Her Name Is Virgo by Magda Streicher [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Her Name Is Virgo by Magda Streicher Magdalena@Mweb.Co.Za deep-sky delights Her name is Virgo by Magda Streicher [email protected] Late southern autumn is Virgin Mary, mother the best �me to go galaxy- of the child Jesus. hun�ng. Not only is the Nevertheless, whichever Orion arm down in the name or myth you prefer, west, but the Milky Way she holds in her lap a very Image source: Stellarium.org is s�ll way down towards rich harvest of a variety the east. The �me slot of galaxies that will keep gives us the opportunity you busy for quite some for an intense look into �me. the wide universe to a prominent dark dust observe the faint fuzzies, So let us fire off into galaxy lane running through the which are actually world with an all-�me major axis with a very en�re galaxies. You favourite, the versa�le prominent bulge. The only need the use of a NGC 4594 (Messier 104), galaxy appears to lie in an modest medium to larger be�er known as the east-west direc�on with telescope and dark skies. Sombrero Galaxy, which slightly pointed ends. The constella�on Virgo was discovered in May and most would agree, 1781 by the Frenchman Steve O’Meara, a well- holds something mys�cal Pierre Mechain. Messier known amateur living in as it is filled with galaxies 104 is possibly one of the Hawaii, notes that the which are, in turn, also brightest and biggest galaxy displays a brilliant enveloped in a haze of galaxies in the Virgo- core that seems to illu- unknown. Well, the Coma Super Cluster of minate the surrounding truth is that the chaste Galaxies and is situated oval shroud from within, young girl of the starry virtually on the boundary like a distant bonfire skies, so widely loved between Virgo and the seen through thick fog. was regarded as the constella�on Corvus. The sharpness of the virgin daughter of Zeus. This rela�vely bright edge- telltale dark lane reveals on galaxy with a slight �lt the edge of the Mexican In the Middle Ages Virgo of six degrees towards hat’s brim. He goes on was even known as the our point of view displays to say that with averted mnassa vol 72 nos 3 & 4 82 83 april 2013 her name is virgo vision the eastern por- into a wide brushstroke western por�on of the �on of the Sombrero’s of light, which shines brim. Obviously Steve brim breaks up and flares more brilliantly than the uses a large telescope mnassa vol 72 nos 3 & 4 82 83 april 2013 deep-sky delights with high magnifica�on stars between magnitude reveals a slight oval in a in favourable dark skies, 6 and 9 against a bare north-west to south-east but agrees with me that star field. The two bright- direc�on with a nearly the galaxy could not be est stars in this breathtak- stellar nucleus. Because described be�er. ing composi�on display a M86’s light is spread over golden yellow colour. a larger area, it appears Not only is Messier 104 slightly fainter than M84, approximately 65 million Virgo is mostly popular but is, in fact slightly light years away, it is also for the Super Cluster of brighter. It houses a large about 135 000 light years Galaxies situated mainly popula�on of faint globular in diameter and plays in the northern part of clusters orbi�ng the galaxy host to many globular Virgo with the abundance which serve as standard clusters – many more overflowing into the candles to determining than our own Milky Way. constella�on Coma galac�c distances. The Berenices. The heart of galaxy is about 53 000 A very fascina�ng aster- this unique area filled million light years away, ism called Jaws accom- with several galaxies is perhaps slightly closer to panies M104 only 25’ without doubt the two us than M84. towards the west. About ellip�cal star ci�es NGC nine colourful stars be- 4374 (Messier 84) and Several other galaxies in tween magnitude 8 and NGC 4406 (Messier 86), the area, including M84 10 portray this impres- which are only 15’ apart. and M86, stretch from sion quite truly. The main However, the giant north-east to south-west focus is the brighter stars galaxy M84 shines with and have collec�vely towards the southern an overwhelming round been referred to as end of the star string. A glow that is easy visible Markarian’s Chain. The more familiar asterism, and situated only 25’ chain was named by however, can be spo�ed from the Coma Berenices the Russian Benjamin jumping the border into border. The galaxy Markarian, who first Corvus, barely a degree displays a bright small noted this forma�on. south-west of asterism nucleus and a snowy Jaws. Known as Star-gate, frosted edge and could A very special pair of it is an almost perfect be as far as 65 million galaxies is NGC 4435 equilateral triangle of light years distant. and NGC 4438, situated stars nestling inside barely 20’ further east of another almost perfect At first M86 appears to M86. I remember very equilateral star triangle. be a twin to M84, with its well the first �me I laid It is an outstandingly apparently perfectly round eyes on this unique pair defined composi�on of shape, but closer scru�ny of galaxies during a visit mnassa vol 72 nos 3 & 4 84 85 april 2013 her name is virgo to the Kruger Na�onal visible galaxies with a galaxies can be spo�ed Park. At the �me, lis- dominant popula�on of that indicate, more or tening to all the animal old stars. The nucleus less, the centre of the sounds in the dark of contains a super-massive Virgo Super Cluster. night, I imagined the pair black hole with a strong to be two eyes staring radio-ac�ve source. A S�ll on your way, an- back at me through the curious straight ray lies other 2 degrees further telescope eyepiece, not in the frosted nebulosity south-east, the merging withstand the lion’s roars and extends from the galaxies NGC 4567 and in the distant. The south- core at a posi�on angle NGC 4568, also known ern member NGC 4438 of 260 degrees. This as the Siamese Twins, is slightly larger, with an thin stream of ma�er portray the vastness of even surface brightness and dust contains high- the universe in a very and a very hazy edge. energy par�cles racing special way (see picture With higher magnifica- from the galaxy nucleus by Dale Liebenberg). The �on a broad central at close to the speed of American deep-sky au- concentra�on can be light. Obviously there thor Leland S. Copeland glimpsed. Although the is no chance even to dubbed it as such in 1955. northern member, NGC glimpse this strange sight, NGC 4568 the eastern 4435, is slightly smaller, but a Hubble picture and larger member ap- it is a tad brighter, with shows it quite clearly. A pears to be surrounded an outstanding stellar few stars se�le on the by a hazy envelope and nucleus. Both galaxies, northern edge of M87, faces north-south. It nicknamed The Eyes, face and in the immediate gets gradually brighter in a north-eastern to field of view many towards a rela�vely large south-western direc�on. A much talked about galaxy and one hard to miss is NGC 4486 (Messier 87), situated another degree further south-east (see picture). It is a lovely outstanding ellip�cal galaxy (also known as Virgo A) with a bright outstanding nucleus and is ranked as one of the largest M87-NGC4486 Virgo A, an ellip�cal galaxy. Dale Liebenberg. mnassa vol 72 nos 3 & 4 84 85 april 2013 deep-sky delights distant and to me is one of the most outstanding deep sky objects. With so many galaxies to explore, a sequel to this ar�cle will be necessary. This is only the �p of the proverbial iceberg, yet even this leaves a stunning expression on the observer. Some�mes people shy away from NGC 4567-8, the Siamese Twins. Dale Liebenberg. observing galaxies, but careful map work and nucleus. NGC 4567, the (see picture). With summaries of brightness slightly smaller galaxy in higher magnifica�on will make observa�on comparison, has a dense and a rela�vely large considerably easier. bright pin-point nucleus. telescope try to glimpse The interac�ng spiral pair the dark streak between The planet Neptune was are gently joined at their the eastern arm sec�on seen in Virgo about 20’ north-eastern �ps. Bare- and the nucleus. The east of the magnitude 6 ly 10’ towards the north galaxy is situated about star HD 105374, and 2 is another spiral compan- 50 million light years degrees west of eta Virgini, ion member, NGC 4564, in an east-west direc�on. NGC 4303 (Messier 61) is one of the largest spirals, and is situated a degree north of 16 Virginis and 5 degrees north of magnitude 3.8 eta Virginis. The galaxy displays a barred face-on in a north-east to south- west direc�on with a stellar core and hints of mo�ling on the surface M61-NGC4303 barred galaxy. Dale Liebenberg. mnassa vol 72 nos 3 & 4 86 87 april 2013 her name is virgo by Galileo in December Brakel, from Australasia, a very faint galaxy by the 1612. He also detected and myself from South looks of it, not at all easy to the mo�on, but probably Africa.
Recommended publications
  • Infrared Spectroscopy of Nearby Radio Active Elliptical Galaxies
    The Astrophysical Journal Supplement Series, 203:14 (11pp), 2012 November doi:10.1088/0067-0049/203/1/14 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. INFRARED SPECTROSCOPY OF NEARBY RADIO ACTIVE ELLIPTICAL GALAXIES Jeremy Mould1,2,9, Tristan Reynolds3, Tony Readhead4, David Floyd5, Buell Jannuzi6, Garret Cotter7, Laura Ferrarese8, Keith Matthews4, David Atlee6, and Michael Brown5 1 Centre for Astrophysics and Supercomputing Swinburne University, Hawthorn, Vic 3122, Australia; [email protected] 2 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) 3 School of Physics, University of Melbourne, Melbourne, Vic 3100, Australia 4 Palomar Observatory, California Institute of Technology 249-17, Pasadena, CA 91125 5 School of Physics, Monash University, Clayton, Vic 3800, Australia 6 Steward Observatory, University of Arizona (formerly at NOAO), Tucson, AZ 85719 7 Department of Physics, University of Oxford, Denys, Oxford, Keble Road, OX13RH, UK 8 Herzberg Institute of Astrophysics Herzberg, Saanich Road, Victoria V8X4M6, Canada Received 2012 June 6; accepted 2012 September 26; published 2012 November 1 ABSTRACT In preparation for a study of their circumnuclear gas we have surveyed 60% of a complete sample of elliptical galaxies within 75 Mpc that are radio sources. Some 20% of our nuclear spectra have infrared emission lines, mostly Paschen lines, Brackett γ , and [Fe ii]. We consider the influence of radio power and black hole mass in relation to the spectra. Access to the spectra is provided here as a community resource. Key words: galaxies: elliptical and lenticular, cD – galaxies: nuclei – infrared: general – radio continuum: galaxies ∼ 1. INTRODUCTION 30% of the most massive galaxies are radio continuum sources (e.g., Fabbiano et al.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • 1. Introduction
    THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 122:109È150, 1999 May ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALAXY STRUCTURAL PARAMETERS: STAR FORMATION RATE AND EVOLUTION WITH REDSHIFT M. TAKAMIYA1,2 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637; and Gemini 8 m Telescopes Project, 670 North Aohoku Place, Hilo, HI 96720 Received 1998 August 4; accepted 1998 December 21 ABSTRACT The evolution of the structure of galaxies as a function of redshift is investigated using two param- eters: the metric radius of the galaxy(Rg) and the power at high spatial frequencies in the disk of the galaxy (s). A direct comparison is made between nearby (z D 0) and distant(0.2 [ z [ 1) galaxies by following a Ðxed range in rest frame wavelengths. The data of the nearby galaxies comprise 136 broad- band images at D4500A observed with the 0.9 m telescope at Kitt Peak National Observatory (23 galaxies) and selected from the catalog of digital images of Frei et al. (113 galaxies). The high-redshift sample comprises 94 galaxies selected from the Hubble Deep Field (HDF) observations with the Hubble Space Telescope using the Wide Field Planetary Camera 2 in four broad bands that range between D3000 and D9000A (Williams et al.). The radius is measured from the intensity proÐle of the galaxy using the formulation of Petrosian, and it is argued to be a metric radius that should not depend very strongly on the angular resolution and limiting surface brightness level of the imaging data. It is found that the metric radii of nearby and distant galaxies are comparable to each other.
    [Show full text]
  • SUPERMASSIVE BLACK HOLES and THEIR HOST SPHEROIDS III. the MBH − Nsph CORRELATION
    The Astrophysical Journal, 821:88 (8pp), 2016 April 20 doi:10.3847/0004-637X/821/2/88 © 2016. The American Astronomical Society. All rights reserved. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. III. THE MBH–nsph CORRELATION Giulia A. D. Savorgnan Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; [email protected] Received 2015 December 6; accepted 2016 March 6; published 2016 April 13 ABSTRACT The Sérsic R1 n model is the best approximation known to date for describing the light distribution of stellar spheroidal and disk components, with the Sérsic index n providing a direct measure of the central radial concentration of stars. The Sérsic index of a galaxy’s spheroidal component, nsph, has been shown to tightly correlate with the mass of the central supermassive black hole, MBH.TheMnBH– sph correlation is also expected from other two well known scaling relations involving the spheroid luminosity, Lsph:theLsph–n sph and the MLBH– sph. Obtaining an accurate estimate of the spheroid Sérsic index requires a careful modeling of a galaxy’s light distribution and some studies have failed to recover a statistically significant MnBH– sph correlation. With the aim of re-investigating the MnBH– sph and other black hole mass scaling relations, we performed a detailed (i.e., bulge, disks, bars, spiral arms, rings, halo, nucleus, etc.) decomposition of 66 galaxies, with directly measured black hole masses, that had been imaged at 3.6 μm with Spitzer.Inthispaper,the third of this series, we present an analysis of the Lsph–n sph and MnBH– sph diagrams.
    [Show full text]
  • Guide Du Ciel Profond
    Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 .
    [Show full text]
  • Virgo the Virgin
    Virgo the Virgin Virgo is one of the constellations of the zodiac, the group tion Virgo itself. There is also the connection here with of 12 constellations that lies on the ecliptic plane defined “The Scales of Justice” and the sign Libra which lies next by the planets orbital orientation around the Sun. Virgo is to Virgo in the Zodiac. The study of astronomy had a one of the original 48 constellations charted by Ptolemy. practical “time keeping” aspect in the cultures of ancient It is the largest constellation of the Zodiac and the sec- history and as the stars of Virgo appeared before sunrise ond - largest constellation after Hydra. Virgo is bordered by late in the northern summer, many cultures linked this the constellations of Bootes, Coma Berenices, Leo, Crater, asterism with crops, harvest and fecundity. Corvus, Hydra, Libra and Serpens Caput. The constella- tion of Virgo is highly populated with galaxies and there Virgo is usually depicted with angel - like wings, with an are several galaxy clusters located within its boundaries, ear of wheat in her left hand, marked by the bright star each of which is home to hundreds or even thousands of Spica, which is Latin for “ear of grain”, and a tall blade of galaxies. The accepted abbreviation when enumerating grass, or a palm frond, in her right hand. Spica will be objects within the constellation is Vir, the genitive form is important for us in navigating Virgo in the modern night Virginis and meteor showers that appear to originate from sky. Spica was most likely the star that helped the Greek Virgo are called Virginids.
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • Classification of Galaxies Using Fractal Dimensions
    UNLV Retrospective Theses & Dissertations 1-1-1999 Classification of galaxies using fractal dimensions Sandip G Thanki University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Thanki, Sandip G, "Classification of galaxies using fractal dimensions" (1999). UNLV Retrospective Theses & Dissertations. 1050. http://dx.doi.org/10.25669/8msa-x9b8 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • A Guide to Smartphone Astrophotography National Aeronautics and Space Administration
    National Aeronautics and Space Administration A Guide to Smartphone Astrophotography National Aeronautics and Space Administration A Guide to Smartphone Astrophotography A Guide to Smartphone Astrophotography Dr. Sten Odenwald NASA Space Science Education Consortium Goddard Space Flight Center Greenbelt, Maryland Cover designs and editing by Abbey Interrante Cover illustrations Front: Aurora (Elizabeth Macdonald), moon (Spencer Collins), star trails (Donald Noor), Orion nebula (Christian Harris), solar eclipse (Christopher Jones), Milky Way (Shun-Chia Yang), satellite streaks (Stanislav Kaniansky),sunspot (Michael Seeboerger-Weichselbaum),sun dogs (Billy Heather). Back: Milky Way (Gabriel Clark) Two front cover designs are provided with this book. To conserve toner, begin document printing with the second cover. This product is supported by NASA under cooperative agreement number NNH15ZDA004C. [1] Table of Contents Introduction.................................................................................................................................................... 5 How to use this book ..................................................................................................................................... 9 1.0 Light Pollution ....................................................................................................................................... 12 2.0 Cameras ................................................................................................................................................
    [Show full text]
  • ESO Annual Report 2004 ESO Annual Report 2004 Presented to the Council by the Director General Dr
    ESO Annual Report 2004 ESO Annual Report 2004 presented to the Council by the Director General Dr. Catherine Cesarsky View of La Silla from the 3.6-m telescope. ESO is the foremost intergovernmental European Science and Technology organi- sation in the field of ground-based as- trophysics. It is supported by eleven coun- tries: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Sweden, Switzerland and the United Kingdom. Created in 1962, ESO provides state-of- the-art research facilities to European astronomers and astrophysicists. In pur- suit of this task, ESO’s activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member- state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced techno- logies, furthering European co-operation and carrying out European educational programmes. ESO operates at three sites in the Ataca- ma desert region of Chile. The first site The VLT is a most unusual telescope, is at La Silla, a mountain 600 km north of based on the latest technology. It is not Santiago de Chile, at 2 400 m altitude. just one, but an array of 4 telescopes, It is equipped with several optical tele- each with a main mirror of 8.2-m diame- scopes with mirror diameters of up to ter. With one such telescope, images 3.6-metres. The 3.5-m New Technology of celestial objects as faint as magnitude Telescope (NTT) was the first in the 30 have been obtained in a one-hour ex- world to have a computer-controlled main posure.
    [Show full text]
  • Messier 61, Oriani's Galaxy
    Messier 61, Oriani’s Galaxy This beautiful face-on barred spiral galaxy was discovered in 1779 by Barnabas Oriani, a Catholic priest and accomplished astronomer, and it became the 61st entry in Messier's catalog. It is on the southern outskirts of the Virgo galaxy cluster. Through small scopes, it appears as a circular glow with a brighter center. Large scopes will show its two large spiral arms. Start by finding the Spring Triangle, which consists of three widely- separated first magnitude stars-- Arcturus, Spica, and Regulus. The Spring Triangle is high in the southeast sky in early spring, and in the southwest sky by mid-Summer. (To get oriented, you can use the handle of the Big Dipper and "follow the arc to Arcturus"). For this star hop, look in the middle of the Spring Triangle for Denebola, the star representing the back end of Leo, the lion, and Vindemiatrix, a magnitude 2.8 star in Virgo. The galaxies of the Virgo cluster are found in the area between these two stars. From Vindemiatrix, trace the curving arc of stars that form part of the constellation Virgo to reach Zaniah, as shown below. All of these stars should be easy to see with the naked eye under a clear sky. From Zaniah, move 4 degrees north to a 5th magnitude star that will be easily visible in binoculars or a finderscope. Center this star in your telescope with a low-power eyepiece, then move a little more than 1 degree to the north- northeast to reach M61. Star hop from www.skyledge.net by Jim Mazur.
    [Show full text]
  • Chemical Characterisation of the Globular Cluster NGC 5634 Associated to the Sagittarius Dwarf Spheroidal Galaxy?,?? E
    A&A 600, A118 (2017) Astronomy DOI: 10.1051/0004-6361/201630004 & c ESO 2017 Astrophysics Chemical characterisation of the globular cluster NGC 5634 associated to the Sagittarius dwarf spheroidal galaxy?,?? E. Carretta1, A. Bragaglia1, S. Lucatello2, V. D’Orazi2; 3; 4, R. G. Gratton2, P. Donati1; 5, A. Sollima1, and C. Sneden6 1 INAF–Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy e-mail: [email protected] 2 INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 3 Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia 4 Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Melbourne, VIC 3800, Australia 5 Dipartimento di Fisica e Astronomia, Università di Bologna, viale Berti Pichat 6, 40127 Bologna, Italy 6 Department of Astronomy and McDonald Observatory, The University of Texas, Austin, TX 78712, USA Received 3 November 2016 / Accepted 4 January 2017 ABSTRACT As part of our on-going project on the homogeneous chemical characterisation of multiple stellar populations in globular clusters (GCs), we studied NGC 5634, associated to the Sagittarius dwarf spheroidal galaxy, using high-resolution spectroscopy of red giant stars collected with VLT/FLAMES. We present here the radial velocity distribution of the 45 observed stars, 43 of which are cluster members, the detailed chemical abundance of 22 species for the seven stars observed with UVES-FLAMES, and the abundance of six elements for stars observed with GIRAFFE. On our homogeneous UVES metallicity scale, we derived a low-metallicity [Fe/H] = −1:867 ± 0:019 ± 0:065 dex (±statistical ±systematic error) with σ = 0:050 dex (7 stars).
    [Show full text]