The Evolution of Eusociality
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inclusive Fitness As a Criterion for Improvement LSE Research Online URL for This Paper: Version: Accepted Version
Inclusive fitness as a criterion for improvement LSE Research Online URL for this paper: http://eprints.lse.ac.uk/104110/ Version: Accepted Version Article: Birch, Jonathan (2019) Inclusive fitness as a criterion for improvement. Studies in History and Philosophy of Science Part C :Studies in History and Philosophy of Biological and Biomedical Sciences, 76. ISSN 1369-8486 https://doi.org/10.1016/j.shpsc.2019.101186 Reuse This article is distributed under the terms of the Creative Commons Attribution- NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ [email protected] https://eprints.lse.ac.uk/ Inclusive Fitness as a Criterion for Improvement Jonathan Birch Department of Philosophy, Logic and Scientific Method, London School of Economics and Political Science, London, WC2A 2AE, United Kingdom. Email: [email protected] Webpage: http://personal.lse.ac.uk/birchj1 This article appears in a special issue of Studies in History & Philosophy of Biological & Biomedical Sciences on Optimality and Adaptation in Evolutionary Biology, edited by Nicola Bertoldi. 16 July 2019 1 Abstract: I distinguish two roles for a fitness concept in the context of explaining cumulative adaptive evolution: fitness as a predictor of gene frequency change, and fitness as a criterion for phenotypic improvement. Critics of inclusive fitness argue, correctly, that it is not an ideal fitness concept for the purpose of predicting gene- frequency change, since it relies on assumptions about the causal structure of social interaction that are unlikely to be exactly true in real populations, and that hold as approximations only given a specific type of weak selection. -
Sensory and Cognitive Adaptations to Social Living in Insect Societies Tom Wenseleersa,1 and Jelle S
COMMENTARY COMMENTARY Sensory and cognitive adaptations to social living in insect societies Tom Wenseleersa,1 and Jelle S. van Zwedena A key question in evolutionary biology is to explain the solitarily or form small annual colonies, depending upon causes and consequences of the so-called “major their environment (9). And one species, Lasioglossum transitions in evolution,” which resulted in the pro- marginatum, is even known to form large perennial euso- gressive evolution of cells, organisms, and animal so- cial colonies of over 400 workers (9). By comparing data cieties (1–3). Several studies, for example, have now from over 30 Halictine bees with contrasting levels of aimed to determine which suite of adaptive changes sociality, Wittwer et al. (7) now show that, as expected, occurred following the evolution of sociality in insects social sweat bee species invest more in sensorial machin- (4). In this context, a long-standing hypothesis is that ery linked to chemical communication, as measured by the evolution of the spectacular sociality seen in in- the density of their antennal sensillae, compared with sects, such as ants, bees, or wasps, should have gone species that secondarily reverted back to a solitary life- hand in hand with the evolution of more complex style. In fact, the same pattern even held for the socially chemical communication systems, to allow them to polymorphic species L. albipes if different populations coordinate their complex social behavior (5). Indeed, with contrasting levels of sociality were compared (Fig. whereas solitary insects are known to use pheromone 1, Inset). This finding suggests that the increased reliance signals mainly in the context of mate attraction and on chemical communication that comes with a social species-recognition, social insects use chemical sig- lifestyle indeed selects for fast, matching adaptations in nals in a wide variety of contexts: to communicate their sensory systems. -
Following the Trail of Ants: an Examination of the Work of E.O
Sacred Heart University DigitalCommons@SHU Writing Across the Curriculum Writing Across the Curriculum (WAC) 2012 Following The rT ail Of Ants: An Examination Of The orW k Of E.O. Wilson Samantha Kee Sacred Heart University Follow this and additional works at: http://digitalcommons.sacredheart.edu/wac_prize Part of the Biodiversity Commons, Ecology and Evolutionary Biology Commons, Entomology Commons, Other Genetics and Genomics Commons, Philosophy of Science Commons, Religion Commons, and the Theory, Knowledge and Science Commons Recommended Citation Kee, Samantha, "Following The rT ail Of Ants: An Examination Of The orkW Of E.O. Wilson" (2012). Writing Across the Curriculum. 2. http://digitalcommons.sacredheart.edu/wac_prize/2 This Article is brought to you for free and open access by the Writing Across the Curriculum (WAC) at DigitalCommons@SHU. It has been accepted for inclusion in Writing Across the Curriculum by an authorized administrator of DigitalCommons@SHU. For more information, please contact [email protected]. Samantha Kee RS 299-Writing With Public Purpose Dr. Brian Stiltner March 2, 2012 Following the trail of ants An examination of the work of E.O. Wilson Edward Osborne Wilson was a born naturalist, in every sense of the word. As a child growing up in Alabama, he collected and studied species of snakes, flies, and the insect that became the basis of his life’s work, ants. He made a goal to record every species of ant that could be found in Alabama—a childhood project that would eventually lead to his first scientific publication. By age 13, Wilson discovered a red, non-native ant in a local town in Alabama, and by the time he entered the University of Alabama, the fire ant had become a significant threat to the state’s agriculture. -
Coevolution to the Edge of Chaos: Coupled Fitness Landscapes, Poised States, and Coevolutionary Avalanches
J. theor. Biol. (1991) 149, 467-505 Coevolution to the Edge of Chaos: Coupled Fitness Landscapes, Poised States, and Coevolutionary Avalanches STUART A. KAUFFMANt and SONKE JOHNSEN Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania and Sante Fe Institute, Sante Fe, New Mexico, U.S.A. (Received on 20 April 1990, Accepted in revised form on 8 August 1990) We introduce a broadened framework to study aspects of coevolution based on the NK class of statistical models of rugged fitness landscapes. In these models the fitness contribution of each of N genes in a genotype depends epistatically on K other genes. Increasing epistatic interactions increases the rugged multipeaked character of the fitness landscape. Coevolution is thought of, at the lowest level, as a coupling of landscapes such that adaptive moves by one player deform the landscapes of its immediate partners. In these models we are able to tune the ruggedness of landscapes, how richly intercoupled any two landscapes are, and how many other players interact with each player. All these properties profoundly alter the character of the coevolutionary dynamics. In particular, these parameters govern how readily coevolving ecosystems achieve Nash equilibria, how stable to perturba- tions such equilibria are, and the sustained mean fitness of coevolving partners. In turn, this raises the possibility that an evolutionary rnetadynamics due to natural selection may sculpt landscapes and their couplings to achieve coevolutionary systems able to coadapt well. The results suggest that sustained fitness is optimized when landscape ruggedness relative to couplings between landscapes is tuned such that Nash equilibria just tenuously form across the ecosystem. -
Cameroon: Nest Architecture, Behaviour and Labour Calendar
Institut für Nutzpflanzenwissenschaften und Ressourcenschutz Rheinische Friedrich-Wilhelms-Universität Bonn Diversity of Stingless Bees in Bamenda Afromontane Forests – Cameroon: Nest architecture, Behaviour and Labour calendar Dissertation zur Erlangung des Grades Doktor der Agrarwissenschaften (Dr. Agr.) der Hohen Landwirtschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität zu Bonn vorgelegt am 04. November 2009 von Moses Tita Mogho Njoya aus Lobe Estate, Kamerun Referent: Prof. Dr. D. Wittmann Korreferent: Prof. Dr. A. Skowronek Tag der mündlichen Prüfung: 22. Dezember 2009 Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert Erscheinungsjahr: 2010 Dedication To my parent who are of blessed memory: Chui George Ntobukeu NJOYA and Tohjeuh Elizabeth Bah. ABSTRACT Until now almost nothing was known of invertebrates such as wild bees in the Bamenda highland forest region in Cameroon. This study focuses on honey producing bee species which do not possess functional stings. The diversity of the stingless bees in this area as well as their nest biology and behaviour was studied. In all, Six species of stingless bees grouped into four genera exist in the Bamenda afro-montane forests. The four genera are: Meliponula (3 species), Dactylurina (1species), Hypotrigona (1 species) and Liotrigona (1species). The most represented of the species in Bamenda was Liotrigona. Stingless bees were found to have huge variations in habitat preferences and in nest architectures. Nest designs differ with species as well as the habitats. Nest were found in tree trunks, mud walls, traditional hives, in soils or even just attached to tree branches. Brood cells and storage pots differ from species to species. -
CONFERENCE AT-A-GLANCE THURSDAY, APRIL 12 3:00 P.M
Conference Schedule CONFERENCE AT-A-GLANCE THURSDAY, APRIL 12 3:00 p.m. - 9:00 p.m. Registration Narragansett Pre-Function 6:00 p.m. - 10:00 p.m. The NRHC Game Night Providence Ballroom 8:00 p.m. - 10:00 p.m. Big Picture Discussion Bristol/Kent FRIDAY, APRIL 13 7:30 a.m. - 5:00 p.m. Registration Narragansett Pre-Function 9:00 a.m. - 9:45 a.m. City as Text Intro and Speaker Narragansett Ballroom 10:00 a.m. - 3:15 p.m. City as Text Providence 3:30 p.m. - 4:45 p.m. City as Text Reflection Narragansett Ballroom 5:00 p.m. - 7:15 p.m. Graduate and Transfer Fair Waterplace Ballroom 6:00 p.m. - 7:15 p.m. Student Art Show Waterplace Ballroom 7:30 p.m. - 9:30 p.m. Banquet Narragansett Ballroom 9:30 p.m. - midnight Open Mic Night Narragansett Ballroom SATURDAY, APRIL 14 7:30 a.m. - 9:00 a.m. Continental Breakfast Narragansett Ballroom 7:30 a.m. - 9:00 a.m. Poster Session I Narragansett Ballroom 7:45 a.m. - 12:00 p.m. Registration Narragansett Pre-Function 9:05 a.m. - 10:20 a.m. Session I Papers and Roundtables Breakout Rooms 10:35 a.m. - 11:50 a.m. Session II Papers and Roundtables Breakout Rooms 12:00 p.m. - 1:30 p.m. Presidential Lunch and Address Narragansett Ballroom 1:40 p.m. - 2:55 p.m. Session III Papers and Roundtables Breakout Rooms 3:10 p.m. - 4:25 p.m. -
A Primitively Social Wasp
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref OBSERVATIONS OF XENORHYNCHIUM NITIDULUM (FABRICIUS) (HYMENOPTERA, EUMENINAE), A PRIMITIVELY SOCIAL WASP BY MARY JANE WEST-EBERHARD* Smithsonian Tropical Research Institute INTRODUCTION Until recently primitively social wasps, with more than one female sharing a nest but without a reproductive division of labor, were considered rare. For many years, the only such wasps known were the five species cited by Wheeler (1928) in his classic book on the social insects. More primitively social wasps are now known (for a partial list see West-Eberhard, 1979). It is clear, however, that many more remain to be discovered, and information on the biology of primitively social species is still scarce. It therefore seems worth- while to report the following brief notes on Xenorynchium nitidu- lum (Fabricius), a primitively social wasp found in India. The observations reported here were made on nests collected in the vil- lage of Janla, Puri District, Orissa (about 20 degrees N.Latitude) in November, 1979. X. nitidulum is widely distributed in India. Vecht (1963 p. 112) cites Dover and Rao (1922) as recording this species from Calcutta, Pusa, Bangalore, Lucknow, Kashmir, and Lahore (Punjab). NEST STRUCTURE AND CONTENTS Xenorhynchium nitidulum builds a nest consisting of several barrel-shaped mud cells coated with an amber-colored substance that is sticky when fresh, and that later forms a hard lumpy coating: This coating strengthens the rather fragile mud walls of the cells which are only 0.25-0.5 mm thick. It may also afford some protec- tion against insect predators and parasitoids, as further discussed below. -
How to Design Experiments in Animal Behaviour∗ 8
SERIES ARTICLE How to Design Experiments in Animal Behaviour∗ 8. How Do Wasps Decide Who Would Be the Queen? Part 2 Raghavendra Gadagkar Continuing to explore the fascinating world of the Indian pa- per wasp Ropalidia marginata, in this article, we will ask how wasps choose their queens in another context. In the previ- ous article in this series, we saw how a simple experiment re- vealed that wasps fight, i.e., indulge in dominance-subordinate interactions, and the winner becomes the queen and the loser becomes the worker. This was in the context of new nestfoundation. But contextmatters. Whenthe same wasps once again have to decide who will be their next queen Raghavendra Gadagkar is if the first one dies or is experimentally removed, the same DST Year of Science Chair Professor at the Centre for rules do not hold. The wasps in a mature colony continue Ecological Sciences, Indian to show dominance-subordinate interactions and can even be Institute of Science, arranged in a dominance hierarchy, but the dominance ranks Bangalore, Honorary of the wasps do not predict who their next queen will be. Professor at JNCASR, and Non-Resident Permanent How they choose their next queen in this context continues Fellow of the to be an enduring mystery. In this article, I will describe four Wissenschaftskolleg (Institute simple experiments that have helped us come close to nail- for Advanced Study), Berlin. ing the culprit, although I must confess that we have not yet During the past 40 years he has established an active found the smoking gun—the chase is on, and we are hot on school of research in the area the trail—please join in! of animal behaviour, ecology and evolution. -
Plasticity‐Led Evolution: a Survey of Developmental Mechanisms and Empirical Tests
DOI: 10.1111/ede.12309 PERSPECTIVE Plasticity‐led evolution: A survey of developmental mechanisms and empirical tests Nicholas A. Levis | David W. Pfennig Department of Biology, University of North Carolina, Chapel Hill, Abstract North Carolina Recent years have witnessed increased interest in evaluating whether phenotypic plasticity can precede, facilitate, and possibly even bias adaptive Correspondence “ ‐ ” Nicholas A. Levis, Department of Biology, evolution. Despite accumulating evidence for plasticity led evolution (i.e., CB#3280, University of North Carolina, “PLE”), critical gaps remain, such as: how different developmental Chapel Hill, NC 27599. mechanisms influence PLE; whether some types of traits and taxa are Email: [email protected] especially prone to experience PLE; and what studies are needed to drive the field forward. Here, we begin to address these shortcomings by first speculating about how various features of development—modularity, flexible regulation, and exploratory mechanisms—mightimpactand/orbias whether and how PLE unfolds. We then review and categorize the traits and taxa used to investigate PLE. We do so both to identify systems that may be well‐suited for studying developmental mechanisms in a PLE context and to highlight any mismatches between PLE theory and existing empirical tests of this theory. We conclude by providing additional suggestions for future research. Our overarching goal is to stimulate additional work on PLE and thereby evaluate plasticity’s role in evolution. 1 | INTRODUCTION 2011; West‐Eberhard, 2003). Under this view, novel traits start out evolutionarily as environmentally The environment has long been viewed as crucial in induced phenotypic variants. Later, they come under both selecting on phenotypes and in creating those genetic control through selection on developmental phenotypes in the first place (e.g., Baldwin, 1896, processes. -
Gene-Culture Coevolution, Group Selection, and the Evolution of Cooperation
EC_2018_A12 Gene-Culture coevolution, group selection, and the evolution of Cooperation The Evolution of Cooperation How can altruism / cooperation evolve? 1 EC_2018_A12 Levels of Selection "although a high standard of morality gives but a slight or no advantage to each individual man and his children over the other men of the same tribe (...) an advancement in the standard of morality will certainly give an immense advantage to one tribe over another.” (C. Darwin, Descent of Man, 1871) Levels of Selection Individuals (“basic” [Neo]Darwinism) Genes (“Selfish-gene” Sociobiology) Groups? Multilevel selection? Higher-level adaptations? Genetic Group Selection? “Naïve group selectionism”: The probability of survival of individual living things, or of populations, increases with the degree with which they harmoniously adjust themselves to each other and to their environment. This principle is basic to the concept of the balance of nature, orders the subject matter of ecology and evolution, underlies organismic and developmental biology, and is the foundation for all sociology. (Allee et al. 1949) “The good of the species” (Wynne-Edwards) 2 EC_2018_A12 Levels of Selection Migration, genetic drift, etc: Intergroup effects weaker than intragroup, interindividual selection. Intra x intergroup differences X Wilson DS & Wilson EO (2007) Rethinking the theoretical foundation of sociobiology Multi-level selection/ limits in kin selection theory/ “major transitions” Eusociality: Kin Selection X Individual selection + preadaptations. (communal nests) Nowak, Tarnita & Wilson, “The Evolution of Eusociality”, Nature 2010 (X Abbot et al [+100!], Nature 2011) “Major Transitions” in Evolution Maynard Smith & Szathmáry 1997 “Apart from the evolution of the genetic code, all these transitions involve the coming together of previously independent replicators, to cooperate in a higher-level assembly that reproduces as a single unit.” 3 EC_2018_A12 Natural selection & the evolution of cooperation Cooperation is needed for evolution to construct new levels of organization. -
Biological Notes on Ground-Nesting Digger Wasps from Western Nebraska
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln The Prairie Naturalist Great Plains Natural Science Society 6-2005 Biological Notes on Ground-Nesting Digger Wasps from Western Nebraska Robert W. Matthews Janice R. Matthews Follow this and additional works at: https://digitalcommons.unl.edu/tpn Part of the Biodiversity Commons, Botany Commons, Ecology and Evolutionary Biology Commons, Natural Resources and Conservation Commons, Systems Biology Commons, and the Weed Science Commons This Article is brought to you for free and open access by the Great Plains Natural Science Society at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in The Prairie Naturalist by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biological Notes on Ground-Nesting Digger Wasps from Western Nebraska ROBERTW. MATTHEWS· and JANICE R. MATTHEWS Department of Entomology, University of Georgia, Athens, GA 30602 ABSTRACT -- Nine species of sphecid wasps nesting in sparsely vegetated sandy soils near Ogallala, Keith County, Nebraska were studied during June 2003. The first records of the nest and prey of Cerceris clypeata gnarina Banks and Tachysphex williamsi R. Bohart are presented. Two species of weevils, Baris striata Say and B. subsimilis Casey, were prey of C. clypeata gnarina, with 12 to 22 individuals stocked per cell. Because B. subsimilis is a biological control agent for thistle, this finding is a caution to researchers not to ignore the potential impact of predatory wasps on the community. The single nest of T williamsi was a shallow burrow 5 cm deep; prey included grasshopper nymphs of Melanoplus sp. and M angustipennis (Dodge). -
Comparative Methods Offer Powerful Insights Into Social Evolution in Bees Sarah Kocher, Robert Paxton
Comparative methods offer powerful insights into social evolution in bees Sarah Kocher, Robert Paxton To cite this version: Sarah Kocher, Robert Paxton. Comparative methods offer powerful insights into social evolution in bees. Apidologie, Springer Verlag, 2014, 45 (3), pp.289-305. 10.1007/s13592-014-0268-3. hal- 01234748 HAL Id: hal-01234748 https://hal.archives-ouvertes.fr/hal-01234748 Submitted on 27 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2014) 45:289–305 Review article * INRA, DIB and Springer-Verlag France, 2014 DOI: 10.1007/s13592-014-0268-3 Comparative methods offer powerful insights into social evolution in bees 1 2 Sarah D. KOCHER , Robert J. PAXTON 1Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA 2Institute for Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany Received 9 September 2013 – Revised 8 December 2013 – Accepted 2 January 2014 Abstract – Bees are excellent models for studying the evolution of sociality. While most species are solitary, many form social groups. The most complex form of social behavior, eusociality, has arisen independently four times within the bees.