Protocol Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Protocol Analysis 1 2 3 4 5 6 7 8 9 This Specification is provided for future development work within oneM2M only. The Partners accept no 10 liability for any use of this Specification. 11 The present document has not been subject to any approval process by the oneM2M Partners Type 1. 12 Published oneM2M specifications and reports for implementation should be obtained via the oneM2M 13 Partners' Publications Offices. 14 15 16 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 1 of 107 This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1. 17 About oneM2M 18 The purpose and goal of oneM2M is to develop technical specifications which address the 19 need for a common M2M Service Layer that can be readily embedded within various 20 hardware and software, and relied upon to connect the myriad of devices in the field with 21 M2M application servers worldwide. 22 More information about oneM2M may be found at: http//www.oneM2M.org 23 Copyright Notification 24 No part of this document may be reproduced, in an electronic retrieval system or otherwise, 25 except as authorized by written permission. 26 The copyright and the foregoing restriction extend to reproduction in all media. 27 © 2014, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC). 28 All rights reserved. 29 Notice of Disclaimer & Limitation of Liability 30 The information provided in this document is directed solely to professionals who have the 31 appropriate degree of experience to understand and interpret its contents in accordance with 32 generally accepted engineering or other professional standards and applicable regulations. 33 No recommendation as to products or vendors is made or should be implied. 34 NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS 35 TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, 36 GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO 37 REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR 38 FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF 39 INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE 40 LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY 41 THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN 42 NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER 43 INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES 44 ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN 45 THIS DOCUMENT IS AT THE RISK OF THE USER. 46 47 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 2 of 107 This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1. 48 Contents 49 Contents .............................................................................................................................................................. 3 50 1 Scope ........................................................................................................................................................ 8 51 2 References ................................................................................................................................................ 8 52 2.1 Informative references ....................................................................................................................................... 8 53 3 Abbreviations and acronyms .................................................................................................................. 12 54 3.1 Abbreviations ................................................................................................................................................... 12 55 3.2 Acronyms ......................................................................................................................................................... 12 56 4 Conventions, ........................................................................................................................................... 14 57 5 M2M Related Protocols Overview ......................................................................................................... 14 58 5.1 Analysis of Design Styles ................................................................................................................................ 14 59 5.1.1 RESTful Style protocols ............................................................................................................................. 14 60 5.1.1.1 REST Style ........................................................................................................................................... 14 61 5.1.1.2 RESTful Protocols ................................................................................................................................ 15 62 5.2 Data Description Standards.............................................................................................................................. 15 63 5.2.1 XML Schema Definition Language (XSD) ................................................................................................ 15 64 6 Analysis of Protocols ............................................................................................................................. 15 65 6.1 CoAP - Constrained Application Protocol ....................................................................................................... 15 66 6.1.1 Background ................................................................................................................................................ 15 67 6.1.2 Status .......................................................................................................................................................... 16 68 6.1.2.1 Current Status ....................................................................................................................................... 16 69 6.1.2.2 Ongoing IETF Activity ......................................................................................................................... 16 70 6.1.3 Category and Architectural Style ............................................................................................................... 17 71 6.1.4 Intended use ............................................................................................................................................... 17 72 6.1.5 Deployment Trend ..................................................................................................................................... 18 73 6.1.6 Key features ............................................................................................................................................... 18 74 6.1.7 Protocol Stack ............................................................................................................................................ 19 75 6.1.8 Data Model ................................................................................................................................................. 20 76 6.1.9 Security ...................................................................................................................................................... 20 77 6.1.10 Dependencies ............................................................................................................................................. 20 78 6.1.11 Benefits and Constraints ............................................................................................................................. 20 79 6.1.11.1 Benefits ................................................................................................................................................. 20 80 6.2.11.2 Constraints ............................................................................................................................................ 21 81 6.1.12 Support of oneM2M requirements ............................................................................................................. 21 82 6.1.12.1 Fully Supported Requirements ............................................................................................................. 21 83 6.1.12.2 Partially Supported Requirements ........................................................................................................ 21 84 6.2 MQTT - Message Queuing Telemetry Transport ............................................................................................ 21 85 6.2.1 Background ................................................................................................................................................ 21 86 6.2.2 Status .......................................................................................................................................................... 22 87 6.2.3 Category and Architectural Style ............................................................................................................... 22 88 6.2.4 Intended use ............................................................................................................................................... 22 89 6.2.5 Deployment Trend ..................................................................................................................................... 22 90 6.2.6 Key features ..............................................................................................................................................
Recommended publications
  • Literature Review in the Fields of Standards, Projects, Industry and Science
    LITERATURE REVIEW IN THE FIELDS OF STANDARDS, PROJECTS, INDUSTRY AND SCIENCE DOCUMENT TYPE: DELIVERABLE DELIVERABLE N0: D1.1 DISTRIBUTION LEVEL: PUBLIC DATE: 11/07/2016 VERSION: FINAL AUTHOR(S): LEONID LICHTENSTEIN, FLORIAN RIES, MICHAEL VÖLKER, JOS HÖLL, CHRISTIAN KÖNIG (TWT); JOSEF ZEHETNER (AVL); OLIVER KOTTE, ISIDRO CORAL, LARS MIKELSONS (BOSCH); NICOLAS AMRINGER, STEFFEN BERINGER, JANEK JOCHHEIM, STEFAN WALTER (DSPACE); CORINA MITROHIN, NATARAJAN NAGARAJAN (ETAS); TORSTEN BLOCHWITZ (ITI); DESHENG FU (LUH); TIMO HAID (PORSCHE); JEAN- MARIE QUELIN (RENAULT); RENE SAVELSBERG, SERGE KLEIN (RWTH); PACOME MAGNIN, BRUNO LACABANNE (SIEMENS); VIKTOR SCHREIBER (TU-IL); MARTIN KRAMMER, NADJA MARKO, MARTIN BENEDIKT, STEFAN THONHOFER, GEORG STETTINGER, MARKUS TRANNINGER (VIF); THIES FILLER (VW) REVIEWED: BRUNO LACABANNE (SIEMENS), JEAN-MARIE QUELIN (RENAULT), VALENTIN IVANOV (TUIL), JOSEF ZEHETNER (AVL), NADJA MARKO (VIF) APPROVED: LEONID LICHTENSTEIN (TWT), MARTIN BENEDIKT (VIF) D1.1 ACOSAR PROJECT ACRONYM: ACOSAR PROJECT TITLE: ADVANCED CO-SIMULATION OPEN SYSTEM ARCHITECTURE ITEA PROJECT N0: 14004 CHALLENGE: ENGINEERING PROJECT DURATION: 01/09/2015 - 31/08/2018 PROJECT WEBSITE: WWW.ACOSAR.EU COORDINATION: VIRTUAL VEHICLE RESEARCH CENTER (AT) PROJECT LEADER: DR. MARTIN BENEDIKT 14004 – Deliverable D1.1 – Distribution Level: Public 2 / 126 D1.1 ACOSAR 14004 – Deliverable D1.1 – Distribution Level: Public 3 / 126 D1.1 ACOSAR 1 Contents 1 Contents.......................................................................................................................
    [Show full text]
  • Woo Project Overview
    WoO Approach General Overview WF-IoT 2014 Mihaela Brut, Patrick Gatellier Thales Services, France Ilyoung Chong, Hankuk University of Foreign Studies, Korea 6th Of March 2014 2 / 01: Scientific and Business Context Scientific and Business Context 3 / Context – IoT and WoT gather more and more devices IoT boom: u Since 2007: more devices than people are connected to Internet (Cisco IoT IBSG, 2011) u In 2020: 50 billions devices will be connected to Internet (Ericson, 2010) u In 2020: the global M2M business (large industry, solution providers, connectivity providers) will reach 260 milliards Euros (Machina Research, 2012); u By 2020: IoT will add $1,9 trillion to the global economy (Gartner, 2013) => huge business application development (WoT & Future Internet boom) People connected to Internet resulted in Web 1.0, 2.0, 3.0 … applications What can we imagine about the future of the connected devices? 4 / Context – status of IoT and WoT business Huge deployment of smart devices and sensors, resulting in huge amount of data collected, not exploited in real-time, nor outside a closed system: u Smart metering => filtered data is selected for billing purposes, and various statistic analysis are accomplished £ If a third party (e.g. insurance company) is interested in specific data, no legal framework and no technical support u Smart homes: each equipment is able to switch in secure mode, and to send information or alarm messages, eventually to receive remote control commands £ France: government investment in “sensing” the elder people homes
    [Show full text]
  • Canopen Documentation Release 1.2.2.Dev41+Gff8b5ca
    canopen Documentation Release 1.2.2.dev41+gff8b5ca Christian Sandberg Sep 13, 2021 Contents 1 Network and nodes 3 2 Object Dictionary 11 3 Network management (NMT) 17 4 Service Data Object (SDO) 19 5 Process Data Object (PDO) 27 6 Synchronization Object (SYNC) 33 7 Emergency Object (EMCY) 35 8 Time Stamp Object (TIME) 37 9 Layer Setting Services (LSS) 39 10 Integration with existing code 43 11 Device profiles 45 Index 51 i ii canopen Documentation, Release 1.2.2.dev41+gff8b5ca This package provides support for interacting with a network of CANopen nodes. Note: Most of the documentation here is directly stolen from the CANopen Wikipedia page. This documentation is a work in progress. Feedback and revisions are most welcome! CANopen is a communication protocol and device profile specification for embedded systems used in automation. In terms of the OSI model, CANopen implements the layers above and including the network layer. The CANopen standard consists of an addressing scheme, several small communication protocols and an application layer defined by a device profile. The communication protocols have support for network management, device monitoring and communication between nodes, including a simple transport layer for message segmentation/desegmentation. Easiest way to install is to use pip: $ pip install canopen Contents 1 canopen Documentation, Release 1.2.2.dev41+gff8b5ca 2 Contents CHAPTER 1 Network and nodes The canopen.Network represents a collection of nodes connected to the same CAN bus. This handles the sending and receiving of messages and dispatches messages to the nodes it knows about. Each node is represented using the canopen.RemoteNode or canopen.LocalNode class.
    [Show full text]
  • Hypermedia Apis for Sensor Data: a Pragmatic Approach to the Web of Things
    Hypermedia APIs for Sensor Data: A pragmatic approach to the Web of Things The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Russell, Spencer, and Joseph Paradiso. “Hypermedia APIs for Sensor Data: A Pragmatic Approach to the Web of Things.” Proceedings of the 11th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (2014). As Published http://dx.doi.org/10.4108/icst.mobiquitous.2014.258072 Publisher European Union Digital Library/ICST Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/103763 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Hypermedia APIs for Sensor Data A pragmatic approach to the Web of Things Spencer Russell Joseph A. Paradiso [email protected] [email protected] Responsive Environments Group MIT Media Lab Massachusetts Institute of Technology Cambridge, MA, USA ABSTRACT dards and protocols such as AllJoyn1 and MQTT2, other As our world becomes more instrumented, sensors are ap- projects [20] seek to use existing application-level Web stan- pearing in our homes, cars, and on our bodies [12]. These dards such as HTTP to provide an interface that is more sensors are connected to a diverse set of systems and pro- familiar to developers, and also that can take advantage of tocols driven by cost, power, bandwidth, and more. De- tooling and infrastructure already in place for the World spite this heterogeneous infrastructure, we need to be able Wide Web. These efforts are often dubbed the Web of to build applications that use that data, and the most value Things, which reflects the relationships to existing Web stan- comes from integrating these disparate sources together.
    [Show full text]
  • Industrial Control Systems for the Technical Infrastructure at CERN
    Industrial Control Systems for the Technical Infrastructure at CERN P. Ninin, E. Cennini, P. Sollander, D. Blanc, F. Bonthond [email protected] European Organisation for Nuclear Research - CERN, 1211 - Geneva - 23, Switzerland Abstract 2.1 Introduction Industrial control systems have been used for CERN's Technical Control Room (TCR), is responsible several years for the control of CERN's technical for the overall surveillance and control of the technical infrastructure, particularly for fire and gas detection, access infrastructure. The TCR is an alarm-driven control room in control and cooling water systems. the sense that the arrival of an alarm alerts the operator and Until recently, industrial equipment has been connected makes him take appropriate actions. The operator acts to the control network at the lowest level via CERN upon the alarms primarily by consulting and interacting specific front ends. Since 1993 they have been integrated with mimic diagrams. These human-computer interfaces, using industrial supervision systems drivers. Today the alarms and mimic diagrams have been structured integration is performed using TCP/IP based protocols and systematically and they have been standardised to a large the distributed Technical Data Server (TDS) supervision extent, in spite of the large diversity of installations being system. This paper summarises the evolution of the supervised [1]. Any new installation must be integrated different techniques, the control system architectures harmoniously into this environment. Since 93, Siemens and our integration philosophy. The safety system of the PLCs are being increasingly used and in conjunction the Chorus and Nomad experiments, the West Zone and the PS industrial supervisor FactoryLink has been integrated in cooling water systems are based on Siemens the existing control system for the supervision of four Programmable Logic Controllers (PLC) the Siemens different systems.
    [Show full text]
  • EM133 Multifunction Meter
    EM133 Multifunction Meter CANopen Communications Protocol Reference Guide BG0592 Rev. A1 Every effort has been made to ensure that the material herein is complete and accurate. However, the manufacturer is not responsible for any mistakes in printing or faulty instructions contained in this book. Notification of any errors or misprints will be received with appreciation. For further information regarding a particular installation, operation or maintenance of equipment, contact the manufacturer or your local representative or distributor. REVISION HISTORY A1 February Release 2016 AnyBus® is a registered trademark of HMS Industrial Networks AB. 2 Table of Contents 1 GENERAL........................................................................................................... 5 2 CANOPEN PROTOCOL IMPLEMENTATION .................................................... 6 2.1 CANOPEN ELECTRONIC DATA SHEET (EDS) FILE ..................................................................... 6 2.2 CANOPEN VERSION ................................................................................................................. 6 2.3 BAUD RATES ........................................................................................................................... 6 2.4 NODE ADDRESS ....................................................................................................................... 6 2.5 INPUT AND OUTPUT BUFFERS ................................................................................................... 6 2.6 EXTENDED DIAGNOSTIC
    [Show full text]
  • How Smart Tvs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World
    The Internet of Things How Smart TVs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World MICHAEL MILLER 800 East 96th Street, Indianapolis, Indiana 46240 USA The Internet of Things Editor-in-Chief How Smart TVs, Smart Cars, Smart Homes, and Greg Wiegand Smart Cities Are Changing the World Executive Editor Copyright © 2015 by Pearson Education, Inc. Rick Kughen All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechani- Managing Editor cal, photocopying, recording, or otherwise, without written permis- Sandra Schroeder sion from the publisher. No patent liability is assumed with respect to the use of the information contained herein. Although every precau- Senior Project Editor tion has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any Tonya Simpson liability assumed for damages resulting from the use of the informa- Copy Editor tion contained herein. Anne Goebel ISBN-13: 978-0-7897-5400-4 ISBN-10: 0-7897-5400-2 Indexer Library of Congress Control Number: 2015932632 Erika Millen Printed in the United States of America Proofreader Jess DeGabriele First Printing: April 2015 Trademarks Technical Editor Gareth Branwyn All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Que Publishing Publishing Coordinator cannot attest to the accuracy of this information. Use of a term in this Kristin Watterson book should not be regarded as affecting the validity of any trademark or service mark.
    [Show full text]
  • PLCBUS-3160M Manuel US
    PLCBUS-R 3160M Shutter In-Line Module How does PLCBUS work ? Power line Communication Bus (PLCBUS) is a highly reliable, cost effective, 2-way communications technology which enables control products to utilize existing power lines for both residential and commercial applications. The most main feature of PLCBUS Technology is no any Filter and block necessary. • Modules : These components will receive PLCBUS signals and will switch or dim the attached lamp or appliance, and then feedback current status. • Controllers : These components will transmit PLC BUS signals and thus will control the Modules ; 2-way Communications. • Transceivers : Wireless components like remotes (433.92MHz). The signals of these components will be received by a controller wit h transceiver functionally (PLCBUS- T4023UK ). The Transceiver will translate the signals into PLCBUS signals on the power line. Addresses You can select up to 256 addresses by code set electronically. Each address is dividing into a House Code (A – P) and a Unit Code (1 – 16). On control the House code is also selectable. When Modules and Controllers are set to the same House Code, they will work together. The PLCBUS System contains many standardized commands where by modules set to the same House Code will respond simultaneously (e. g. All Lights On, All Units Off). For installer : To different families , PLC US also provide additional 250 User Codes (1 – 250 ). When you install for many houses in the same building, for each family, you should set a different User Code. Thus, 250User Codes x 256 Addresses = 64000 Addresses totally. 250 User Codes x 256 (House/Unit Codes) (1…250) (A…P / 1…16) (For 250 different families) (In each family) Signal Range I.
    [Show full text]
  • Americas Smart Homes Market – by Products, Services & Geography
    MarketsandMarkets http://www.marketresearch.com/MarketsandMarkets-v3719/ Publisher Sample Phone: 800.298.5699 (US) or +1.240.747.3093 or +1.240.747.3093 (Int'l) Hours: Monday - Thursday: 5:30am - 6:30pm EST Fridays: 5:30am - 5:30pm EST Email: [email protected] MarketResearch.com AMERICAS SMART HOME MARKET By Products (Security, Access, Lighting, Entertainment, Energy Management, HVAC, and Ballast & Battery Pack), Services (Installation & Repair, Renovation & Customization) & Geography Analysis & Forecasts (2013 – 2020) MarketsandMarkets [email protected] www.marketsandmarkets.com Americas Smart Homes Market – By Products, Services & Geography - Analysis & Forecast (2013 – 2020) MarketsandMarkets is a global market research and consulting company based in the U.S. We publish strategically analyzed market research reports and serve as a business intelligence partner to Fortune 500 companies across the world. MarketsandMarkets also provides multi-client reports, company profiles, databases, and custom research services. MarketsandMarkets covers thirteen industry verticals, including advanced materials, automotive and transportation, banking and financial services, biotechnology, chemicals, consumer goods, energy and power, food and beverages, industrial automation, medical devices, pharmaceuticals, semiconductor and electronics, and telecommunications and IT. Copyright © 2013 MarketsandMarkets All Rights Reserved. This document contains highly confidential information and is the sole property of MarketsandMarkets. No part of it may be circulated, copied, quoted, or otherwise reproduced without the approval of MarketsandMarkets. MarketsandMarkets Sample Pages | 1 Americas Smart Homes Market – By Products, Services & Geography - Analysis & Forecast (2013 – 2020) 1 INTRODUCTION 1.1 KEY TAKE-AWAY • Americas Smart Homes Market by products, services, and geography market statistics with detailed classifications and splits by revenue. • Analysis of the Americas Smart Homes market by products with a special focus on high growth areas.
    [Show full text]
  • Chapter 14 Wireless Sensor Nodes
    Chapter 14 Wireless Sensor Nodes Serge Chaumette and Damien Sauveron Abstract This chapter addresses the key points of wireless sensor nodes: applica- tions, constraints, architecture, operating systems, and security concerns. It does not pretend to be exhaustive but to provide the major references on these topics. 14.1 Introduction Huge advances in Microelectromechanical systems (MEMS) and Wireless commu- nications in the last decade of the twentieth century gave birth to new paradigms, where cheap, small size communicating sensors have been developed and integrated in many devices and large hardware/software environments. In this chapter, we target standalone wireless sensing devices, so-called wireless sensor nodes, which means that we focus on the device itself and not on the way it can be integrated within a global wireless sensor network. These small hardware pieces are becoming a key component of the digitization of the real world, thanks to their ease of deployment and the benefits that they can bring to human life in general, like infrastructure man- agement (such as power grids) and environmental protection for instance. They are quite different from expensive isolated sensors (i.e., not intended to be a part of a whole swarm) and achieve complex measurements (related to a given phenomenon), and subsequent computation operations. Indeed, the strength of small sensor nodes is their ability to self-organize as a large network which enables measurement very close to a possibly dangerous phenomenon. They can cover a wide area and so are able to observe the evolution and spreading of complex events. In Sect.14.2 we S.
    [Show full text]
  • Communication Solutions for Rockwell Automation ® Users
    WHERE AUTOMATION CONNECTS Communication Solutions for Rockwell Automation® Users ASIA PACIFIC | AFRICA | EUROPE | MIDDLE EAST | LATIN AMERICA | NORTH AMERICA Table of Contents Ethernet and Serial Gateway Solutions 2 Automotive and Inertial Navigation Gateways 2 Serial & Ethernet Modbus® Solutions 3 Scalable Modbus® & Modbus® TCP Solutions for CompactLogix™ 3 Secure Remote Connectivity 4 In-Chassis Flow Computer Solutions 6 HART Solutions 6 Power and Energy Solutions 7 DNP3 Solutions 7 Modernization Solutions 8 PROFIBUS Solutions 10 Enterprise Connectivity 11 Leverage the IIoT 11 Automated Material Handling 12 802.11n (abgn) Fast Industrial Hotspots 13 Radiating Cable 2.4 and 5 GHz Band 14 802.11n (abgn) Fast Watertight Industrial Hotspots 14 Wireless Support from Trusted Experts 15 Wireless Comparison Product Selection Chart 16 In-Chassis Product Selection Chart 17 Stand-Alone Gateways Product Selection Chart 18 Rockwell_2020_EN Ethernet and Serial Gateway Solutions ProSoft Technology’s stand-alone, DIN-rail mounted industrial gateways provide a means to read or write data from devices on dissimilar protocols. All gateways come with our ProSoft Discovery Service feature. With PDS, you don’t have to change your PC to the default subnet of the module, saving you time during setup. Building Automation solutions – including QuickServer gateways – bring key operational data directly to your Rockwell Automation controller. Use these solutions to boost energy efficiency, use the resource most productively, and decrease your usage and costs. • Gateways with two Ethernet ports allow you to isolate networks, passing only the data you want between devices • EtherNet/IP gateways support multiple I/O connections for fast real-time data • Remote configuration and diagnostics via Ethernet • SD Card slot for disaster recovery of configuration data • Up to four Serial ports PROFIBUS DP & many other protocols are also available.
    [Show full text]
  • AIT Presentation
    Distributed Sensors & Connectivity as the answer to future grid requirements Karl-Heinz Mayer Director Engineering Innovation & Program Management AIT Industry Day – September 11th, 2015 © 2015 Eaton Corporation. All rights reserved. Power business – status quo • Electricity is still the backbone and driver of mankind‘s productivity – this seems not to be changed soon 2 © 2015 Eaton Corporation. All rights reserved. 2 Power business – status quo • Electricity is still the backbone and driver of mankind‘s productivity – this seems not to be changed soon • Climate changes are requesting less CO2 emission despite the worldwide increase of power demand Green Energy; programs for ISO 50001, LEED,…certifications 3 © 2015 Eaton Corporation. All rights reserved. 3 Power business – status quo • Electricity is still the backbone and driver of mankind‘s productivity – this seems not to be changed soon • Climate changes are requesting less CO2 emission despite the worldwide increase of power demand Green Energy; programs for ISO 50001, LEED,…certifications • Consumer – Prosumer transformation requests new system approaches Virtual power plants 4 © 2015 Eaton Corporation. All rights reserved. 4 Technology trends are lowering the hurdles to develop and connect more intelligent devices • Semiconductor component costs continue to decline • Functionality and power management performance improving • Pervasiveness of communications increasing • Cloud services and development tools are being used more and more…and their costs are dropping dramatically with scale 5 © 2015 Eaton Corporation. All rights reserved. 5 Future challenges 1. Growing Electricity 2. Electricity Peak 3. Increasing Variable 4. Increasing Demand & Ageing Management Energy Generation Integration of Electric Infrastruture Vehicle World Energy Consumption by fuel type, 1990-2040 - Source : EIA (2013) 6 © 2015 Eaton Corporation.
    [Show full text]