A tale of two stories: astrocyte regulation of synaptic depression and facilitation Maurizio De Pittà1, Vladislav Volman2,3, Hugues Berry4, and Eshel Ben-Jacob1,2,* 1. School of Physics and Astronomy, Tel Aviv University, 69978 Ramat Aviv, Israel 2. Center for Theoretical Biological Physics, UCSD, La Jolla, CA 92093-0319, USA 3. Computational Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037, USA 4. Project-Team BEAGLE, INRIA Rhône-Alpes, Université de Lyon, LIRIS, UMR5205, F-69603, France *Corresponding author: Eshel Ben-Jacob:
[email protected], Tel.: +972-3-640-7845 Fax: +972-3-642-5787 Citation: De Pittà M, Volman V, Berry H, Ben-Jacob E, 2011 A tale of two stories: astrocyte regulation of synaptic depression and facilitation. PLoS Comput. Biol. 7(12): e1002293. doi:10.1371/journal.pcbi.1002293 De Pittà et al., Astrocyte regulation of presynaptic plasticity PLoS Comput Biol 7(12): e1002293 Abstract Short-term presynaptic plasticity designates variations of the amplitude of synaptic information transfer whereby the amount of neurotransmitter released upon presynaptic stimulation changes over seconds as a function of the neuronal firing activity. While a consensus has emerged that the resulting decrease (depression) and/or increase (facilitation) of the synapse strength are crucial to neuronal computations, their modes of expression in vivo remain unclear. Recent experimental studies have reported that glial cells, particularly astrocytes in the hippocampus, are able to modulate short-term plasticity but the mechanism of such a modulation is poorly understood. Here, we investigate the characteristics of short-term plasticity modulation by astrocytes using a biophysically realistic computational model.