Abbreviations

Total Page:16

File Type:pdf, Size:1020Kb

Abbreviations Abbreviations AA Acrylic acid Agarose 3,6-Anhydro- l -galactose Agaropectin l -Galactose-6-sulfate Agarobiose d -Galactose + l -3,6-Anhydro-α-galactopyranose Aldicarb 2-Methyl-2-(methylthio)-propanal-O-[(methyl- amino) carbonyl]-oxime Amberlite XE-258 Polystyrene macroporous/macroreticular beads Amberlite IRA-401S Poly(styrene ammonium salt) gel resin Amberlite IRA-900 Poly(styrene ammonium salt) macroreticular resin Bayer-73 5,2-dichloro-4-nitro-salicylanilide Chloropyrifos O,O-Diethyl-O-(3,5,6-trichloro-2-pyridyl)-phosphorothioate CMC Carboxymethylcellulose CMPA 4-Chloro-2-methylphenoxyacetic acid Cyanuric chloride 2-Amino-4,6-dichloro-s-triazine 2,4-D 2,4-Dichlorophenoxyacetic acid DAA Diallyl adipate DADMAC Diallyldimethylammonium chloride DCC Dicyclohexylcarbodiimide DEGMA Diethylene glycol methacrylate Dichlorvos 2,2-Dichlorovinyldimethylphosphate Diflubenzuron N-[(4-Chlorophenyl)aminocarbonyl]-2,6- difl uorobenzamide) Diazinon O,O-Diethyl-O-2-(2-isopropyl-4-methyl-6- pyrimidinyl) phosphoro-thioate, N,N-diethyl-m- toluamide, N,N-diethyl-3-Me-benzamide DNMP 2,4-Dinitro-6-methylphenol A. Akelah, Functionalized Polymeric Materials in Agriculture and the Food Industry, 349 DOI 10.1007/978-1-4614-7061-8, © Springer Science+Business Media New York 2013 350 Abbreviations DNSA [2-(2,4-Dinitrophenylazo)-6-(N-Me-N-(2- hydroxysulfonyloxyethyl- sulfonyl)-amido]-1- naphthol- 3-sulfonic acid DVB Divinylbenzene EP Epichlorohydrin EVAc Ethylenevinylacetate Famphur O-[p-(Dimethylsulfamoyl)phenyl]-O,O- dimethylphosphorothioate Fenvalerate Cyano(3-phen-oxyphenyl)methyl-4-chloro-α-(1- methylethyl)benzene acetate GRP Glass reinforced polymer HDPE High density polyethylene HEMA 2-Hydroxyethylmethacrylate Hinokitiol 2-Hyroxy-4-isopropylcyclohepta-2,4,6-trien-1-one HMDA Hexamethylenediamine HMDI Hexamethylenediisocyanate H-PAN Hydrolyzed-polyacrylonitrile H-PVAc Hydrolyzed-poly(vinyl acetate) HSPAN Hydrolyzed starch–polyacrylonitrile IAA Indole-3-acetic acid Larvicide difl ubenzuron 1-(4-Chlorophenyl)-3-(2,6-difl uorobenzoyl)urea LDPE Low density polyethylene LLDPE Linear low density polyethylene MA Methyl acrylate MBAA N,N-methylenebisacrylamide Methoprene Isopropyl-(E,E)-methyloxy-3,7,11-trimethyl-2, 4-dodecadienoate MF Melamine-formaldehyde resin MMA Methyl methacrylate MMAA Methyl methacrylic acid MMT Montmorillonite MPEGMA Methoxypolyethyleneglycol methacrylate NAA 1-Naphthylacetic acid NaPAA Poly(sodium acrylate) NBR Acrylonitrile–butadiene rubber Neem Extract 3-Nitro-4-hydroxyphenyl arsenic acid Niclosamide 5,2-dichloro-4-nitro-salicylanilide NR Natural rubber OcEGMA Octaethylene glycol methacrylate OEGMA Oligoethylene glycol methacrylate Abbreviations 351 OOEMA Oligooxyethylene methacrylate PAA Poly(acrylic acid) PAAm Polyacrylamide PAAmAA Poly(acrylamide-acrylic acid) PAAm-NaA Poly(acrylamide-sodium acrylate) PAAVA Poly(acrylic acid-vinyl alcohol) PAASBR Poly(acrylic acid-styrene–butadiene rubber) PAcEI Poly(N-acylethylenimine) PAEI Poly(N-alkylethylenimine) PAm Polyamide PAMA Poly(acrylate-co-methacrylate) PAN Polyacrylonitrile PAn Polyaniline PC Polycarbonate PCMS Poly(chloromethylstyrene) PCP Pentachlorophenol PCS Polycarbamoylsulfonate PDADMAC Poly(diallyldimethylammonium chloride) PE Polyethylene PEAA Poly(ethylene-acrylic acid) PEG Poly(ethylene glycol) PEGDMA Poly(ethyleneglycol dimethacrylate) PEGMA Poly(ethyleneglycol methacrylate) PEGPG Poly(ethyleneglycol-propyleneglycol) PEOPO Poly(ethylene oxide-propylene oxide) PEN Poly(ethylene naphthalate) PEO Poly(ethylene oxide) PEP Poly(ethylene-propylene) Permethrin 3-Phenoxyphenylmethyl-3-(2,2-dichloroethyenyl)-2,2- dimethylcyclopropane carboxylate PEs Polyester PET Poly(ethylene terephthalate) PEt Polyether PEVA Poly(ethylene-vinyl alcohol) PEVAc Poly(ethylene-vinyl acetate) PF Phenol-formaldehyde resin PHA Poly(β-hydroxyalkanoate) Phantolid 1-(2,3-Dihydro-1,1, 2,3,3,6-hexamethyl-1H-inden-5- yl)ethanone PHB Poly(3-hydroxybutyrate) PHBHH Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) PHC Propylhydroxy-cellulose PHEMA Poly(2-hydroxyethylmethacrylate) PiBMA Poly(isobutylene-co-maleic acid) PIC Polyisocyanate 352 Abbreviations PiPAAm Poly(N-isopropyl acrylamide) PKAAAm Poly(pot acrylate-acryl amide) PKPPAm Poly(pot propenoate-co-propenamide) PLA Poly(lactic acid) PLGA Poly(lactic-co-glycolic acid) PMAAmS Poly(methacrylamide-styrene) PMASBR Poly(methacrylic acid-styrene–butadiene rubber) PMEGMA Poly(methoxyethyleneglycol methacrylate) PMMA Poly(methyl methacrylate) P-MMT Polymer-g-montmorillonite nanocomposite PNAEA Poly(2-(1-naphthylacetyl)ethyl acrylate) POE Poly(oxyethylene) POP Poly(oxyphenylene) PP Polypropylene PPCPA Poly(pentachlorophenyl acrylate) PPCPMA Poly(pentachlorophenyl methacrylate) PPG Poly(propylene glycol) PPO Poly(propylene oxide) PS Polystyrene PSB Poly(styrene-butadiene) PSMA Poly(styrene-co-maleic anhydride) PSu Polysulfone PTFE Polytetrafl uoroethylene (Tefl on) PU Polyurethane PVA Poly(vinyl alcohol) PVAc Poly(vinyl acetate) PVAcMA Poly(vinyl acetate-co-maleic acid) PVAm Poly(vinyl amine) PVC Poly(vinyl chloride) PVCa Poly(N-vinyl-carbazole) PVCVAc Poly(vinyl chloride-vinyl acetate) PVCVdC Poly(vinyl chloride-vinylidene chloride) PVdC Poly(vinylidene chloride) PVdF Poly(vinylidene fl uoride) PVF Poly(vinyl fl uoride) PVME Poly(vinyl methylether) PVMEMA Poly(vinyl methylether-maleic anhydride) PVP Poly(4-vinylpyridine) PVPd Poly(vinyl pyrrolidone) Rabon 2-Chloro-1-(2,4,5-trichloro-phenyl)vinyl-dimethyl-phosphate SA Sulfasalazine SAPs Super absorbent polymers SBR Styrene–butadiene rubber TEGMA Tetraethylene glycol methacrylate Abbreviations 353 Temephos O,O,O’,O’-Tetramethyl-O,O-thiodi-p- phenylenephosphorothioate TMPTMA 1,1,1-Trimethylolpropane trimethacrylate TPP Tripolyphosphate UF Urea-formaldehyde resin , P = CH2 ⎯ CH⎯ or CH2 ⎯ CMe ⎯ n n PS = CH2 ⎯ CH⎯ n C6H14 Si = Silica Support c = Cellulose Support MMT = Montmorillonit clay Index A Aliphatic polyamides, Nylon 6,6 / 6,10 fi lms , Acephate , 36 300 K-Acesulfame , 261 Alizarin-yellow , 282 Acrylamide , 8, 23, 42, 151, 314, 316 p -Alkoxy-phenylurea , 263 Acrylamide-ethyleneglycol dimethacrylate , 42 Alkyd resins of polyesters and acrylic , 316 Acrylic acid , 23, 181 Alkyl-cellulose , 19 Acrylic acid-triethyleneglycol Alkyl polyacrylates , 277 dimethacrylate , 42 Alkyl trialkoxysilane , 382 Acrylonitrile , 11 Allyl isothiocyanate , 324 Acrylonitrile-butadiene-styrene , 303 Alum , 240 Activated charcoal o -Alumina, γ -alumina , 26, 29 carbon , 113, 215, 223, 224, 232, 238, 243, Alumina ceramics , 285 331–333 Aluminium-alloy , 313 silica , 240, 331, 332 Amberlite IRA-900 , 223, 224 Additional water treatments , 244 Amberlite IRA-401S , 224 Addition polymerizations , 5–11, 240, 251 Amberlite XE-258 , 224 Additives, polymeric 1-Amino-4-bromo-2-methylanthraquinone , 252 feed , 278–281 4-Amino- N -(5-Me-3-isoxazoly) food , 249–288 benzenesulfonamide , 182 Adhesion , 32, 46, 47, 52–53, 106, 174, 175, 4-( p -Aminophenylazo)phenyl methacrylate , 184, 306, 312, 313, 315–318 283 Adipic acid , 155, 240 Aminoplasts , 137, 317 Advanced specialty polymeric materials , p -Amino-saccharine , 263 30–36 Amylopectin , 23, 168 Agar Amylose , 23, 168 agaropectin , 18, 20 Anaerobic fi xed bed reactor, wastewater agarose , 18, 20 treatment , 111–112 Agarobiose , 20 Animal polymeric materials (proteins) Agricultural applications of polymers , 65–124 feed additives , 278–281 Agricultural uses Anion exchange resins, strong and weak , 198 Agrochemicals, polymer-supported , 133–184 Anisaldehyde , 182 Aldicarb , 168, 323 Anthrapyridines/anthrapyridones , 254 Alginic acid Anthraquinone dyes/anthrahydroquinones , alginate beads , 21 284, 323 alginate encapsulation technology , 135 Antibacterial master-batch , 326–327 A. Akelah, Functionalized Polymeric Materials in Agriculture and the Food Industry, 355 DOI 10.1007/978-1-4614-7061-8, © Springer Science+Business Media New York 2013 356 Index Antifouling paints, polymer-supported , hydroxypropylcellulose-poly(methylvinyl 174–176 ether-maleic anhydride) , 271 Antimicrobial coating/fi lm deposition , 327 lignosulfonate-acrylic acid , 279 Antioxidants, polymer-bound, food additives , lignosulfonate-starch , 279 254–261 Bone char , 215, 220, 221, 223, 224, 230, 244 Apparent density o -Bromo-camphorcarboxylic acid , 18 porosity , 46, 48 Bromocresol-green , 283, 285 volume , 45– 48 Bromophenol-blue , 283 Applications of polymers in agriculture Building, polymers in , 98–109 in food , 67, 81, 84, 95, 97, 98, 104, 114, Building soil stabilization , 100, 106–107 116 Bulk density Applications of wood-polymer composite polymer degradation , 50 products , 180–190 polymerization , 8, 9 Aroma, encapsulating , 19, 279, 332 volume , 48 Ascorbic acid (vitamin-C) , 320 Butyl acrylate , 314 Aspartame , 261 n -Butyl acrylate , 177 L -Aspartic acid , 264 Butylated Attractants , 141, 142, 165, 168, 171 hydroxy-anisole , 260, 321 hydroxyl-toluene , 260, 321 t -Butyl- N,N -dimethyldithiocarbamate , 323 B t -Butyl phenol , 258 Bacteriocins , 324 Butyl rubber , 6, 122, 123, 214, 314 Bakelite , 179 di-Butyl-succinate Bayer-73 , 171 phthalate , 323 Bayluscide/Bayer-73 , 171 By-products recovery , 226 Beer-brewing techniques , 236 using immobilized yeast bioreactor system , 233 C Beer production and stabilization , 227 Calcium alginate beads , 21 Beet sugar , 214–216, 221, 226 Cane sugar , 161, 199, 215, 220–225 Benefi ts of windbreaks , 93 Capsules device , 137, 276 Benzanthrones , 254 Carbon dioxide scavenger and emitter m -2-Benzimidazolecarbamoyl moiety , 182 packaging , 331 Benzimidazole derivatives , 177, 182 Carbon graphite
Recommended publications
  • Chiral Proton Catalysis: Design and Development of Enantioselective Aza-Henry and Diels-Alder Reactions
    CHIRAL PROTON CATALYSIS: DESIGN AND DEVELOPMENT OF ENANTIOSELECTIVE AZA-HENRY AND DIELS-ALDER REACTIONS Ryan A. Yoder Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Chemistry, Indiana University June 2008 Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Doctoral Committee _____________________________ Jeffrey N. Johnston, Ph.D. _____________________________ Daniel J. Mindiola, Ph.D. _____________________________ David R. Williams, Ph.D. _____________________________ Jeffrey Zaleski, Ph.D. April 24, 2008 ii © 2008 Ryan A. Yoder ALL RIGHTS RESERVED iii DEDICATION This work is dedicated to my parents, David and Doreen Yoder, and my sister, LeeAnna Loudermilk. Their unwavering love and support provided the inspiration for me to pursue my dreams. The sacrifices they have made and the strength they have shown continue to motivate me to be a better person each and every day. Thank you mom, dad, and little sis for being the rocks that I can lean on and the foundation that allowed me to find the happiness I have today. Without you, none of this would have been possible. iv ACKNOWLEDGEMENTS First and foremost I want to thank my research advisor, Professor Jeffrey N. Johnston. I am incredibly grateful for his mentoring and guidance throughout my time in the Johnston group. He has instilled in me a solid foundation in the fundamentals of organic chemistry and at the same time has taught me how to apply innovative and creative solutions to complex problems.
    [Show full text]
  • Development of Polysulfone Hollow Fiber Porous Supports for High Flux Composite Membranes: Air Plasma and Piranha Etching
    fibers Article Development of Polysulfone Hollow Fiber Porous Supports for High Flux Composite Membranes: Air Plasma and Piranha Etching Ilya Borisov 1,*, Anna Ovcharova 1,*, Danila Bakhtin 1, Stepan Bazhenov 1, Alexey Volkov 1, Rustem Ibragimov 2, Rustem Gallyamov 2, Galina Bondarenko 1, Rais Mozhchil 3, Alexandr Bildyukevich 4 and Vladimir Volkov 1 1 A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow 119991, Russia; [email protected] (D.B.); [email protected] (S.B.); [email protected] (A.V.); [email protected] (G.B.); [email protected] (V.V.) 2 Kazan National Research Technological University, Kazan 420015, Russia; [email protected] (R.I.); [email protected] (R.G.) 3 National Research Nuclear University “MEPhI”, Moscow 115409, Russia; [email protected] 4 Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Minsk 220072, Belarus; [email protected] * Correspondence: [email protected] (I.B.); [email protected] (A.O.); Tel.: +7-495-955-4893 (I.B.); +7-495-647-59-27 (A.O.) Academic Editors: Alberto Figoli and Tao He Received: 30 December 2016; Accepted: 4 February 2017; Published: 13 February 2017 Abstract: For the development of high efficiency porous supports for composite membrane preparation, polysulfone (PSf) hollow fiber membranes (outer diameter 1.57 mm, inner diameter 1.12 mm) were modified by air plasma using the low temperature plasma treatment pilot plant which is easily scalable to industrial level and the Piranha etch (H2O2 + H2SO4). Chemical and plasma modification affected only surface layers and did not cause PSf chemical structure change.
    [Show full text]
  • Food and Drug Administration, HHS § 177.1315
    Food and Drug Administration, HHS § 177.1315 under conditions of use E through G as Food Safety and Applied Nutrition described in table 2 of § 176.170(c) of this (HFS±200), Food and Drug Administra- chapter. tion, 200 C St. SW., Washington, DC, or (d) The provisions of this section are at the Office of the Federal Register, not applicable to ethylene-acrylic acid 800 North Capitol St. NW., suite 700, copolymers used in food-packaging ad- Washington, DC. hesives complying with § 175.105 of this (3) The basic copolymer identified in chapter. paragraph (a) of this section, when ex- [42 FR 14572, Mar. 15, 1977, as amended at 51 tracted with the solvent or solvents FR 19060, May 27, 1986; 53 FR 44009, Nov. 1, characterizing the type of food and 1988] under the conditions of time and tem- perature characterizing the conditions § 177.1312 Ethylene-carbon monoxide of its intended use, as determined from copolymers. Tables 1 and 2 of § 176.170(c) of this The ethylene-carbon monoxide co- chapter, yields net chloroform-soluble polymers identified in paragraph (a) of extractives in each extracting solvent this section may be safely used as com- not to exceed 0.5 milligram per square ponents of articles intended for use in inch of food-contact surface when test- contact with food subject to the provi- ed by methods described in § 176.170(d) sions of this section. of this chapter. (a) Identity. For the purposes of this (4) The provisions of this section are section, ethylene-carbon monoxide co- not applicable to ethylene-carbon mon- polymers (CAS Reg.
    [Show full text]
  • Medical Botany 6: Active Compounds, Continued- Safety, Regulations
    Medical Botany 6: Active compounds, continued- safety, regulations Anthocyanins / Anthocyanins (Table 5I) O Anthocyanidins (such as malvidin, cyanidin), agrocons of anthocyanins (such as malvidin 3-O- glucoside, cyanidin 3-O-glycoside). O All carry cyanide main structure (aromatic structure). ▪ Introducing or removing the hydroxyl group (-OH) from the structure, The methylation of the structure (-OCH3, methoxyl group), etc. reactants and color materials are shaped. It is commonly found in plants (plant sap). O Flowers, leaves, fruits give their colors (purple, red, red, lilac, blue, purple, pink). O The plant's color is related to the pH of the cell extract. O Red color anthocyanins are blue, blue-purple in alkaline conditions. O Effects of many factors in color As the pH increases, the color becomes blue. the phenyl ring attached to C2; • As the OH number increases, the color becomes blue, • color increases as the methoxyl group increases. O Combination of flavonoids and anthocyanins produces blue shades. There are 6 anthocyanidins, more prevalent among ornamental-red. 3 of them are hydroxylated (delfinine, pelargonidine, cyanidin), 3 are methoxylated (malvidin, peonidin, petunidin). • Orange-colored pelargonidin related. O A hydroxyl group from cyanide contains less. • Lilac, purple, blue color is related to delphinidin. It contains a hydroxyl group more than cyanide. • Three anthocyanidines are common in methyl ether; From these; Peonidine; Cyanide, Malvidin and petunidin; Lt; / RTI & gt; derivative. O They help to pollinize animals for what they are attracted to. Anthocyanins and anthocyanidins are generally anti-inflammatory, cell and tissue protective in mammals. O Catches and removes active oxygen groups (such as O2 * -, HO *) and prevents oxidation.
    [Show full text]
  • Ethyl Acrylate
    Health Council of the Netherlands Ethyl acrylate Evaluation of the carcinogenicity and genotoxicity Gezondheidsraad Health Council of the Netherlands Aan de staatssecretaris van Sociale Zaken en Werkgelegenheid Onderwerp : aanbieding advies Ethyl acrylate Uw kenmerk : DGV/MBO/U-932342 Ons kenmerk : U-7413/BvdV/fs/246-D17 Bijlagen : 1 Datum : 13 november 2012 Geachte staatssecretaris, Graag bied ik u hierbij het advies aan over de gevolgen van beroepsmatige blootstelling aan ethylacrylaat. Dit advies maakt deel uit van een uitgebreide reeks waarin kankerverwekkende stoffen worden geclassificeerd volgens richtlijnen van de Europese Unie. Het gaat om stoffen waaraan mensen tijdens de beroepsmatige uitoefening kunnen worden blootgesteld. Dit advies is opgesteld door een vaste subcommissie van de Commissie Gezondheid en beroepsmatige blootstelling aan stoffen (GBBS), de Subcommissie Classificatie van carcinogene stoffen. Het advies is getoetst door de Beraadsgroep Gezondheid en omgeving van de Gezondheidsraad. Ik heb het advies vandaag ter kennisname toegezonden aan de staatssecretaris van Infrastructuur en Milieu en aan de minister van Volksgezondheid, Welzijn en Sport. Met vriendelijke groet, prof. dr. W.A. van Gool, voorzitter Bezoekadres Postadres Parnassusplein 5 Postbus 16052 2511 VX Den Haag 2500 BB Den Haag E-mail: [email protected] www.gr.nl Telefoon (070) 340 74 47 Ethyl acrylate Evaluation of the carcinogenicity and genotoxicity Subcommittee on the Classification of Carcinogenic Substances of the Dutch Expert Committee on Occupational Safety, a Committee of the Health Council of the Netherlands to: the State Secretary of Social Affairs and Employment No. 2012/19, The Hague, November 13, 2012 The Health Council of the Netherlands, established in 1902, is an independent scientific advisory body.
    [Show full text]
  • Radel® PPSU, Udel® PSU, Veradel® PESU & Acudel® Modified PPSU
    Radel ® | Udel ® | Veradel ® | Acudel ® Radel® PPSU, Udel® PSU, Veradel® PESU & Acudel® modified PPSU Processing Guide SPECIALT Y POLYMERS 2 \ Sulfone Polymers Processing Guide Table of Contents Introduction ............................. 5 Part Ejection . 14 Draft . 14 Ejector pins and/or stripper plates . 14 Sulfone Polymers........................ 5 Udel® Polysulfone (PPSU) . 5 Injection Molding Equipment ............. 15 ® Veradel Polyethersulfone (PESU) . 5 Controls . 15 ® Radel Polyphenylsulfone (PPSU) . 5 Clamp . 15 ® Acudel modified PPSU . 5 Barrel Capacity . 15 Press Maintenance . 15 Resin Drying . .6 Screw Design . 15 Rheology................................ 8 Screw Tips and Check Valves . 15 Viscosity-Shear Rate ..................... 8 Nozzles . 16 Molding Process . 16 Resin Flow Characteristics . 9 Melt flow index . 9 Polymer Injection or Mold Filling . 16 Spiral flow . 9 Packing and Holding . 17 Injection Molding . .10 Cooling . 17 Molds and Mold Design .................. 10 Machine Settings ....................... 17 Tool Steels . 10 Barrel Temperatures . 17 Mold Dimensions . 10 Mold Temperature . 18 Mold Polishing . 10 Residence Time in the Barrel . 18 Mold Plating and Surface Treatments . 10 Injection Rate . 18 Tool Wear . 10 Back Pressure . 18 Mold Temperature Control . 10 Screw Speed . 18 Mold Types . 11 Shrinkage . 18 Two-plate molds . 11 Three-plate molds . 11 Regrind ............................... 19 Hot runner molds . 11 Cavity Layout . 12 Measuring Residual Stress ............... 19 Runner Systems . 12 Extrusion............................... 22 Gating . 12 Sprue gating . 12 Edge gates . 13 Predrying ............................. 22 Diaphragm gates . 13 Tunnel or submarine gates . 13 Extrusion Temperatures ................. 22 Pin gates . 13 Screw Design Recommendations . 22 Gate location . 13 Venting . 14 Sulfone Polymers Processing Guide / 3 Die Design ............................. 22 Extruded Product Types . 23 Wire . 23 Film . 23 Sheet . 23 Piping and tubing . 23 Start-Up, Shut-Down, and Purging .......
    [Show full text]
  • Technical Datasheet: Udel® P-1700
    Udel® P-1700 Polysulfone Solvay Specialty Polymers www.ulprospector.com Technical Data Product Description Udel® P-1700 polysulfone (PSU) is a tough, rigid, high-strength thermoplastics suitable for continuous use up to 300°F (149°C). It is resistant to oxidation and hydrolysis and withstand prolonged exposure to high temperatures and repeated sterilization. Udel® P-1700 polysulfone is highly resistant to mineral acids, alkali and salt solutions. Resistance to detergents and hydrocarbon oils is good, but the resin may be attacked by polar solvents such as ketones, chlorinated hydrocarbons and aromatic hydrocarbons. These resins are also highly resistant to degradation by gamma or electron beam radiation. Electrical properties of Udel® P-1700 polysulfones are stable over a wide temperature range and after immersion in water or exposure to high humidity. The resins comply with FDA 21 CFR 177.1655 and may be used in articles intended for repeated use in contact with foods. Additionally, they are approved by the NSF, by the Department of Agriculture for contact with meat and poultry and by the 3-A Sanitary Standards of the Dairy Association. • Transparent: Udel® P-1700 CL 2611 CMP • Transparent: Udel® P-1700 NT 06 • Transparent: Udel® P-1700 NT 11 • Opaque Black : Udel® P-1700 BK 937 • Opaque White: Udel® P-1700 WH 6417 • Opaque White: Udel® P-1700 WH 7407 • Opaque Gray: Udel® P-1700 GY 8057 General Material Status • Commercial: Active Literature 1 • Technical Datasheet UL Yellow Card 2 • E36098-231084 • Solvay Specialty Polymers Search for
    [Show full text]
  • Studies on Radiation Crosslinking of Polysulfone
    JP0050427 JAERI-Conf 2000-001 Studies on Radiation Crosslinking of Polysulfone Xiaoguang Zhong Jiazhen Sun Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022, China Polysulfone is a kind of high temperature-resistance and radiation-resistance engineering plastic. The chemical structure is as follows: Brown (1), Lyon (2), Sasuga (3), et al have already studied its radiation effect. We studied CH3 radiation crosslinking effect of polysulfone by using of XPS, ESR, and CG methods and got some new results. Results and Discussions 1. Study radiation crosslinking of polysulfone by XPS method Because of conjugate system of benzene ring, polymer material which contains of benzene ring will appear shake-up peak in XPS spectra. Wanxi Zhang (4) shows that during radiation crosslinking of polystyrene increases with radiation dose and the intensity of shake-up peak decreases gradually with increase of radiation dose and crosslinking degree. This suggests that radiation crosslinking destroyed conjugate system of benzene ring. During radiation crosslinking of polysulfone, we find rules of shake-up peaks in the XPS spectra are different at different radiation crosslinking temperature. At lower temperature the intensity of shake-up peak decreases with the increase of radiation dose. This rule is similar to that of radiation crosslinking of polystyrene. The results are shown in Fig. 1. 183- JAERI-Conf 2000-001 Fig. 1. The spectra of radiation crosslinking of polysulfone at 70"C Comparing with radiation crosslinking at lower temperature, the intensity of shake-up peak increases with radiation dose when radiation crosslinking reaction takes place at temperature above glass transition temperature of polysulfone.
    [Show full text]
  • United States Patent (19) [11] Patent Number: 5,658,584 Yamaguchi 45) Date of Patent: Aug
    US005658584A United States Patent (19) [11] Patent Number: 5,658,584 Yamaguchi 45) Date of Patent: Aug. 19, 1997 54 ANTIMICROBIAL COMPOSITIONS WITH 2-243607 9/1990 Japan ............................. AON 37/10 HNOKTOL AND CTRONELLCACD 4-182408 6/1992 Japan ............................. A01N 6500 5-271073 10/1993 Japan ............................. A61K 31/40 75 Inventor: Yuzo Yamaguchi, Kanagawa, Japan OTHER PUBLICATIONS 73) Assignee: Takasago international Corporation, Tokyo, Japan ROKURO, World Patent Abstract of JP 6048936, Feb. 1994. Osada et al., Patent Abstracts of Japan, JP 3077801, 1991. 21 Appl. No.: 513,181 Osamu Okuda, Koryo Kagaku Soran (Fragrance Chemistry 22 Filed: Aug. 9, 1995 Comprehensive Bibliography) (II), published by Hirokawa Shoten, (1963) p. 1140. (30) Foreign Application Priority Data Yuzo Yamaguchi, Fragrance Journal, No. 46, (1981) Aug. 19, 1994 JP Japan .................................... 6-216686 (Japan) pp. 56-59. (51] Int. Cl. .............. A01N 25/00; A01N 25/06; A01N 25/02; A01N 25/08 Primary Examiner-Edward J. Webman (52) U.S. Cl. ......................... 424/405; 424/404; 424/408; Attorney, Agent, or Firm-Sughrue, Mion, Zinn, Macpeak 424/410; 424/414 & Seas 58 Field of Search ................................. 424/400, 405, 57 ABSTRACT 424/45, 408, 414, 410, 404 An antimicrobial composition containing a mixture of hino 56) References Cited kitiol and citronellic acid in a ratio of about 1:1 to about 3:1 by weight. The antimicrobial composition according to the U.S. PATENT DOCUMENTS invention is safe for humans and has a high antimicrobial 4,645,536 2/1987 Butler ................................... 106/15.05 activity and a broad antimicrobial spectrum, and is widely 5,053,222 10/1991 Takasu et al.
    [Show full text]
  • Effect of Thujaplicins on the Promoter Activities of the Human SIRT1 And
    A tica nal eu yt c ic a a m A r a c t Uchiumi et al., Pharmaceut Anal Acta 2012, 3:5 h a P DOI: 10.4172/2153-2435.1000159 ISSN: 2153-2435 Pharmaceutica Analytica Acta Research Article Open Access Effects of Thujaplicins on the Promoter Activities of the Human SIRT1 and Telomere Maintenance Factor Encoding Genes Fumiaki Uchiumi1,2, Haruki Tachibana3, Hideaki Abe4, Atsushi Yoshimori5, Takanori Kamiya4, Makoto Fujikawa3, Steven Larsen2, Asuka Honma4, Shigeo Ebizuka4 and Sei-ichi Tanuma2,3,6,7* 1Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan 2Research Center for RNA Science, RIST, Tokyo University of Science, Noda-shi, Chiba-ken, Japan 3Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan 4Hinoki Shinyaku Co., Ltd, 9-6 Nibancho, Chiyoda-ku, Tokyo 102-0084, Japan 5Institute for Theoretical Medicine, Inc., 4259-3 Nagatsuda-cho, Midori-ku, Yokohama 226-8510, Japan 6Genome and Drug Research Center, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan 7Drug Creation Frontier Research Center, RIST, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan Abstract Resveratrol (Rsv) has been shown to extend the lifespan of diverse range of species to activate sirtuin (SIRT) family proteins, which belong to the class III NAD+ dependent histone de-acetylases (HDACs).The protein de- acetylating enzyme SIRT1 has been implicated in the regulation of cellular senescence and aging processes in mammalian cells. However, higher concentrations of this natural compound cause cell death.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,636.405 B2 Tamarkin Et Al
    USOO9636405B2 (12) United States Patent (10) Patent No.: US 9,636.405 B2 Tamarkin et al. (45) Date of Patent: May 2, 2017 (54) FOAMABLE VEHICLE AND (56) References Cited PHARMACEUTICAL COMPOSITIONS U.S. PATENT DOCUMENTS THEREOF M (71) Applicant: Foamix Pharmaceuticals Ltd., 1,159,250 A 1 1/1915 Moulton Rehovot (IL) 1,666,684 A 4, 1928 Carstens 1924,972 A 8, 1933 Beckert (72) Inventors: Dov Tamarkin, Maccabim (IL); Doron 2,085,733. A T. 1937 Bird Friedman, Karmei Yosef (IL); Meir 33 A 1683 Sk Eini, Ness Ziona (IL); Alex Besonov, 2,586.287- 4 A 2/1952 AppersonO Rehovot (IL) 2,617,754. A 1 1/1952 Neely 2,767,712 A 10, 1956 Waterman (73) Assignee: EMY PHARMACEUTICALs 2.968,628 A 1/1961 Reed ... Rehovot (IL) 3,004,894. A 10/1961 Johnson et al. (*) Notice: Subject to any disclaimer, the term of this 3,062,715. A 1 1/1962 Reese et al. tent is extended or adiusted under 35 3,067,784. A 12/1962 Gorman pa 3,092.255. A 6/1963 Hohman U.S.C. 154(b) by 37 days. 3,092,555 A 6/1963 Horn 3,141,821 A 7, 1964 Compeau (21) Appl. No.: 13/793,893 3,142,420 A 7/1964 Gawthrop (22) Filed: Mar. 11, 2013 3,144,386 A 8/1964 Brightenback O O 3,149,543 A 9/1964 Naab (65) Prior Publication Data 3,154,075 A 10, 1964 Weckesser US 2013/0189193 A1 Jul 25, 2013 3,178,352.
    [Show full text]
  • US3636140.Pdf
    Jan. 18, 1972 A. F. INGULLI ETA 3,636,140 THERMOPLASTIC RESIN BLEND OF POLY SULFONE WITH ABS Filed Aug. 4, 1969 5. Sheets-Sheet, 2. R O /O 20 30 40 0 60 22 80 20 M22 (7, AOA. Yuo/MAOM/A /W AA S adze wa /MVA MV7 OAS Air 7- 4. a Zafa AA A. MM/G/ZZ / A/a. Mary A. at 7A air 2- 9% agew, Jan. 18, 1972 A. F. NGULL ET All- 3,636,140 "I HERMOPLASTIC RESIN BLEND OF POLYSULFONE WITH ABS Filed Aug. 4, 1969 5. Sheets-Sheet 3 S | | | | | | \ / | | | | |\ 1 \ | | | | | | | | \ | | | | | | | N TTTTTTTT O 3O 20 O SO 70 so 90 /OO 7. AozYuva /owa w Aaj azawo 2g z 7-5 MM/a M72A S. AAAAAA M. MMMGO/4 AM AyAAMA 1 A... a A. JAA larus 9.4 AG AW 7 Jan. 18, 1972 A. F. NGULL FT All- 3,636,140 TERMOPLASTIC RESIN BLEND OF POLYSULFONE WITH ABS Filed Aug. 4, 1969 5 Sheets-Sheet 4. 24.0 -- -T 22.ol | | | || 20.0 I Y Mas t SR I W. n w /4.0 | -- N - S v 2.0 HI N | n N S s S. v O /O 20 30 10 60 60 70 &0 70 /00 7./oz ruz/z/-owa //v4 as aza/v4 MM VAM/OA 27zz7 a AAAMAA A. MM6t/44/ A/AMMA)1 A. az Zafa 9ers /.4- a 47AM/7 Jan. 18, 1972 A. F. NGULL ET All- 3,636,140 THERMOPLASTIC RESIN BLEND OF POLYSULFONE WITH ABS Filed Aug. 4, 1969 5 Sheets-Sheet 5 JO J00 290 28 O 270 28 O 25 O 24 O 2.3 O O O 20 JO 40 50 60 70 8 O 3 O LOO % AOZyura/4 MoM2 //v 44, aza/V2 , , , .
    [Show full text]