis, thereby reducing amastigote multiplication. Likewise, abrogation of Tollip in L. donovani– infected BALB/c mice resulted in STAT-1–, IRF-1–, and NF-kB–mediated upregulation of host-protective cytokines and re- http://www.jimmunol.org/ duced organ parasite burden, thereby implicating its role in disease aggravation. Taken together, we conclude that L. donovani exploited the multitasking function of Tollip for its own establishment through downregulating IL-1R1/TLR signaling in macrophages. The Journal of Immunology, 2018, 201: 957–970. athogenicity of Leishmania donovani has been attributed members played an influential role in initiating host innate im- to the exploitation of host cellular machinery, which fa- mune responses and directing adaptive immune responses against cilitates favorable adaptation of parasites to the intra- invading foreign pathogens (1). However, L. donovani employed P by guest on September 30, 2021 cellular milieu of the innate immune sentinel cells such as numerous strategies to evade the first-line defense of the host by macrophages. Armed with a variety of pattern recognition re- manipulation of TLR and its downstream signaling components. ceptors, macrophages sense parasite surface molecules to trigger L. donovani hindered the TLR-mediated immune response at the appropriate host immune response. IL-1R/TLR superfamily multiple levels by exploiting host cellular proteins such as IL-1R– associated kinase (IRAK)-M (2), A20 (3), TRAF-3 (4), and phosphatases such as MKP-1, MKP-3, and PP2A (5). However, *Division of Parasitology, Council of Scientific and Industrial Research–Central the role of another Toll/IL-1R (TIR) superfamily member recep- Drug Research Institute, Lucknow 226031, India; †Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110001, India; and tor, IL-1R1, and its downstream signaling are poorly understood ‡Electron Microscopy Unit, Sophisticated Analytical Instrument Facility, Council during fatal visceral leishmaniasis (VL). IL-1 signaling plays an of Scientific and Industrial Research–Central Drug Research Institute, Lucknow important role in inflammation and early activation of host innate 226031, India immune response following foreign pathogens. Signal transduc- Received for publication January 16, 2018. Accepted for publication May 21, 2018. tion via IL-1R1 has a fundamental role in host defense against a This work was supported by Department of Science and Technology Grant SB/FT/ LS-310/2012, Council of Scientific and Industrial Research Grant CSIR NWP wide variety of pathogens, including Mycobacterium (6), Strep- BSC0114, and by Indian National Science Academy Grant SP/YSP/115/2015. N.P. tococcus (7), and Listeria monocytogenes (8). However, to prevent received a fellowship from the University Grants Commission (New Delhi), and P.C. irrelevant and adverse inflammatory responses, the IL-1R/TLR and P.V. are the recipients of fellowships from the Council of Scientific and Industrial Research (New Delhi). The funders had no role in study design, data collection and signaling pathway is tightly controlled by endogenous negative analysis, decision to publish, or preparation of the manuscript. regulators at multiple levels (9). This manuscript has Central Drug Research Institute Communication number 9670. Earlier reports suggested that a relationship exist between en- Address correspondence and reprint requests to Dr. Susanta Kar, Council of Scientific docytosis of ligand-activated receptors and further interaction with and Industrial Research–Central Drug Research Institute, Sector-10, Jankipuram downstream signaling molecules to continue signaling (10, 11). Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India. E-mail address: [email protected] However, internalization followed by degradation in lysosomes is another fate of receptors that leads to attenuation of signaling and Abbreviations used in this article: BMDC, bone marrow–derived DC; ChIP, chroma- tin immunoprecipitation; CUE, coupling of ubiquitin to endoplasmic reticulum deg- is an extremely regulated process that involves recognition of radation; DC, dendritic cell; EEA1, early endosome Ag 1; Egr2, early growth ubiquitinated receptors by cargo proteins involved in their traf- response protein 2; IRAK, IL-1R–associated kinase; LAMP-1, lysosomal- associated membrane protein 1; LDU, Leishman–Donovan unit; LPG, lipophospho- ficking (12). Internalization of IL-1R1 from the plasma membrane glycan; Nrf2, NF erythroid 2–related factor 2; siRNA, small interfering RNA; TIR, played an important role in IL-1 signaling (13), and IL-1R1 also Toll/IL-1R; Tollip, Toll-interacting protein; TSS, transcription start site; VL, visceral undergoes monoubiquitnation before its degradation in lysosomes. leishmaniasis. The endosomal adaptor protein, Toll-interacting protein (Tollip), Copyright Ó 2018 by The American Association of Immunologists, Inc. 0022-1767/18/$35.00 is a multitasking regulator, as it not only participates in trafficking www.jimmunol.org/cgi/doi/10.4049/jimmunol.1800062 958 TOLLIP INHIBITS TLR/IL-1R1 SIGNALING IN VL and endosomal sorting of receptors such as TLR2, TLR4, and Parasite, cell culture conditions, and infection IL-1R1, but also in inhibiting IL/Toll/NF-kB signaling by L. donovani strain MHOM/IN/80/Dd8 was maintained as promastigotes in restricting phosphorylation of IRAK (14). Tollip is a multi- medium 199 (Sigma-Aldrich) supplemented with 10% heat-inactivated functional protein that contains the Tom1 binding domain at the FBS (Life Technologies) at 24 6 2˚C. J774 murine macrophage were N-terminal, a C2 domain that enables Tollip interaction with obtained from the National Centre for Cell Sciences (Pune, India) and were phosphoinositides, and the coupling of ubiquitin to endoplasmic grown as monolayers in RPMI 1640 medium (Sigma-Aldrich), supple- mented with 10% FBS, 100 U/ml penicillin, and 100 mg/ml streptomycin reticulum degradation (CUE) domain at the C-terminal. The (Invitrogen) in 5% CO2 atmosphere at 37˚C. Amastigotes of the MHOM/ CUE domain is responsible for associationofTolliptodifferent IN/80/Dd8 strain of L. donovani were freshly isolated from the spleen of cellular proteins, including IRAK-1, IL-1R1, TLR2, and TLR4. infected BALB/c mice. For in vitro studies, J774 macrophages were cul- Reports suggested that Tollip and its common variants negatively tured in petri dishes
Recommended publications
  • Regulatory Mechanisms of Leishmania Aquaglyceroporin AQP1 Mansi Sharma Florida International University, [email protected]
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-6-2015 Regulatory mechanisms of Leishmania Aquaglyceroporin AQP1 Mansi Sharma Florida International University, [email protected] DOI: 10.25148/etd.FIDC000197 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Parasitology Commons Recommended Citation Sharma, Mansi, "Regulatory mechanisms of Leishmania Aquaglyceroporin AQP1" (2015). FIU Electronic Theses and Dissertations. 2300. https://digitalcommons.fiu.edu/etd/2300 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida REGULATORY MECHANISMS OF LEISHMANIA AQUAGLYCEROPORIN AQP1 A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Mansi Sharma 2015 To: Dean Michael R. Heithaus College of Arts and Sciences This dissertation, written by Mansi Sharma, and entitled, Regulatory Mechanisms of Leishmania Aquaglyceroporin AQP1, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. _______________________________________ Lidia Kos _____________________________________ Kathleen
    [Show full text]
  • Leishmania\) Martiniquensis N. Sp. \(Kinetoplastida: Trypanosomatidae\
    Parasite 2014, 21, 12 Ó N. Desbois et al., published by EDP Sciences, 2014 DOI: 10.1051/parasite/2014011 urn:lsid:zoobank.org:pub:31F25656-8804-4944-A568-6DB4F52D2217 Available online at: www.parasite-journal.org SHORT NOTE OPEN ACCESS Leishmania (Leishmania) martiniquensis n. sp. (Kinetoplastida: Trypanosomatidae), description of the parasite responsible for cutaneous leishmaniasis in Martinique Island (French West Indies) Nicole Desbois1, Francine Pratlong2, Danie`le Quist3, and Jean-Pierre Dedet2,* 1 CHU de la Martinique, Hoˆpital Pierre-Zobda-Quitman, Poˆle de Biologie de territoire-Pathologie, Unite´de Parasitologie-Mycologie, BP 632, 97261 Fort-de-France Cedex, Martinique, France 2 Universite´Montpellier 1 et CHRU de Montpellier, Centre National de re´fe´rence des leishmanioses, UMR « MIVEGEC » (CNRS 5290, IRD 224, UM1, UM2), De´partement de Parasitologie-Mycologie (Professeur Patrick Bastien), 39 avenue Charles Flahault, 34295 Montpellier Cedex 5, France 3 CHU de la Martinique, Hoˆpital Pierre-Zobda-Quitman, Service de dermatologie, Poˆle de Me´decine-Spe´cialite´s me´dicales, BP 632, 97261 Fort-de-France Cedex, Martinique, France Received 21 November 2013, Accepted 19 February 2014, Published online 14 March 2014 Abstract – The parasite responsible for autochthonous cutaneous leishmaniasis in Martinique island (French West Indies) was first isolated in 1995; its taxonomical position was established only in 2002, but it remained unnamed. In the present paper, the authors name this parasite Leishmania (Leishmania) martiniquensis Desbois, Pratlong & Dedet n. sp. and describe the type strain of this taxon, including its biological characteristics, biochemical and molecular identification, and pathogenicity. This parasite, clearly distinct from all other Euleishmania, and placed at the base of the Leishmania phylogenetic tree, is included in the subgenus Leishmania.
    [Show full text]
  • Leishmaniasis in the United States: Emerging Issues in a Region of Low Endemicity
    microorganisms Review Leishmaniasis in the United States: Emerging Issues in a Region of Low Endemicity John M. Curtin 1,2,* and Naomi E. Aronson 2 1 Infectious Diseases Service, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA 2 Infectious Diseases Division, Uniformed Services University, Bethesda, MD 20814, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-011-301-295-6400 Abstract: Leishmaniasis, a chronic and persistent intracellular protozoal infection caused by many different species within the genus Leishmania, is an unfamiliar disease to most North American providers. Clinical presentations may include asymptomatic and symptomatic visceral leishmaniasis (so-called Kala-azar), as well as cutaneous or mucosal disease. Although cutaneous leishmaniasis (caused by Leishmania mexicana in the United States) is endemic in some southwest states, other causes for concern include reactivation of imported visceral leishmaniasis remotely in time from the initial infection, and the possible long-term complications of chronic inflammation from asymptomatic infection. Climate change, the identification of competent vectors and reservoirs, a highly mobile populace, significant population groups with proven exposure history, HIV, and widespread use of immunosuppressive medications and organ transplant all create the potential for increased frequency of leishmaniasis in the U.S. Together, these factors could contribute to leishmaniasis emerging as a health threat in the U.S., including the possibility of sustained autochthonous spread of newly introduced visceral disease. We summarize recent data examining the epidemiology and major risk factors for acquisition of cutaneous and visceral leishmaniasis, with a special focus on Citation: Curtin, J.M.; Aronson, N.E.
    [Show full text]
  • Identification of Leishmania Donovani Inhibitors from Pathogen Box Compounds of Medicine for Malaria Venture
    bioRxiv preprint doi: https://doi.org/10.1101/716134; this version posted July 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Identification of Leishmania donovani inhibitors from pathogen box compounds of Medicine for Malaria Venture Markos Tadele1¶, Solomon M. Abay2¶*, Eyasu Makonnen2,4, Asrat Hailu3 1 Ethiopian institute of agricultural research, Animal health research program, Holetta, Ethiopia 2Department of Pharmacology and clinical pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia 3Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia 4Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT Africa), College of Health Sciences, Addis Ababa University * Corresponding author Email: [email protected], [email protected] ¶ These authors contributed equally to this work. Author Contributions Conceptualization and design the experiment: MT, SMA, EM, AH Investigation: MT, SMA, AH Data analysis: MT, SMA Funding acquisition and reagents contribution: SMA, AH Supervision: SMA, EM, AH Writing – original draft: MT Writing – review & editing: MT, SMA, EM, AH 1 | P a g e bioRxiv preprint doi: https://doi.org/10.1101/716134; this version posted July 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Human Toll-Like Receptor Signaling Pathway Cat. no. 330231 PAHS-018ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Human Toll-Like Receptor (TLR) Signaling Pathway RT² Profiler PCR Array profiles the expression of 84 genes central to TLR-mediated signal transduction and innate immunity. The TLR family of pattern recognition receptors (PRRs) detects a wide range of bacteria, viruses, fungi and parasites via pathogen-associated molecular patterns (PAMPs). Each receptor binds to specific ligands, initiates a tailored innate immune response to the specific class of pathogen, and activates the adaptive immune response.
    [Show full text]
  • Maintenance of Trypanosoma Cruzi, T. Evansi and Leishmania Spp
    IJP: Parasites and Wildlife 7 (2018) 398–404 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Maintenance of Trypanosoma cruzi, T. evansi and Leishmania spp. by domestic dogs and wild mammals in a rural settlement in Brazil-Bolivian border T ∗ Grasiela Edith de Oliveira Porfirioa, Filipe Martins Santosa, , Gabriel Carvalho de Macedoa, Wanessa Teixeira Gomes Barretob, João Bosco Vilela Camposa, Alyssa C. Meyersc, Marcos Rogério Andréd, Lívia Perlesd, Carina Elisei de Oliveiraa, Samanta Cristina das Chagas Xaviere, Gisele Braziliano de Andradea, Ana Maria Jansene, Heitor Miraglia Herreraa,b a Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Tamandaré Avenue, 6000. Jardim Seminário, Cep 79117-900, Campo Grande, Mato Grosso do Sul, Brazil b Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Costa e Silva Avenue, Cep 79070-900, Campo Grande, Mato Grosso do Sul, Brazil c Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, 4458, College Station, Texas, USA d Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Prof. Paulo Donato Castelane Street, Cep 14884-900, Jaboticabal, São Paulo, Brazil e Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Brazil Avenue, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, Brazil ARTICLE INFO ABSTRACT Keywords: Domestic dogs are considered reservoirs hosts for several vector-borne parasites. This study aimed to evaluate Canine the role of domestic dogs as hosts for Trypanosoma cruzi, Trypanosoma evansi and Leishmania spp. in single and Neglected diseases co-infections in the Urucum settlement, near the Brazil-Bolivian border.
    [Show full text]
  • TLR Signaling Pathways
    Seminars in Immunology 16 (2004) 3–9 TLR signaling pathways Kiyoshi Takeda, Shizuo Akira∗ Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, and ERATO, Japan Science and Technology Corporation, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Abstract Toll-like receptors (TLRs) have been established to play an essential role in the activation of innate immunity by recognizing spe- cific patterns of microbial components. TLR signaling pathways arise from intracytoplasmic TIR domains, which are conserved among all TLRs. Recent accumulating evidence has demonstrated that TIR domain-containing adaptors, such as MyD88, TIRAP, and TRIF, modulate TLR signaling pathways. MyD88 is essential for the induction of inflammatory cytokines triggered by all TLRs. TIRAP is specifically involved in the MyD88-dependent pathway via TLR2 and TLR4, whereas TRIF is implicated in the TLR3- and TLR4-mediated MyD88-independent pathway. Thus, TIR domain-containing adaptors provide specificity of TLR signaling. © 2003 Elsevier Ltd. All rights reserved. Keywords: TLR; Innate immunity; Signal transduction; TIR domain 1. Introduction 2. Toll-like receptors Toll receptor was originally identified in Drosophila as an A mammalian homologue of Drosophila Toll receptor essential receptor for the establishment of the dorso-ventral (now termed TLR4) was shown to induce the expression pattern in developing embryos [1]. In 1996, Hoffmann and of genes involved in inflammatory responses [3]. In addi- colleagues demonstrated that Toll-mutant flies were highly tion, a mutation in the Tlr4 gene was identified in mouse susceptible to fungal infection [2]. This study made us strains that were hyporesponsive to lipopolysaccharide [4]. aware that the immune system, particularly the innate im- Since then, Toll receptors in mammals have been a major mune system, has a skilful means of detecting invasion by focus in the immunology field.
    [Show full text]
  • Infection Leishmania Major Th1 Response and Control Cutaneous
    Mice Lacking NK Cells Develop an Efficient Th1 Response and Control Cutaneous Leishmania major Infection1 Abhay R. Satoskar,2* Luisa M. Stamm,* Xingmin Zhang,† Anjali A. Satoskar,‡ Mitsuhiro Okano,* Cox Terhorst,† John R. David,* and Baoping Wang† NK cells are believed to play a critical role in the development of immunity against Leishmania major. We recently found that transplantation of wild-type bone marrow cells into neonatal tge 26 mice, which are deficient in T and NK cells, resulted in normal T cell development, but no or poor NK cell development. Using this novel model we analyzed the role of NK cells in the devel- opment of Th1 response and control of cutaneous L. major infection. Mice selectively lacking NK cells (NK2T1) developed an efficient Th1-like response, produced significant amounts of IL-12 and IFN-g, and controlled cutaneous L. major infection. Ad- ministration of neutralizing IL-12 Abs to NK2T1 mice during L. major infection resulted in exacerbation of the disease. These results demonstrate that NK cells are not critical for development of protective immunity against L. major. Furthermore, they indicate that IL-12 can induce development of Th1 response independent of NK cells in NK2T1 mice following L.major infection. The Journal of Immunology, 1999, 162: 6747–6754. he leishmaniases comprising a number of diseases caused involved in host defense against this parasite (11). Furthermore, a by the intracellular protozoan parasite Leishmania have a recent study indicated that NK cells are involved in protection and T wide spectrum of clinical manifestations (1). While sus- healing of cutaneous leishmaniasis in humans (12).
    [Show full text]
  • Innate Immunity and Inflammation of the Bovine Female Reproductive Tract
    REPRODUCTIONREVIEW Innate immunity and inflammation of the bovine female reproductive tract in health and disease I Martin Sheldon, James G Cronin, Gareth D Healey, Christoph Gabler1, Wolfgang Heuwieser2, Dominik Streyl3, John J Bromfield4, Akio Miyamoto5, Chrys Fergani6 and Hilary Dobson6 College of Medicine, Institute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK, 1Institute of Veterinary Biochemistry and 2Clinic of Animal Reproduction, Freie Universitaet Berlin, Berlin, Germany, 3Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, Germany, 4Department of Animal Sciences, University of Florida, Gainesville, Florida 32608, USA, 5Graduate School for Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan and 6School of Veterinary Science, University of Liverpool, Leahurst, Neston CH64 7TE, UK Correspondence should be addressed to I M Sheldon; Email: [email protected] Abstract Mammalian reproductive physiology and the development of viviparity co-evolved with inflammation and immunity over millennia. Many inflammatory mediators contribute to paracrine and endocrine signalling, and the maintenance of tissue homeostasis in the female reproductive tract. However, inflammation is also a feature of microbial infections of the reproductive tract. Bacteria and viruses commonly cause endometritis, perturb ovarian follicle development and suppress the endocrine activity of the hypothalamus and pituitary in cattle. Innate immunity is an evolutionary ancient system that orchestrates host cell inflammatory responses aimed at eliminating pathogens and repairing damaged tissue. Pattern recognition receptors on host cells bind pathogen-associated molecular patterns and damage-associated molecular patterns, leading to the activation of intracellular MAPK and NFkB signalling pathways and the release of inflammatory mediators.
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Inflammation in Innate and Adaptive Immune Mechanisms October 28 – 30, 2012 Hilton Grand Wailea Resort | Maui, Hawai’I Organizers: Tom Hamilton and Xiaoxia Li
    45th Annual Meeting of The Society for Leukocyte Biology InflammatIon In Innate and adaptIve Immune mechanIsms October 28 – 30, 2012 Hilton Grand Wailea Resort | Maui, Hawai’i Organizers: Tom Hamilton and Xiaoxia Li abstracts Journal of Leukocyte Biology, Supplement 2012 www.leukocytebiology.org 45th AnnuAl Meeting of the Society for leukocyte Biology inflAMMAtion in innAte And AdAptive iMMune MechAniSMS grAnd WAileA, MAui, hAWAi’i ~ octoBer 28-30, 2012 Thank you to the supporters of the 2012 SLB Meeting! Journal of Leukocyte Biology Supplement 2012 ABSTRACTS 1 2 Alcohol and Drugs of Abuse Interaction with HIV/AIDS: Chronic Alcohol Consumption Increases Mortality in Sepsis Systems Biology Approach in the SIV-Infected Macaque Benyam P. Yoseph, Zhe Liang, Elise Breed, Kevin McConnell, Patricia E. Molina David M. Guidot, Michael Koval, Craig M. Coopersmith Comprehensive Alcohol Research Center, Louisiana State Emory University School of Medicine University Health Sciences Center, NOLA Introduction: Excessive alcohol abuse is a problem of particular The two most commonly used and abused drugs are alcohol concern in the intensive care unit (ICU), as the rate of morbidity and the cannabinoids. Alcohol and drugs of abuse have been and mortality in all patients admitted to ICU is 2-4 times greater demonstrated to alter host response to human immunodeficiency than in non-alcoholics. Sepsis is the leading cause of death in ICU. (HIV) infection; by affecting progression of infection, tissue The purpose of this study was to examine the pathophysiology of injury, and time to death. Several factors can be involved in chronic alcohol abuse in sepsis. this, those pertaining to the host response, as well as those Methods: FVB/N mice were given liquid ethanol diet (20% w/v) or related to the ability of the virus to integrate itself into the host water for 12 weeks.
    [Show full text]
  • American Trypanosomiasis and Leishmaniasis Trypanosoma Cruzi
    American Trypanosomiasis and Leishmaniasis Trypanosoma cruzi Leishmania sp. American Trypanosomiasis History Oswaldo Cruz Trypanosoma cruzi - Chagas disease Species name was given in honor of Oswaldo Cruz -mentor of C. Chagas By 29, Chagas described the agent, vector, clinical symptoms Carlos Chagas - new disease • 16-18 million infected • 120 million at risk • ~50,000 deaths annually • leading cause of cardiac disease in South and Central America Trypanosoma cruzi Intracellular parasite Trypomastigotes have ability to invade tissues - non-dividing form Once inside tissues convert to amastigotes - Hela cells dividing forms Ability to infect and replicate in most nucleated cell types Cell Invasion 2+ Trypomatigotes induce a Ca signaling event 2+ Ca dependent recruitment and fusion of lysosomes Differentiation is initiated in the low pH environment, but completed in the cytoplasm Transient residence in the acidic lysosomal compartment is essential: triggers differentiation into amastigote forms Trypanosoma cruzi life cycle Triatomid Vectors Common Names • triatomine bugs • reduviid bugs >100 species can transmit • assassin bugs Chagas disease • kissing bugs • conenose bugs 3 primary vectors •Triatoma dimidiata (central Am.) •Rhodnius prolixis (Colombia and Venezuela) •Triatoma infestans (‘southern cone’ countries) One happy triatomid! Vector Distribution 4 principal vectors 10-35% of vectors are infected Parasites have been detected in T. sanguisuga Enzootic - in animal populations at all times Many animal reservoirs Domestic animals Opossums Raccoons Armadillos Wood rats Factors in Human Transmission Early defication - during the triatome bloodmeal Colonization of human habitats Adobe walls Thatched roofs Proximity to animal reservoirs Modes of Transmission SOURCE COMMENTS Natural transmission by triatomine bugs Vector through contamination with infected feces. A prevalent mode of transmission in urban Transfusion areas.
    [Show full text]