APR T JAN 2 2 200F

Total Page:16

File Type:pdf, Size:1020Kb

APR T JAN 2 2 200F IN REPLY REFER TO: UNITED STATES CrTsnS DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY WASHINGTON 25. D. C. AEC-203/5 January 13, 1955 &r» T* H. Johnson, Director Division of Research U. S. Atomic Energy Commission l6th Street and Constitution Avenue, N. W. Washington 25, D. C. Dear Dr. Johnson: Transmitted herewith is one copy of TEI-^57> "The occurrence and properties of metatyuyamunite Ca(U02 )2(V(>4)2'3-5 KgO*" by T. ¥, Stern, L. R. Stieff, M, N. Girhard, and Robert Meyrowitz, September 195k. We plan to submit this report for publication in the American Mineralogist, Sincerely yours, +*f W. H. Bradley Chief Geologist NOTE APR T JAN 2 2 200f Geology and Mineralogy This document consists of 50 pages including pages 8a, l6a, and 22a. Series Ac UNITED STATES DEPARTMENT OF THE INTERIOR' GEOLOGICAL SURVEY THE OCCURRENCE AND PROPERTIES OF METATYUIAMUNITE By T. W. Stern, L. R* Stieff , M* N. Girhard, and Robert Meyrowitz September 1951*- Trace Elements Investigations Report This preliminary report is distributed ¥ithout editorial and technical review for conformity with official standards and nomenclatureo It is not for public inspection or quotation. *This report concerns work done on behalf of the Division of Research of the U» S* Atomic Energy Commission* USGS - GEOLOGY AID MINERALOGY Distribution (Series A) No. of copies Argonne National Laboratory .....<,...........•,............•».... 1 Atomic Energy Commission, Washington .•*•.......•....«......•... 2 Battelle Memorial Institute, Columbus ....„,,».....*........,.... 1 Carbide and Carbon Chemicals Company, Y-12 Area ................ 1 Division of Raw Materials, Albuquerque ..,.......».,.,•••.»••«.. 1 Division of Raw Materials, Butte ............................... 1 Division of Raw Materials, Denver ..•*....••••....c....... 0 ..... 1 Division of Raw Materials, Douglas ...«,.*«....».«.........«.... 1 Division of Raw Materials, Hot Springs ... *.„.<,. ................ 1 Division of Raw Materials, Ishpeming »•.....«.»•.•.«.•....*.•».. 1 Division of Raw Materials, Phoenix .«,*.,........... 00 ....«<><,.... 1 Division of Raw Jfeterials, Richfield ....•..•••»..••.......»•... 1 Division of Raw Materials, Salt lake City .....•,..••»•..••.»... 1 Division of Raw Materials, Washington ,>....»»*»...OO.B,,..,,.*.... 5 Division of Research, Washington <>»«>«»«*.o.<,c.o...»<r<,.a« a ....0*0,, 1 Dow Chemical Company, Pittsburg O o..ooo»..o««»o«..eo..<.«..»»<,... 1 Exploration Division, Grand Junction Operations Office ••,....., 6 Grand Junction Operations Office .»o.ooo.«...oo. 0 .ft..>«,e.«.«o..» 1 National Lead Company, Winchester 0 .o 000 <,o...».,».o.c,..aB<»oo.«<...» 1 Technical Information Service, Oak Ridge .•*.....,.•...»»....... 6 Tennessee Valley Authority, Wilson Dam ,«,»..« a «oo...«,........... 1 U. S. Geological Survey; Fuels Branch, Washington .......»..». <>.....<>. <,»<........«...».».. 1 Geochemistry and Petrology Branch, Washington •..•...,..,..»•.». 20 Geophysics Branch, Washington ...•••..•»..»»...»*o.....»*•.•••.. 1 Mineral Deposits Branch, Washington e •..«,..<,.<,. .o 0 .«.oo».. 0 ...» 2 Eo Ho Bailey, Menlo Park .<>,»•.a...*.<>..•.<>•«•..»»*o»»».oo»B.»*.t. 1 A 0 L» Brokaw, Grand Junction »o««.»«.o 0 .o..0*0..•«»...•••.•»«.«. 2 J 0 ,R» Cooper, Denver .00.o»..e.»o.o..«oo°e..•».••••»••••••«•«.•» 1 N 0 Mo Denson, Denver eo. 0 «,.«> ........,.o.».«...». t,.« (>...r»..c B aoee 1 C. Eo Button, Madison „........ ...<,..».«... .o..............o..o. 1 We L«, Emerick, Plant City ....,.«..,.»....,..«»......oo.•••»»••* 1 L, S. Gardner, Albuquerque .„<,<>,,...o«» ( ..o«.«»••••»••«»•<>»««•••* 1 MO R. Klepper, Washington . O ce 0t>o 0 c«..« e o 0 »«,.e.o.o 0 . 0 «««..ooc«>o 1 Ao H. Koschmann, Denver ..<>.,>,,,>«,.<,.».....•..<>.,»«.».•»....<.• ».«•. 1 R. A« Laurence, Knoxville ....o.».....*.o-...»».*..»o.«.......... 1 D. M. Lemmon, Washington o. C o.- 0 .».«o C . s .. 0 <,a.o 0... c 0 . , 0 ........... 1 J. D. -Love 5, Laramie 0 «i>»..»..ooo...«... a o.o..e.»...«............ 1 P. Co Patton, Denver .„...«......„.<>»..»...<>».......»..»......... 2 J. Fo Powers, Salt Lake City .»....,,..•»...............•.*...•• 1 Q s Do Singewald, Beltsville » aa o».o.....*»....•...»••............ 1 J. F o Smith, Jr., Denver O o..<, ooe .».»c».. ..*<...»..«......».»...* 1 A. E. Weissenborn, Spokane .»o.».*ee...o.o 4 o.e»».••••••»..»»..». 1 XJ-J-iTV-'v^ « i/O]-lV©3/ ocyoec<r0a»oo&o«0«€^ec)oei>-4>o«»9»a9oe9Ooo0fre(r*fr0fr^o<reA» £. TEPCO, RPS ? Washington, (including master) ..................... 3 CONTENTS Page Abstract ...........*.........................<>............ 5 Introduction .............................................. 6 Occurrence of metatyuyamunite ............................. j Physical properties ........... ...... ......«.....«».«.«.... 9 Optical properties ,«.»..... ...«..*.».o. ................... 9 Chemical composition ...................................... n Water content c. ........................................... 12 X-ray diffraction data ....... .«...,..<,..«,. D ^ .............. 15 Base exchange .............. , . 0 . .. ......... <> ............. e . 21 Radium- uranium age ....... »....*.. ..............o.......... 23 Acknowledgments . ... e ...... o ......... e .. o .......... e ....... 25 Literature cited ........ 0 ..... e .......... o ...... e ... o ..... 25 ILLUSTRATIONS Page Figure 1. Graph of number of moles of -water as a function of the partial pressure of water .............. Plate 1. "/Photomicrograph of bladed crystalline meta*- tyuyamunite, Small Spot mine, Calamity Mesa, Mesa County, Colo. ....... ... e .... ............. 8 2. X-ray diffraction powder patterns of meta­ tyuyamunite and tyuyamunite .................... 16 3. X-ray diffraction powder patterns of meta­ tyuyamunite, base -exchanged metatyuyamunite, and camotite ..................................... .22 TABLES Page Table 1 0 Optical properties of tyuyamunite and meta- « 10 2» Variation in optical properties of tyuyamunite and metatyuyamunite from Small Spot mine caused by hydration and dehydration «,. e0 o«>0 ceeeo 0 .«,.«> o» 0<> ».o... 11 Je Semiquantitative spectrographic analyses of meta~ oo«oeooeooi>e»ooe»oocxoo»oaeeeooee<>ee(>oe<>«e» 12 -. Chemical analyses of tyuyamunite and metatyuyamunite . 15 o X-ray powder diffraction data for metatyuyamunite 17 6*. Radium content , departure from eq.uilibrium? and radium-uranium age of metatyuyamunite specimens . 0 „ , . THE OCCURRENCE AND PROPERTIES OF METATYUYAMUNXTE By T. ¥„ Stern, L* R0 .Stieff , M. N0 Girhard, and Robert Meyrowitz Metatyuyamunite rCa(U0i— 2 )2(V04)2 e 3~5 HaO"|,-J a new mineral, is a dehydration product ©f tyuyamunite rCa(XJQ2)2(V04)2»5~8*5. HgOjo This lower hydrate of tyuyamunite has been collected from more than 35 localities on the Colorado Plateaus and from several localities in Fall River County 5 S 0 Dako, and Campbell and Johnson Counties, Wyo* The optical properties and specific gravity of metatyuyamunite and tyuyamunite are significantly different, Metatyuyamunite samples from two localities in Mesa County 9 Colo^ have been chemically analyzed,. The hydration of metatyuyamujaite has been e;mmined as a function of water vapor pressure. Plateaus on the dehydration curve are at values of 5 and 80 5 moles of water per mole of CaCuOg^CVQ^go Metatyuyamunite was rehydrated to tyuyamunite by placing it in a moist atmosphere a The X-ray diffraction powder pattern, of metatyuyaminite and tyuyamunite are distinctly different, indicating a change in phase 0 Base exchange studies show that the meta­ tyuyamunite structure may contain several percent potassium. X-ray diffraction powder patterns of this base -exchanged product do not reveal the presence of carnotite 5 rK2 (U02 )2(V04)2 e l=i5 HgOj. Two samples of metatyuyamunite from Mesa County , Colo 0? are not in radium- iiranium equilibrium and their Ra/U ages are 25^000 and 150,000 years. INTRODUCTION Variations in the water content of tyuyamunite have "been studied by Hillebrand (192^, p. 202), Rohde (1925, p. 557), and Murata, Cisney, Stieff, and Zworykin (1950, p. 5; 1951, p. 525). Merwin (192k, p. 210) found that the density of the mineral increases as it is dehydrated. An analogous variation in the water content of minerals of the torbernite and metatorbernite groups has "been discussed in papers by Beintema (1958» p. 155), Frondel, J. W., (1951, p. 2^9), Frondel (1951, P- 678, 68l), Mrose (1950, p. 529), and Nuffield and Milne (1955, p. kj6]. The water content of sengierite (Vaes and Kerr, 19^9, P. 109) should be studied when and if sufficient amounts of the mineral can be made available. Both the torbernite group and synthetic KU02V04 have a layer type structure (Beintema, 1958, p. 155; Sundberg and Sillen, 1950, p. 557). In KU02V04, sheets of (U02V04 )~ are separated by K layers, Tyuyamunite Ca(U02 ) 2 (V04) 2 «5-8.5 H20 has a layer structure with the metal-oxygen sheets bonded together by Ca++ ions. This layer structure is stable for values of nH20 up to 8.5 and the water content ranges zeolitically down to 5» The hydration-dehydration effect is reversible in the range 5*8.5 H20. Metatyuyamunite, a new mineral, contains 5-5 moles of water per mole of Ca(U02 ) 2 (V04 )2 and has distinct X-ray powder diffraction pattern and optical properties. Various hydrates within the range of stability have been found in nature, and unless specimens are collected in moisture- proof containers, they may dehydrate before they are examined in the laboratory. Crystal lattice studies of tyuyamunite, carnotite, and sengierite have been made by Gabrielle Donnay and J« D* H. Donnay (X,'5!:
Recommended publications
  • Roscoelite K(V ; Al; Mg)2Alsi3o10(OH)2 C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Monoclinic
    3+ Roscoelite K(V ; Al; Mg)2AlSi3O10(OH)2 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: 2=m: As minute scales, in druses, rosettes, or fan-shaped groups; ¯brous and in felted aggregates; as impregnations, massive. Physical Properties: Cleavage: Perfect on 001 . Hardness = Soft. D(meas.) = 2.92{2.94 D(calc.) = [2.89] f g Optical Properties: Transparent to translucent. Color: Dark clove-brown, greenish brown to dark greenish brown. Luster: Pearly. Optical Class: Biaxial ({). Pleochroism: X = green-brown; Y = Z = olive-green. ® = 1.59{1.610 ¯ = 1.63{1.685 ° = 1.64{1.704 2V(meas.) = 24.5±{39.5± Cell Data: Space Group: C2=c: a = 5.26 b = 9.09 c = 10.25 ¯ = 101:0± Z = 2 X-ray Powder Pattern: Paradox Valley, Colorado, USA. 10.0 (100), 4.54 (80), 3.35 (80), 2.60 (80), 1.52 (60), 3.66 (50), 3.11 (50) Chemistry: (1) SiO2 47.82 Al2O3 12.60 V2O5 19.94 FeO 3.30 MgO 2.43 CaO trace Na2O 0.33 K2O 8.03 + H2O 5.13 Total 99.58 (1) Stuckslager mine, California, USA. Polymorphism & Series: Forms a series with muscovite; 1M polytype. Mineral Group: Mica group. Occurrence: An early-stage gangue mineral in low-temperature epithermal Au-Ag-Te deposits; from the oxidized portions of low-temperature sedimentary U-V ores. Association: Quartz, pyrite, carbonates, °uorite, gold (Au-Ag-Te mineral association); corvusite, hewettite, carnotite, tyuyamunite (U-V mineral association). Distribution: In the USA, from the Stuckslager mine, Lotus, El Dorado Co., California; in Colorado, from Cripple Creek, Teller Co., La Plata district, La Plata Co., Magnolia district, Boulder Co., the Gateway district, Mesa Co., in the Uravan and Paradox, Bull Canyon, and Slick Rock districts, in Montrose, San Miguel, and Dolores Cos.
    [Show full text]
  • Iidentilica2tion and Occurrence of Uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
    IIdentilica2tion and occurrence of uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals From the Colorado Plateaus c By A. D. WEEKS and M. E. THOMPSON A CONTRIBUTION TO THE GEOLOGY OF URANIUM GEOLOGICAL S U R V E Y BULL E TIN 1009-B For jeld geologists and others having few laboratory facilities.- This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission. UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE- INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan. Director Reprint, 1957 For sale by the Superintendent of Documents, U. S. Government Printing Ofice Washington 25, D. C. - Price 25 cents (paper cover) CONTENTS Page 13 13 13 14 14 14 15 15 15 15 16 16 17 17 17 18 18 19 20 21 21 22 23 24 25 25 26 27 28 29 29 30 30 31 32 33 33 34 35 36 37 38 39 , 40 41 42 42 1v CONTENTS Page 46 47 48 49 50 50 51 52 53 54 54 55 56 56 57 58 58 59 62 TABLES TABLE1. Optical properties of uranium minerals ______________________ 44 2. List of mine and mining district names showing county and State________________________________________---------- 60 IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM THE COLORADO PLATEAUS By A. D. WEEKSand M. E. THOMPSON ABSTRACT This report, designed to make available to field geologists and others informa- tion obtained in recent investigations by the Geological Survey on identification and occurrence of uranium minerals of the Colorado Plateaus, contains descrip- tions of the physical properties, X-ray data, and in some instances results of chem- ical and spectrographic analysis of 48 uranium arid vanadium minerals.
    [Show full text]
  • Physical and Chemical Interactions Affecting U and V Transport from Mine Wastes Sumant Avasarala
    University of New Mexico UNM Digital Repository Civil Engineering ETDs Engineering ETDs Spring 3-2-2018 Physical and Chemical Interactions Affecting U and V Transport from Mine Wastes Sumant Avasarala Follow this and additional works at: https://digitalrepository.unm.edu/ce_etds Part of the Environmental Engineering Commons Recommended Citation Avasarala, Sumant. "Physical and Chemical Interactions Affecting U and V Transport from Mine Wastes." (2018). https://digitalrepository.unm.edu/ce_etds/205 This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Civil Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Sumant Avasarala Candidate Civil Engineering Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Dr. Jose M. Cerrato , Chairperson Dr. Ricardo Gonzalez Pinzon Dr. Bruce Thomson Dr. Adrian Brearley Dr. Mehdi Ali i Sumant Avasarala B.S., Chemical Engineering, Anna University 2009, India M.S., Chemical Engineering, Wayne State University, 2012, U.S. DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Engineering The University of New Mexico Albuquerque, New Mexico May 2018 ii Dedication I would like to dedicate my PhD to my parents (Seshargiri Rao and Radha), my brother (Ashwin Avsasarala), my friends, and my grandfathers (V.V. Rao and Late Chalapathi Rao) without whose blessings, prayers, and support this journey would have never been possible. Special dedication to my best friend, Dr. Sriraam Ramanathan Chandrasekaran, who guided me and supported me through my rough times.
    [Show full text]
  • Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
    SpColl £2' 1 Energy I TEl 334 Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus ~ By A. D. Weeks and M. E. Thompson ~ I"\ ~ ~ Trace Elements Investigations Report 334 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY IN REPLY REFER TO: UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY WASHINGTON 25, D. C. AUG 12 1953 Dr. PhilUp L. Merritt, Assistant Director Division of Ra1'r Materials U. S. AtoTILic Energy Commission. P. 0. Box 30, Ansonia Station New· York 23, Nei< York Dear Phil~ Transmitted herewith are six copies oi' TEI-334, "Identification and occurrence oi' uranium and vanadium minerals i'rom the Colorado Plateaus," by A , D. Weeks and M. E. Thompson, April 1953 • We are asking !41'. Hosted to approve our plan to publish this re:por t as a C.i.rcular .. Sincerely yours, Ak~f777.~ W. H. ~radley Chief' Geologist UNCLASSIFIED Geology and Mineralogy This document consists or 69 pages. Series A. UNITED STATES DEPARTMENT OF TEE INTERIOR GEOLOGICAL SURVEY IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM TEE COLORADO PLATEAUS* By A• D. Weeks and M. E. Thompson April 1953 Trace Elements Investigations Report 334 This preliminary report is distributed without editorial and technical review for conformity with ofricial standards and nomenclature. It is not for public inspection or guotation. *This report concerns work done on behalf of the Division of Raw Materials of the u. s. Atomic Energy Commission 2 USGS GEOLOGY AllU MINEFALOGY Distribution (Series A) No. of copies American Cyanamid Company, Winchester 1 Argulllle National La:boratory ., ., .......
    [Show full text]
  • Geology, Geochemistry, and Mineralogy of the Ridenour Mine Breccia Pipe, Arizona
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Geology, Geochemistry, and Mineralogy of the Ridenour Mine Breccia Pipe, Arizona by Karen J. Wenrich1 , Earl R. Verbeek 1 , Hoyt B. Sutphin2 , Peter J. Modreski 1 , Bradley S. Van Gosen 11, and David E. Detra Open-File Report 90-0504 This study was funded by the Bureau of Indian Affairs in cooperation with the Hualapai Tribe. 1990 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. U.S. Geological Survey 2U.S. Pollution Control, Inc. Denver, Colorado Boulder, Colorado CONTENTS Page Abstract ................................................................... 1 Introduction ............................................................... 2 Geology and structure of the Ridenour mine ................................. 5 Structural control of the Ridenour and similar pipes ....................... 7 Mine workings ............................................................. 11 Geochemistry .............................................................. 11 Metals strongly enriched at the Ridenour pipe ......................... 23 Vanadium ......................................................... 23 Silver ........................................................... 30 Copper ........................................................... 30 Gallium .......................................................... 30 Isotopic studies ...................................................... 30 Mineralogy ...............................................................
    [Show full text]
  • Toxicological Profile for Uranium
    URANIUM 273 5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 5.1 PRODUCTION No information is available in the TRI database on facilities that manufacture or process uranium, because this chemical is not required to be reported under Section 313 of the Emergency Planning and Community Right-to-Know Act (Title III of the Superfund Amendments and Reauthorization Act of 1986) (EPA 1998a). Uranium is present in the earth’s crust at approximately 3 ppm (2 pCi/g) (Clark et al. 2006; du Preez 1989; WNA 2011). Of the more than 100 uranium ores, the primary (brannerite, carnotite, coffinite, davidite, pitchblende, thucholite, uraninite) and secondary (tobernite, autunite, tyuyamunite) are the main ores of commercial interest. The main ores are described in Table 5-1. The most economically attractive uranium ores have uranium concentrations >1,000 ppm (700 pCi/g) (Clayton and Clayton 1981; Weigel 1983; WNA 2011). In the United States, the major ore deposits are located in Colorado, Utah, Arizona, New Mexico, Wyoming, Nebraska, and Texas (EPA 1985a). The steps necessary to produce uranium for its various uses include mining, milling, conversion to uranium hexafluoride (UF6), enrichment, reduction to metal or oxidation to uranium oxide, and fabrication into the desired shape. The steps for preparing commercial reactor grade, submarine reactor grade, or weapons-grade uranium are the same, except the last two require a more aggressive enrichment process. Depleted uranium metal is produced by reducing the depleted uranium hexafluoride byproduct. Conventional fabrication methods are used to configure the uranium for specific uses, such as rectangular solid blocks for helicopter rotor counterbalances and parabolic or cylindrical solids for military depleted uranium projectiles.
    [Show full text]
  • Download the Scanned
    THE OCCURRENCE AND PROPERTIES OF META- TYUYAMUNITE, Ca(UODz(VOn)2.3-5HzO* T. W. Srnnx, L. R. Srrorl', M. N. GrnnenD, ANDRoBERT Mnvno- wnz, []. S. GeologicalSuroey, Washington25, D. C. ABSTRACT Metatyuyamunite [Ca(UOrr(VO4)r.]5 HrOl, a new mineral, is a dehydration product of tyuyamunite [Ca(UOz)r(VOr)z' 5-8.5 Hra]. Thislower hydrate of tyuyamunite has been collected from more than 35 localities on the Colorado Plateau and from several localities in Fail River County, S. Dak., and Campbell and Jobrson counties, Wyo. The optical properties and specific gravity of metatyuyamunite and tyuyamunite are significantly difierent. Metatyuyamunite samples from two localities in Mesa County, Colo., have been chemically analyzed.. The hydration of metatyuyamunite has been examined as a function of water vapor pressure. Plateaus on the dehydration curve are at values of 5 and 8.5 moles of water per mole of Ca(UOz)z(VOD2. Metatyuyamunite was rehydrated to tyuya- munite by placing it in a moist atmosphere. The r-ray difiraction powder patterns of met- atyuyamunite and tyuyamunite are distinctly difierent, indicating a change in phase. Base- exchange studies show that the metatyuyamunite structure may contain several per cent potassium. X-ray difiraction powder patterns of this base-exchanged product do not reveal the presence of carnotite [Kr(UOtr(VOrz.1-3 HrO]. Two samples of metatyuyamunite from Mesa County, Colo., are not in radium-uranium equilibrium, and their Ra/U ages are 25,000 and 150,000 years. INrnoouctroN Variations in the water content of tyuyamunite have been studied by Hillebran d (1924,p.
    [Show full text]
  • Unclassified Unclassified
    I-507 UNCLASSIFIED Subject Category: GEOLOGY AND MINERALOGY DEPARTMENT OF THE INTERIOR CONTRIBUTION TO THE CRYSTALLOGRAPHY OF URANIUM MINERALS By Gabrielle Donnay J. D. H. Donnay This report is preliminary and has not been edited or reviewed for conformity with U. S. Geological Survey standards and nomenclature. April 1955 United State s. Geological Survey . Washington, D. C. Prepared by the Geological Survey for the UNITED STATES ATOMIC ENERGY COMMISSION Technical Information Service, Oak Ridge, Tennessee 33376 UNCLASSIFIED The Atomic Energy Commission makes no representation or warranty as to the accuracy or usefulness of the Information or statements contained in this report, or that the use of any Information, apparatus, method or process disclosed In this report may not Infringe privately-owned rights. The Commission assumes no liability with respect to the use of, or for damages resulting from the use of, any Information, apparatus, method or process disclosed In this report. This report has been reproduced directly from the best available copy. Printed in USA, Price 30 cents. Available from the Office of Technical Services, Department of Commerce, Wash­ ington 25, D. C. UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY CONTRIBUTION TO THE CRYSTALLOGRAPHY OF URANIUM MINERALS* By GabrieUe Donnay and J. D. H. Donnay April 1955 Trace Elements Investigations Report 507 *This report concerns vork done partly on "behalf of the Division of Raw Materials of the U. -S. Atomic Energy Commission. CONTENTS Page Abstract ..»..•. »...«..... D o..».«o.<»..o.«-...*...«-*o.. ..••«.. •••.. **• IntrOdUCtiOn »o»o«o»»oooooo»ooooooooco»ooo.oo.ooo. oooo.ooo... 5 An integrating precession technique ooooo.ooo..oo.
    [Show full text]
  • REVISION 2 Thermodynamic Investigation of Uranyl Vanadate
    1 REVISION 2 2 Thermodynamic investigation of uranyl vanadate minerals: implications for structural 3 stability 1* 1 1 1 4 TYLER L. SPANO , EWA A. DZIK , MELIKA SHARIFIRONIZI , MEGAN K. DUSTIN , MADISON 1 1,2 5 TURNER , PETER C. BURNS 6 1Department of Civil and Environmental Engineering and Earth Sciences, University of Notre 7 Dame, Notre Dame, Indiana 46556 8 2Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 9 46556 10 11 ABSTRACT 12 Understanding the crystal chemistry, materials properties, and thermodynamics of uranyl 13 minerals and their synthetic analogues is an essential step for predicting and controlling the long 14 term environmental behavior of uranium. Uranyl vanadate minerals are relatively insoluble and 15 widely disseminated within U ore deposits and mine and mill tailings. Pure uranyl vanadate 16 mineral analogues were synthesized for investigation using high-temperature drop solution 17 calorimetry. Calculated standard-state enthalpies of formation were found to be -4928.52 ± 18 13.90, -5748.81 ± 13.59, and -6402.88 ± 21.01, kJ/mol for carnotite, curienite, and francevillite 19 respectively. Enthalpies of formation from binary oxides for uranyl vanadate minerals exhibit a 20 positive linear correlation as a function of the acidity of oxides. Normalized charge deficiency 21 per anion (NCDA) is presented to relate bonding requirements of the structural units and 22 interstitial complexes. An exponential correlation was observed between NCDA and energetic 23 stability (enthalpy of formation from binary oxides) for the studied minerals. Additionally, 24 NCDA and oxide acidity exhibit an exponential correlation where decreasing oxide acidity 1 25 results in an exponential decrease in NCDA.
    [Show full text]
  • Crystal Chemistry of Carnotite in Abandoned Mine Wastes
    minerals Article Crystal Chemistry of Carnotite in Abandoned Mine Wastes Sumant Avasarala 1,* , Adrian J. Brearley 2, Michael Spilde 2, Eric Peterson 2, Ying-Bing Jiang 2,3, Angelica Benavidez 3,4 and José M. Cerrato 5 1 Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37916, USA 2 Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA; [email protected] (A.J.B.); [email protected] (M.S.); [email protected] (E.P.); [email protected] (Y.-B.J.) 3 Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM 87131, USA; [email protected] 4 Department of Chemical and Biological Engineering, University of New Mexico, MSC 01 1120, Albuquerque, NM 87131, USA 5 Department of Civil, Construction & Engineering, MSC01 1070, Center for Water and the Environment, University of New Mexico, Albuquerque, NM 87131, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-248-978-8264 Received: 8 September 2020; Accepted: 30 September 2020; Published: 4 October 2020 Abstract: The crystal chemistry of carnotite (prototype formula: K (UO ) (VO ) 3H O) occurring 2 2 2 4 2· 2 in mine wastes collected from Northeastern Arizona was investigated by integrating spectroscopy, electron microscopy, and x-ray diffraction analyses. Raman spectroscopy confirms that the uranyl vanadate phase present in the mine waste is carnotite, rather than the rarer polymorph vandermeerscheite. X-ray diffraction patterns of the carnotite occurring in these mine wastes are in agreement with those reported in the literature for a synthetic analog. Carbon detected in this carnotite was identified as organic carbon inclusions using transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) analyses.
    [Show full text]
  • Uranium Deposits
    IAEA-TECDOC-322 SURFICIAL URANIUM DEPOSITS REPORT OF THE WORKING GROUP ON URANIUM GEOLOGY ORGANIZEE TH Y DB INTERNATIONAL ATOMIC ENERGY AGENCY TECHNICAA L DOCUMENT ISSUEE TH Y DB INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1984 SURFICIAL URANIUM DEPOSITS, IAEA, VIENNA, 1984 IAEA-TECDOC-322 Printed by the IAEA in Austria December 1984 FOREWORD greae Th t surg f intereso e exploration i t r uraniunfo m deposits ove lase th rt decad addes eha d significantlo yt r knowledgou f uraniueo m naturgeologe th d f uraniueo yan m deposits. informatioMuce th f ho n developey db government and industry programmes is not widely available, and in many cases has not been systematically co- ordinated, organized and prepared for publication. With the current cut-back in uranium exploration and research, therreaa s i le danger tha t e knowledgmucth f ho e gained willose b l t and, wit anticipatee hth d resurgence of interest in the future, will again have to be developed, with a consequent loss of time, money and attempn efforta n I o gathe.t t mose th r t important informatio typee th f uraniusn o n o m deposits seriea , f so reports are being prepared, each covering a specific type of deposit. These reports are a product of the Agency's Working Grou n Uraniupo m Geology. This group, whic bees hha n active since 1970, gather exchanged san s information on key issues of uranium geology and coordinates investigations on important geological questions. The project Workine th f so g Grou Uraniun po m Geologprojece th d ytan leaders are: Sedimentary Basin Sandstond san Warre— e Typn eFinc Deposith s Uranium Deposit Proterozoin si c Quartz-Pebble Conglomerate - Desmons d Pretorius Vein Type Uranium Deposits — Helmut Fuchs Proterozoic Unconformit Stratd yan a Bound Uranium Deposit Joh— sn Ferguson Surf icial Deposits — Dennis Toens The success of the projects has been heavily dependent on the dedication and efforts of the project leaders and their organizations.
    [Show full text]
  • Carnotite K2(UO2)2(V2O8) • 1−3H2O C 2001-2005 Mineral Data Publishing, Version 1
    Carnotite K2(UO2)2(V2O8) • 1−3H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Rarely in crystals, with a diamond-shaped outline, to 2 mm, flattened on {001}; typically in fine aggregates or powdery; disseminated, compact massive. Twinning: On {001} as both twin and composition plane. Physical Properties: Cleavage: Perfect on {001}, micaceous. Hardness = Soft. D(meas.) = 4.70 D(calc.) = 4.91 Radioactive. Optical Properties: Semitransparent. Color: Bright yellow to lemon-yellow, may be greenish yellow. Streak: Strontian-yellow. Luster: Dull, earthy; silky when crystalline. Optical Class: Biaxial (–). Pleochroism: X = nearly colorless to pale grayish yellow; Y = Z = canary-yellow to lemon-yellow. Orientation: X = c; Y = b; Z ∧ a ' 14◦. Dispersion: r< v. α = 1.750 β = 1.925 γ = 1.950 2V(meas.) = 40◦–50◦ Cell Data: Space Group: P 21/a (anhydrous synthetic). a = 10.47(2) b = 8.41(1) c = 6.91(1) β = 103◦50(5)0 Z=2 X-ray Powder Pattern: Olary, Australia. 6.56 (10), 3.12 (7), 3.53 (5), 4.25 (3), 3.25 (3), 2.156 (3), 2.571 (2) Chemistry: (1) (2) (1) (2) UO3 62.26 63.41 CaO 0.66 SO2 0.26 Na2O 0.16 V2O5 20.57 20.16 K2O 10.00 10.44 Fe2O3 0.55 H2O 4.90 5.99 CuO 0.07 insol. 0.04 MgO 0.30 Total 99.77 100.00 • (1) Temple Mountain, Utah, USA. (2) K2(UO2)2(V2O8) 3H2O. Occurrence: An important ore mineral of uranium, typically in paleochannels in sandstone Colorado Plateau-type U–V deposits, found near fossil carbonaceous matter, and in calcretes and near playas; an alteration product of uraninite, montroseite, or davidite.
    [Show full text]