Freshwater Insect Diversity in Rivers of the Kruger National Park

Total Page:16

File Type:pdf, Size:1020Kb

Freshwater Insect Diversity in Rivers of the Kruger National Park A SNAPSHOT IN TIME: FRESHWATER INSECT DIVERSITY IN RIVERS OF THE KRUGER NATIONAL PARK Holland, A.J. 1, Barber-James, H.M. 1,2 and de Moor, F.C. 1,2 1 Department of Freshwater Invertebrates, Albany Museum, Makhanda (Grahamstown) 6139, South Africa 2 Department of Zoology and Entomology, Rhodes University, Makhanda (Grahamstown) 6139, South Africa [email protected] @africaddis SOME HISTORY • 1921: earliest record of aquatic pollution in the park • Gold mines near Sabie village discharged waste directly into the Sabie River • Early 1930s tourists refused to use Sabie River water for domestic purposes • Hippopotami were starting to get affected and the pollution eventually caused death of livestock • 1933 National Park Board initiated benthic fauna survey in response with the result that “there was virtually no small aquatic life in the Sabie River.” • 1944 legislation was passed preventing the dumping of raw waste directly into the river SOME HISTORY • 1959: research project ‘South African Hydrobiological Regions’ by Dr AD Harrison and JD Agnew (Hydrobiology Division of the National Institute for Water Research) • Sampled Sabie (impacted) and Crocodile (unimpacted) for comparison Results: • Fauna of the Sabie River far more diverse than that of the Crocodile River, which showed that the Sabie River had recovered • many unrecorded mayflies and caddis flies were found • But the fauna has strong links with that of Central Africa • Material donated to Albany Museum NATIONAL FRESHWATER INVERTEBRATE COLLECTION, ALBANY MUSEUM • This collection has over 2-million specimens from all over Africa, and is the largest such collection on the continent. • 70% of data connected to each specimen are housed in the database • 1% has been imaged and DNA barcoded WAYS TO USE THE COLLECTION (1) New distribution records for species that have not been recorded previously in the park or at sites previously surveyed, (2) records of species missing in the park that used to be present, (3) discovery of new species previously unknown to science (4) changes in species assemblages reflecting changes in ecological conditions over time. INSECT BIODIVERSITY LOSS TRICHOPTERA – CADDIS FLIES • Largest aquatic insect order • Inhabit many different biotopes from fast flowing rivers to temporal ponds • Sensitive to water chemistry changes - useful group to use for Environmental Impact studies and for determining water quality and environmental health. • The most pollution tolerant species belong to the net spinning family Hydropsychidae • To identify caddis flies to species level adult males are needed as their genitalia have distinct structures QUICK LIFE-CYCLE Trichoptera family diversity at entrance (upper) and exit (lower) sites on the Sabie and Crocodile Rivers Map by Bayanda Sonamzi MATERIAL FROM THE AM COLLECTION Survey 1 Survey 2 Survey 3 Sampling 1959 July, November 1985 April, September 2015 September 1960 July, November 1986 April, September 2016 April, September 2017 March Season Low- and high-flow Low-flow Low-flow Methods Surber sampler Hand-net (biotic index, SASS, general SASS prototype collection, Light trap method) Biotopes Stones in current Stones in and out of Stones in and out of current, vegetation, current, vegetation, sediment sediment, logs, bedrock, anything of interest Preservation 3% Formalin and 70% 3% Formalin and 70% 80% ethanol ethanol after sorting ethanol after sorting EXPECTATIONS • Sabie River is more diverse than the Crocodile River • Diversity increases or stays the same over time • Surveys 2 and 3 are comparable, survey 1 is not as methods have not been standardized for all collecting events • Diversity and/or abundance of survey 3 should be much higher than surveys 1 and 2 due to the more comprehensive collecting effort during survey 3 Upper Crocodile River CROCODILE 1400 RIVER 1200 1000 Dipseudopsidae 800 Ecnomidae • Survey 2 and 3 600 Philopotamidae Abundance dominated by 400 Leptoceridae Hydroptilidae Hydropsychidae 200 Hydropsychidae 0 • Survey 2 stable survey 1 survey 2 survey 3 results 1959/60 1985/86 2015/16/17 • Increased Lower Crocodile River abundances indicate 1400 improved sampling 1200 methods over time? 1000 Ecnomidae 800 Philopotamidae 600 Leptoceridae S1 S2 S3 Abundance 400 Hydroptilidae Upper 4 5 6 200 Hydropsychidae Lower 4 5 5 0 survey 1 survey 2 survey 3 1959/60 1985/86 2015/16/17 Upper Sabie River 1400 SABIE RIVER 1200 1000 Dipseudopsidae 800 Ecnomidae • Survey 1 at upper 600 Philopotamidae Abundance Sabie only 400 Leptoceridae Hydroptilidae Leptoceridae at 200 Hydropsychidae lower sabie low 0 abundance but high survey 1 survey 2 survey 3 diversity 1959/60 1985/86 2015/16/17 • Surveys 2 and 3 Lower Sabie River diversity and 1400 abundance 1200 increases over time 1000 Dipseudopsidae 800 Ecnomidae 600 Philopotamidae Sab S1 S2 S3 Abundance 400 Leptoceridae Upper 1 5 6 Hydroptilidae 200 Hydropsychidae Lower 5 5 6 0 survey 1 survey 2 survey 3 1959/60 1985/86 2015/16/17 ADJUSTING RESULTS • Survey 3 included additional light trapping to catch adults stages (important for caddis fly species identification) • all adults were removed from all surveys to compare larval stage results (including any Skukuza Restaurant “by-catches” in the older surveys) UpperUpper Crocodile Crocodile River River- adjusted CROCODILE 1400 RIVER 1200 1000 Dipseudopsidae Ecnomidae 800 Ecnomidae Philopotamidae 600 Philopotamidae • Upper Crocodile lost Leptoceridae Abundance Abundance Leptoceridae Dipseudopsidae 400 Hydroptilidae Hydroptilidae 200 Hydropsychidae • Hydroptilidae and Hydropsychidae 0 Leptoceridae are the survey 1 survey 2 survey 3 only 2 families present 1959/60 1985/86 2015/16/17 at Lower Croc after LowerLower Crocodile Crocodile River River adjusted adjustment 1400 • Diversity and 1200 abundance decreases 1000 Ecnomidae 800 in the recent survey Philopotamidae 600 Leptoceridae AbundanceAbundance Croc S1 S2 S3 400 Hydroptilidae 200 Hydropsychidae Upper 4 5 65 0 Lower 43 5 52 survey 1 survey 2 survey 3 1959/60 1985/86 2015/16/17 UpperUpper Sabie Sabie River River- adjusted 1400 SABIE RIVER 1200 1000 Dipseudopsidae Ecnomidae 800 Ecnomidae Philopotamidae • Although Upper 600 Philopotamidae Leptoceridae Abundance Sabie lost Abundance Leptoceridae 400 Hydroptilidae Hydroptilidae Dipseudopsidae, 200 Hydropsychidae Hydropsychidae diversity is still high 0 survey 1 survey 2 survey 3 • But abundance 1959/60 1985/86 2015/16/17 declines LowerLower Sabie Sabie River River- adjusted • Lower Sabie looks 1400 good in survey 3 1200 1000 Dipseudopsidae Ecnomidae 800 Ecnomidae Philopotamidae 600 Philopotamidae Leptoceridae Abundance Sab S1 S2 S3 Abundance Leptoceridae 400 Hydroptilidae Upper 1 5 65 Hydroptilidae 200 Hydropsychidae Hydropsychidae Lower 54 5 65 0 survey 1 survey 2 survey 3 1959/60 1985/86 2015/16/17 SUMMARY • Dipseudopsidae have been collected as adults rather than larvae – this family is easily missed during surveys (one has to actively look for them) • abundance and diversity seems to decline on the Crocodile River • Sabie River has been more diverse than the Crocodile River in the past also shown by the recent survey – this river still needs looking after though! • Recent survey could ring alarm bells with regards to decline in diversity OTHER RESULTS FROM THIS PROJECT (1) New southern distribution records are being added for species known from Central Africa, (2) about 7 new species have been found in only one family of caddis flies (Leptoceridae) and only in one order! For one of these we need a name (see poster session tomorrow evening) NEXT STEPS (1) Important invertebrate groups need to be analysed • other important indicator orders should be analysed: Ephemeroptera (mayflies), Odonata (dragon and damselflies), Plecoptera (stoneflies), etc. (2) Species level analysis for diversity decline and detecting loss of species over time (3) drivers of this decline need to be identified (4) action needs to be taken to protect aquatic diversity in KNP rivers (5) long-term monitoring is key • The situation needs to be monitored by follow-up surveys to enable comparison of snapshots in time in the future as well (6) establish DNA barcoding reference library • To enable quick species identification for species level diversity surveys and to confirm new species SKUKUZA BIOLOGICAL REFERENCE COLLECTION Guin Zambatis Curator Also housing aquatic invertebrate reference collection of survey 3!! Acknowledgements: Hendrik Sithole, Purvance Shikwambana, Lyndall Pereira da Conceicoa, Ina Ferreira, Sean Marr, Musa Mlambo & John Midgley for field assistance. Robin Petersen and the Scientific Services of the KNP for logistics assistance SanParks for accommodation Rensen Thete, Moffat Mambane and Isaac Sedibe, our guards. Kek Soxujwa, Nonkazimulo Mdidimba and Zezethu Mnqeta for help with sorting and cataloguing of samples. Funding: NSCF, NRF (SANBI FBIP & Incentive funding), Rhodes University, SAIAB, GBIF (EU). Grant No’s 85286, 98130.
Recommended publications
  • Species Fact Sheet for Homoplectra Schuhi
    SPECIES FACT SHEET Common Name: Schuh’s Homoplectran Caddisfly Scientific Name: Homoplectra schuhi Denning 1965 Phylum: Mandibulata Class: Insecta Order: Trichoptera Suborder: Annulipalpia Family: Hydropsychidae Subfamily: Diplectroninae Conservation Status Global Status (2005): G3Q – Vulnerable, but taxonomic questions persist (last reviewed 25 Mar 2005) National Status (United States): N3 - Vulnerable (23 Feb 2005) State Status (Oregon): S3 - Vulnerable (NatureServe 2015) Oregon Biodiversity Information Center: List 3 IUCN Red List: NE – Not evaluated Taxonomic Note This species has been given a global status of G3Q due to the limited number of specimens that have been reviewed to date, and the variability of diagnostic characteristics (NatureServe 2015). This genus is in need of additional collecting and taxonomic review, which may lead to synonymization with older described species (Wisseman 2015, Ruiter 2015). For example, specimens identified as H. luchia Denning 1966 may in fact be synonyms of H. schuhi (Ruiter 2015). Technical Description A microscope is required to identify Homoplectra schuhi, as identifications are based on genitalia anatomy. The advice of a Trichoptera expert is suggested. See Denning (1965) for lateral view drawings of the male and female genitalia. Adult: The adults of this species are small, moth-like insects in the caddisfly family Hydropsychidae. Homoplectra males are recognized by the complexity of the phallic apparatus, which can be complicated by very strong development of several sclerotized branches (Schmid 1998). Holotype male: Length 6 mm. General color of head, thorax and abdomen dark brown, wings tan with no pattern, legs and antennae varying shades of brownish. Pubescence of head, thorax and legs aureous. Fifth sternite with a dorsal filament enlarged distally and curved dorso-caudad.
    [Show full text]
  • Insights from the Kruger National Park, South Africa
    Morphodynamic response of a dryland river to an extreme flood Morphodynamics of bedrock-influenced dryland rivers during extreme floods: Insights from the Kruger National Park, South Africa David Milan1,†, George Heritage2, Stephen Tooth3, and Neil Entwistle4 1School of Environmental Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK 2AECOM, Exchange Court, 1 Dale Street, Liverpool, L2 2ET, UK 3 Department of Geography and Earth Sciences, Aberystwyth University, Llandinam Building, Penglais Campus, Aberystwyth, SY23 3DB, UK 4School of Environment and Life Sciences, Peel Building, University of Salford, Salford, M5 4WT, UK ABSTRACT some subreaches, remnant islands and vege- the world’s population (United Nations, 2016). tation that survived the 2000 floods were re- Drylands are characterized by net annual mois- High-magnitude flood events are among moved during the smaller 2012 floods owing ture deficits resulting from low annual precipita- the world’s most widespread and signifi- to their wider exposure to flow. These find- tion and high potential evaporation, and typically cant natural hazards and play a key role in ings were synthesized to refine and extend a by strong climatic variability. Although precipi- shaping river channel–floodplain morphol- conceptual model of bedrock-influenced dry- tation regimes vary widely, many drylands are ogy and riparian ecology. Development of land river response that incorporates flood subject to extended dry periods and occasional conceptual and quantitative models for the sequencing, channel type, and sediment sup- intense rainfall events. Consequently, dryland response of bedrock-influenced dryland ply influences. In particular, with some cli- rivers are commonly defined by long periods rivers to such floods is of growing scientific mate change projections indicating the po- with very low or no flow, interspersed with in- and practical importance, but in many in- tential for future increases in the frequency frequent, short-lived, larger flows.
    [Show full text]
  • ( ) Hydropsychidae (Insecta: Trichoptera) As Bio-Indicators Of
    ว.วิทย. มข. 40(3) 654-666 (2555) KKU Sci. J. 40(3) 654-666 (2012) แมลงน้ําวงศ!ไฮดรอบไซคิดี้ (อันดับไทรคอบเทอร-า) เพื่อเป2นตัวบ-งชี้ทางชีวภาพของคุณภาพน้ํา Hydropsychidae (Insecta: Trichoptera) as Bio-indicators of Water QuaLity แตงออน พรหมมิ1 บทคัดยอ การประเมินคุณภาพน้ําในแมน้ําและลําธารควรที่จะมีการใชปจจัยทางกายภาพ เคมีและชีวภาพควบคูกัน ไป ปจจัยทางชีวภาพที่มีศักยภาพในการประเมินคุณภาพน้ําในแหลงน้ําคือกลุมสัตว+ไมมีกระดูกสันหลังขนาดใหญที่ อาศัยอยูตามพื้นทองน้ํา โดยเฉพาะแมลงน้ําอันดับไทรคอบเทอรา ซึ่งเป3นกลุมสัตว+ที่มีความหลากหลายมากกลุม หนึ่งในแหลงน้ํา ระยะตัวออนของแมลงกลุมนี้ทุกชนิดอาศัยอยูในแหลงน้ํา เป3นองค+ประกอบหลักในแหลงน้ําและ เป3นตัวหมุนเวียนสารอาหารในแหลงน้ํา ระยะตัวออนของแมลงน้ํากลุมนี้จะตอบสนองตอปจจัยของสภาพแวดลอม ในแหลงน้ําทุกรูปแบบ ระยะตัวเต็มวัยอาศัยอยูบนบกบริเวณตนไมซึ่งไมไกลจากแหลงน้ํามากนัก หากินเวลา กลางคืน ความรูทางดานอนุกรมวิธานและชีววิทยาไมวาจะเป3นระยะตัวออนหรือตัวเต็มวัยของแมลงน้ําอันดับไทร คอบเทอราในประเทศแถบยุโรปตะวันตกและอเมริกาเหนือสามารถวินิจฉัยไดถึงระดับชนิด โดยเฉพาะแมลงน้ํา วงศ+ไฮดรอบไซคิดี้ มีการประยุกต+ใชในการติดตามตรวจสอบทางชีวภาพของคุณภาพน้ํา เนื่องจากชนิดของตัวออน แมลงน้ําวงศ+นี้มีความทนทานตอมลพิษในชวงกวางมากกวาแมลงน้ําชนิดอื่น ๆ 1สายวิชาวิทยาศาสตร+ คณะศิลปศาสตร+และวิทยาศาสตร+ มหาวิทยาลัยเกษตรศาสตร+ วิทยาเขตกําแพงแสน จ.นครปฐม 73140 E-mail: [email protected] บทความ วารสารวิทยาศาสตร+ มข. ปQที่ 40 ฉบับที่ 3 655 ABSTRACT Assessment on rivers and streams water quality should incorporate aspects of chemical, physical, and biological. Of all the potential groups of freshwater organisms that have been considered for
    [Show full text]
  • Diversity of Trichoptera Fauna and Its Correlation with Water Quality Parameters at Pasak Cholasit Reservoir, Central Thailand
    Environment and Natural Resources J. Vol 12, No.2, December 2014:35-41 35 Diversity of Trichoptera Fauna and its Correlation with Water Quality Parameters at Pasak Cholasit reservoir, Central Thailand Taeng-On Prommi 1* and Isara Thani 2 1Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Thailand 2Department of Biology, Faculty of Science, Mahasarakham University, Thailand Abstract The objectives of this study were to study the diversity of the Trichoptera fauna and the physicochemical parameters of water quality, as well as the correlation between physicochemical parameters and biodiversity of Trichoptera fauna for monitoring of water quality. The specimens were sampled monthly using portable black light traps from January to December 2010 at the inflow and outflow of Pasak Cholasit reservoir. A total of 20,380 adult caddis flies representing 7 families and 27 species were collected from the sampling sites in the present study. The family Hydropsychidae contained the greatest number of species (29%, 8 species), followed by Leptoceridae (26%, 7 species), Ecnomidae (19%, 5 species), Psychomyiidae (11%, 3 species), Philopotamidae (7%, 2 species), and Dipseudopsidae and Xiphocentronidae (4%, 1 species). Results of CCA ordination showed that eleven selected physicochemical water quality parameters (i.e., air and water temperature, pH of water, dissolved oxygen, total dissolved solids, electrical conductivity, ammonia-nitrogen, nitrate-nitrogen, orthophosphate, sulfate and turbidity of water) were the important
    [Show full text]
  • Biologiezentrum Linz/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Linzer biologische Beiträge Jahr/Year: 1993 Band/Volume: 0025_2 Autor(en)/Author(s): Malicky Hans Artikel/Article: Neue asiatische Köcherfliegen (Trichoptera: Philopotamidae, Polycentropodidae, Psychomyidae, Ecnomidae, Hydropsychidae, Leptoceridae). 1099-1136 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Linzer biol. Beitr. 25/2 1099-1136 31.12.1993 Neue asiatische Köcherfliegen (Trichoptera: Philopotamidae, Polycentropodidae, Psychomyidae, Ecnomidae, Hydropsychidae, Leptoceridae) H. MALICKY Abstract. New species of caddisflies are described and figured which were found in Pakistan, India, Burma, Nepal, China, Malaysia, Sumatra, Sulawesi, Brunei, the Philippines (Luzon, Palawan, Sibuyan, Tawi Tawi), Western New Guinea and the Bismarck Islands, and which belong to the genera Chimarra (16 species), Doloclanes (1), Pseudoneureclipsis (4), Plectrocnemia (2), Nyctiophylax (6), Polyplectropus (7), Psychomyia (9), Padangpsyche nov.gen.(l), Tinodes (1), Ecnomus (4), Hydromanicus (4) and Leptocerus (5). The male genitalia of Plectrocnemia tortosa BANKS, Polyplectropus javanicus ULMER, Psychomyia fulmeki (ULMER), P. thienemanni (ULMER), Ecnomus tagalensis (BANKS), E. pseudotenellus ULMER and E. robustior ULMER are figured for comparison. Hier lege ich wieder einige Neubeschreibungen nach Material verschiede- ner Herkunft vor. Wenn nicht extra anders angegeben, habe ich es selber
    [Show full text]
  • Trichoptera:Hydropsychidae) Based on DNA and Morphological Evidence Christy Jo Geraci National Museum on Natural History, Smithsonian Institute
    Clemson University TigerPrints Publications Biological Sciences 3-2010 Defining the Genus Hydropsyche (Trichoptera:Hydropsychidae) Based on DNA and Morphological Evidence Christy Jo Geraci National Museum on Natural History, Smithsonian Institute Xin Zhou University of Guelph John C. Morse Clemson University, [email protected] Karl M. Kjer Rutgers University - New Brunswick/Piscataway Follow this and additional works at: https://tigerprints.clemson.edu/bio_pubs Part of the Biology Commons Recommended Citation Please use publisher's recommended citation. This Article is brought to you for free and open access by the Biological Sciences at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. J. N. Am. Benthol. Soc., 2010, 29(3):918–933 ’ 2010 by The North American Benthological Society DOI: 10.1899/09-031.1 Published online: 29 June 2010 Defining the genus Hydropsyche (Trichoptera:Hydropsychidae) based on DNA and morphological evidence Christy Jo Geraci1 Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012 USA Xin Zhou2 Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, N1G 2W1 Canada John C. Morse3 Department of Entomology, Soils, and Plant Sciences, Clemson University, Clemson, South Carolina 29634 USA Karl M. Kjer4 Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901 USA Abstract. In this paper, we review the history of Hydropsychinae genus-level classification and nomenclature and present new molecular evidence from mitochondrial cytochrome c oxidase subunit I (COI) and nuclear large subunit ribosomal ribonucleic acid (28S) markers supporting the monophyly of the genus Hydropsyche.
    [Show full text]
  • Our Glorious AFS Itinerary Jun 17 Air Is
    Our Glorious AFS Itinerary Jun 17 Air is so easy round-trip to Jo’burg (JNB)! Full details to come on this in AFS Trip Tips with info about flights, overnight options, packing, etc. We urge you to fly in a day early to arrive Jun 18. Full details to come on all air options, overnight options and packing in AFS trips tips. Day 1: Fri, Jun 19 Chisomo Safari Camp, Kruger Private Reserves Our land tour officially begins! We gather early morning at JNB Airport and fly an hour to Kruger. We arrive in time for lunch and a short rest before heading out on your first afternoon game drive. South Africa This vast country is undoubtedly one of the most culturally and geographically diverse places on earth. Fondly known by locals as the 'Rainbow Nation', South Africa has 11 official languages and its multicultural inhabitants are influenced by a fascinating mix of cultures. Discover the gourmet restaurants, impressive art scene, vibrant nightlife and beautiful beaches of Cape Town; enjoy a local braai (barbecue) in the Soweto Township; browse the bustling Indian markets in Durban; or sample some of the world’s finest wines at the myriad wine estates dotting the Cape Winelands. Some historical attractions to explore include the Zululand battlefields of KwaZulu-Natal, the Apartheid Museum in Johannesburg and Robben Island, just off the coast of Cape Town. Above all else, its remarkably untamed wilderness with its astonishing range of wildlife roaming freely across massive unfenced game reserves such as the world-famous Kruger National Park. With all of this variety on offer, it is little wonder that South Africa has fast become Africa’s most popular tourist destination.
    [Show full text]
  • How Does Urban Pollution Influence Macroinvertebrate Traits In
    water Article How does Urban Pollution Influence Macroinvertebrate Traits in Forested Riverine Systems? Augustine O. Edegbene 1,* , Francis O. Arimoro 2 and Oghenekaro N. Odume 1 1 Unilever Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Makhanda (Grahamstown) 6140, South Africa; [email protected] 2 Department of Animal Biology (Applied Hydrobiology Unit), Federal University of Technology, P.M.B. 65, Minna, Nigeria; [email protected] * Correspondence: [email protected] Received: 30 September 2020; Accepted: 29 October 2020; Published: 5 November 2020 Abstract: The influence of urbanization on macroinvertebrate traits was explored in forested rivers in the Niger Delta area of Nigeria. Physico-chemical variables were sampled on a monthly basis alongside macroinvertebrates in 20 sites of 11 rivers spanning 2008–2012. Physico-chemical variables were used to classify the 20 sites into three ecological classes, namely: least impacted sites (LIS), moderately impacted sites (MIS) and highly impacted sites (HIS) using principal component analysis. Our results based on RLQ (R = physico-chemical variables, L = macroinvertebrate taxa and Q = macroinvertebrate traits) and fourth-corner analyses revealed that large body size, grazing and hardshell were positively significantly associated with LIS on the RLQ. They were also either negatively correlated with any two of water temperature, nutrients, BOD5 and flow velocity or positively significantly correlated with increasing DO. Thus, these traits were considered sensitive to urban pollution in forested rivers. Burrowing, predation and pupa aquatic stage, which were positively associated with HIS, were also significantly negatively correlated with increasing DO, and were deemed tolerant of urban pollution in forested rivers.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • Trichopterological Literature This List Is Informative Which Means That It Will
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Braueria Jahr/Year: 2011 Band/Volume: 38 Autor(en)/Author(s): Anonymus Artikel/Article: Trichopterological literature. 45-50 45 Trichopterological literature Armitage, Brian J. 2008 A new species in the Rhyacophila lieftincki group (Trichoptera, This list is informative which means that it will include any papers Rhyacophilidae) from southwestern Virginia. - Zootaxa 1958:65-68. from which fellow workers can get information on caddisflies, including dissertations, short notes, newspaper articles ect. It is not Baryshev, I.A. 2008 limited to formal publications, peer-reviewed papers or publications Diurnal dynamics of emergence of caddis flies Agapetus ochripes with high impact factor etc. However, a condition is that a minimum Curt, and Hydroptila tineoides Dalm. in the Far North (Indera Revier, of one specific name of a caddisfly must be given (with the Kola Peninsula, Russia). - Russian J. Ecol. 39:379-381. exception of fundamental papers e.g. on fossils). The list does not include publications from the internet. - To make the list as complete Bazova.N.V.; Bazov, A.V.; Pronin, N.M.; Rozhkova, N.A.; as possible, it is essential that authors send me reprints or Dashibalova, L.T.; Khazheeva, Z.I. 2008 xerocopies of their papers, and, if possible, also papers by other Spatiotemporal distribution of caddis fly larvae Aethaloptera authors which they learn of and when I do not know of them. If only evanescens MacLachlan, 1880 (Trichoptera: Hydropsychidae) in the references of such publications are available, please send these to Selenga Revier.
    [Show full text]
  • DFC Abstracts2010-11-04
    42nd Annual Meeting 17-21 November 2010 Moab, Utah Wednesday, 17 November, 2010 17:00 - 21:00 Registration Moab Valley Inn 18:00 – 21:00 Informal social Moab Valley Inn – Moab and Canyonlands rooms Thursday, 18 November, 2010 ALL EVENTS WILL BE AT MOAB VALLEY INN – MOAB AND CANYONLANDS ROOMS 08:00-8:30 Welcome, Opening Remarks 08:30 - 12:00 GENERAL SESSION - 1 12:00 - 13:15 LUNCH 13:15 - 14:15 GENERAL SESSION - 2 14:15 - 14:30 BREAK 14:30 – 17:30 SPECIAL SYMPOSIUM 18:00 – 21:00 POSTER SESSION Friday, 19 November, 2010 08:30 - 12:00 GENERAL SESSION - 3 12:00 - 13:15 LUNCH 13:15 – 16:30 GENERAL SESSION - 4 17:00 - 18:30 BUSINESS MEETING 19:00 - open BANQUET Saturday, 20 November 2010 08:30 - 12:00 GENERAL SESSION - 5 12:00 - 13:00 LUNCH 13:00 – 15:15 GENERAL SESSION – 6 15:15 – 17:00 GENERAL SESSION – 7 Sunday, 21 November 2010 08:00 - 17:00 FIELD TRIPS 1 42nd Annual Meeting 17-21 November 2010 Moab, Utah Thursday, 18 November, 2010 2010-11-18 08:00:00 OPENING REMARKS GENERAL SESSION 1: Moderator—Dave Speas 2010-11-18 08:30:00 Oregon / Northern California Area Report, November 2010 Scheerer, Paul 1, Leal, Jimmy 2, Mauer, Alan 3, Reid, Stewart 4, Markle, Douglas 5, Sidlauskis, Brian 5, Miller, Stephanie 1, Divine, Paul 6. (1-Oregon Department of Fish and Wildlife, Native Fish Investigations Project, 2- Bureau of Land Management, 3-U.S. Fish and Wildlife Service, 4-Western Fishes, 5-Oregon State University, 6- California Department of Fish and Game).
    [Show full text]
  • Part II: Potamyia Chinensis and Cheumatopsyche Trifascia
    Zootaxa 4926 (4): 547–558 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4926.4.5 http://zoobank.org/urn:lsid:zoobank.org:pub:0534BF0D-B6A7-4F0D-8991-F891F561ED9A The larvae of Chinese Hydropsychidae (Insecta: Trichoptera), Part II: Potamyia chinensis and Cheumatopsyche trifascia AO ZHANG1 & XIN ZHOU2* 1College of Science, China Agricultural University, Beijing, China 100193. �[email protected]; https://orcid.org/0000-0002-5668-1592 2Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China 100193. *Corresponding author. �[email protected]; https://orcid.org/0000-0002-1407-7952 Abstract The larvae of Chinese caddisflies Potamyia chinensis and Cheumatopsyche trifascia were successfully associated with identifiable adults using independent DNA markers, mitochondrial COI barcodes and nuclear ribosomal 28S D2 genes. A total of 49 specimens collected in China were employed in the molecular analyses. The two markers were congruent on species boundaries for 11 distinctive haplogroups, while D2 failed in differentiating two closely related species. A brief summary for larval studies of both genera is given, followed by an introduction to the generic morphological characteristics, and detailed morphological descriptions and illustrations for the two successfully associated species. The larva of P. chinensis is re-described here based on Chinese materials, following the previous larval description for P. echigoensis, which was recently synonymized with P. chinensis. Key words: caddisfly, life-stage association, China, DNA barcoding, COI, 28S D2 Introduction Molecular taxonomy uses nucleotide sequences to facilitate species delineation and identification.
    [Show full text]