minerals Article Crystal Chemistry of Carnotite in Abandoned Mine Wastes Sumant Avasarala 1,* , Adrian J. Brearley 2, Michael Spilde 2, Eric Peterson 2, Ying-Bing Jiang 2,3, Angelica Benavidez 3,4 and José M. Cerrato 5 1 Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37916, USA 2 Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA;
[email protected] (A.J.B.);
[email protected] (M.S.);
[email protected] (E.P.);
[email protected] (Y.-B.J.) 3 Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM 87131, USA;
[email protected] 4 Department of Chemical and Biological Engineering, University of New Mexico, MSC 01 1120, Albuquerque, NM 87131, USA 5 Department of Civil, Construction & Engineering, MSC01 1070, Center for Water and the Environment, University of New Mexico, Albuquerque, NM 87131, USA;
[email protected] * Correspondence:
[email protected]; Tel.: +1-248-978-8264 Received: 8 September 2020; Accepted: 30 September 2020; Published: 4 October 2020 Abstract: The crystal chemistry of carnotite (prototype formula: K (UO ) (VO ) 3H O) occurring 2 2 2 4 2· 2 in mine wastes collected from Northeastern Arizona was investigated by integrating spectroscopy, electron microscopy, and x-ray diffraction analyses. Raman spectroscopy confirms that the uranyl vanadate phase present in the mine waste is carnotite, rather than the rarer polymorph vandermeerscheite. X-ray diffraction patterns of the carnotite occurring in these mine wastes are in agreement with those reported in the literature for a synthetic analog. Carbon detected in this carnotite was identified as organic carbon inclusions using transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) analyses.