Towards an Arrow-Native Storage System

Total Page:16

File Type:pdf, Size:1020Kb

Towards an Arrow-Native Storage System Towards an Arrow-native Storage System Jayjeet Chakraborty Ivo Jimenez Sebastiaan Alvarez UC Santa Cruz UC Santa Cruz Rodriguez Santa Cruz, California, USA Santa Cruz, California, USA Leiden University [email protected] [email protected] Leiden, Netherlands [email protected] Alexandru Uta Jeff LeFevre Carlos Maltzahn Leiden University UC Santa Cruz UC Santa Cruz Leiden, Netherlands Santa Cruz, California, USA Santa Cruz, California, USA [email protected] [email protected] [email protected] ABSTRACT access libraries can evolve independently from storage sys- With the ever-increasing dataset sizes, several file formats tems while leveraging the scale-out and availability proper- like Parquet, ORC, and Avro have been developed to store ties of distributed storage systems. We present one example data efficiently and to save network and interconnect band- implementation of our design paradigm using Ceph, Apache width at the price of additional CPU utilization. However, Arrow, and Parquet. We provide a brief performance evalua- with the advent of networks supporting 25-100 Gb/s and tion of our implementation and discuss key results. storage devices delivering 1, 000, 000 reqs/sec the CPU has become the bottleneck, trying to keep up feeding data in and out of these fast devices. The result is that data access Application Data Access Libraries libraries executed on single clients are often CPU-bound extension and cannot utilize the scale-out benefits of distributed stor- age systems. One attractive solution to this problem is to POSIX Interface DOAL method offload data-reducing processing and filtering tasks tothe Direct Object Access Layer (DOAL) storage layer. However, modifying legacy storage systems to support compute offloading is often tedious and requires ex- tensive understanding of the internals. Previous approaches re-implemented functionality of data processing frameworks extension and access library for a particular storage system, a dupli- Data Access Libraries cation of effort that might have to be repeated for different storage systems. Object Store In this paper, we introduce a new design paradigm that allows extending programmable object storage systems to Figure 1: High-Level Design and Architecture. embed existing, widely used data processing frameworks and access libraries into the storage layer with minimal mod- ACM Reference Format: ifications. In this approach data processing frameworks and arXiv:2105.09894v2 [cs.DC] 21 May 2021 Jayjeet Chakraborty, Ivo Jimenez, Sebastiaan Alvarez Rodriguez, Permission to make digital or hard copies of all or part of this work for Alexandru Uta, Jeff LeFevre, and Carlos Maltzahn. 2021. Towards personal or classroom use is granted without fee provided that copies are not an Arrow-native Storage System. In Proceedings of The 13th ACM made or distributed for profit or commercial advantage and that copies bear Workshop on Hot Topics in Storage and File Systems (HotStorage’21). this notice and the full citation on the first page. Copyrights for components ACM, New York, NY, USA, 7 pages. https://doi.org/10.475/1234.5678 of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to 1 INTRODUCTION redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]. Over the last decade, a variety of distributed data process- HotStorage’21, July 27-28, 2021, Virtual ing frameworks like Spark [39] and Hadoop [33] have come © 2021 Association for Computing Machinery. into existence. These frameworks were built to efficiently ACM ISBN 123-4567-24-567/08/06...$15.00 https://doi.org/10.475/1234.5678 HotStorage’21, July 27-28, 2021, Virtual J. Chakraborty et al. query vast quantities of semi-structured data and get in- on the client and storage layers allow an application to exe- sights quickly. Unlike standard relational database manage- cute access library operations either on the client or via the ment systems (RDBMS) such as MySQL [2], which are op- direct object access layer, in the storage server. timized to manage both data storage and processing, these We implement one instantiation of our design paradigm systems were designed to read data from a wide variety of using RADOS [32] as the object-storage backend, CephFS [9] data sources, including those in the cloud like S3 [4]. These as the POSIX layer, Apache Arrow [7, 29] as the data access systems depend on different file formats like Parquet [1], library, and Parquet as the file format. We evaluate the perfor- Avro [5], and ORC [6] for efficiently storing and accessing mance of our implementation by varying parameters such as data. Since storage devices have been the primary bottleneck cluster size and parallelism and measure metrics like query for data processing systems for a long time, the main focus latency and CPU utilization. The evaluations show that our of these file formats has been to store data efficiently ina implementation scales almost linearly by offloading CPU binary format and reduce the amount of disk I/O required usage for common data processing tasks to the storage layer, to fetch the data. However, with recent advancements in freeing the client for other processing tasks. storage devices with NVMe [37] drives and network devices In summary, our primary contributions are as follows: with Infiniband networks [35], the bottleneck has shifted • A design paradigm that allows extending programmable from the storage devices to the client machine’s CPUs, ren- storage systems with the ability to offload CPU-bound dering the notion of "A fast CPU and slow disk" invalid as tasks like dataset scanning to the storage layer using shown by Trivedi et al. [30]. The serialized and compressed plugin-based extension mechanisms and widely-used data nature of these file formats makes reading them CPU bound access libraries while keeping the implementation over- in systems with high-speed network and storage devices, head minimal. resulting in severely reduced scalability. • A brief analysis of the performance gained by offloading An attractive solution to this problem is to offload any Parquet dataset scanning to the storage nodes. We demon- computation to the storage layer to achieve scalability, faster strate that offloading dataset scanning operations tothe queries, and less network traffic. Several popular distributed storage layer results in faster queries and near-linear scal- data processing systems have explored this approach, e.g. ability. IBM Netazza [27], Oracle Exadata [24], Redshift [16], and PolarDB [11]. Most of these systems are built following a 2 DESIGN AND IMPLEMENTATION clean-slate approach and use specialized and costly hard- In this section, we discuss our design paradigm, the moti- ware, such as Smart SSDs [14] and FPGAs [34] for table vation behind it, and provide an in-depth discussion of the scanning. Building systems like these requires in-depth un- internals of our implementation. Additionally, we discuss derstanding and expertise in building database systems. Also, two alternate file layout choices for efficiently storing and modifying existing systems like MariaDB [25], as in the case querying Parquet files in Ceph. of YourSQL [19], requires modifying code that is hardened over the years which may result in performance, security, 2.1 Design Paradigm and reliability issues. A possible way to mitigate these is- One of the most important aspects of our design is that sues is to have programmable storage systems with low-level it allows building in-storage data processing systems with extension mechanisms that allow implementing application- minimal implementation effort. Our design allows extending specific data manipulation and access in their I/O path. Cus- the client and storage layers with widely-used data access tomizing storage systems via plugins results in minimal im- libraries requiring minimal modifications. We achieve this plementation overhead and increases the maintainability of by (1) creating a file system shim in the object storage layer the software. so that access libraries embedded in the storage layer can Programmable object-storage systems like Ceph [31], continue to operate on files, (2) mapping client requests-to- Swift [22], and DAOS [20] often provide a POSIX filesys- be-offloaded directly to objects using file system striping tem interface for reading and writing files which are mostly metadata, and (3) mapping files to logically self-contained built on top of direct object access libraries like “librados” fragments by using standard file system striping. As shown in Ceph and “libdaos” in DAOS. Being programmable, these in Figure 2, We developed one instantiation of our design systems provide plugin-based extension mechanisms that paradigm using Ceph as the storage system, Apache Arrow allow direct access and manipulation of objects within the as the data access library, and Parquet as the file format. storage layer. We leverage these features of programmable We expose our implementation via the Arrow Dataset API storage systems and develop a new design paradigm that by creating a new file format called RADOS Parquet that allows the embedding of widely-used data access libraries inside the storage layer. As shown in Figure 1, the extensions Towards an Arrow-native Storage System HotStorage’21, July 27-28, 2021, Virtual Dataframe API Dataset API Analytics Functions Data Index extension Query Engine Object Object Arrow API Ceph POSIX Interface FileFragment Context Embedded Librados API Access Library RandomAccessObject In-Memory ObjectClass R/W Execute Interface Query Chunk Store K/V Store Store Object Storage Device Object Figure 2: Architecture of the implementation that extends CephFS to allow invoking methods for processing Parquet files inside Ceph OSDs using Arrow libraries. inherits from the Parquet file format in Arrow. Next, we scanning datasets of different formats in a unified manner. discuss the internals of our implementation in detail. Since Parquet is the de-facto file format of choice in data processing systems, we use it as a baseline for our implemen- 2.2 An Example Implementation tation.
Recommended publications
  • Quick Install for AWS EMR
    Quick Install for AWS EMR Version: 6.8 Doc Build Date: 01/21/2020 Copyright © Trifacta Inc. 2020 - All Rights Reserved. CONFIDENTIAL These materials (the “Documentation”) are the confidential and proprietary information of Trifacta Inc. and may not be reproduced, modified, or distributed without the prior written permission of Trifacta Inc. EXCEPT AS OTHERWISE PROVIDED IN AN EXPRESS WRITTEN AGREEMENT, TRIFACTA INC. PROVIDES THIS DOCUMENTATION AS-IS AND WITHOUT WARRANTY AND TRIFACTA INC. DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES TO THE EXTENT PERMITTED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE AND UNDER NO CIRCUMSTANCES WILL TRIFACTA INC. BE LIABLE FOR ANY AMOUNT GREATER THAN ONE HUNDRED DOLLARS ($100) BASED ON ANY USE OF THE DOCUMENTATION. For third-party license information, please select About Trifacta from the Help menu. 1. Release Notes . 4 1.1 Changes to System Behavior . 4 1.1.1 Changes to the Language . 4 1.1.2 Changes to the APIs . 18 1.1.3 Changes to Configuration 23 1.1.4 Changes to the Object Model . 26 1.2 Release Notes 6.8 . 30 1.3 Release Notes 6.4 . 36 1.4 Release Notes 6.0 . 42 1.5 Release Notes 5.1 . 49 2. Quick Start 55 2.1 Install from AWS Marketplace with EMR . 55 2.2 Upgrade for AWS Marketplace with EMR . 62 3. Configure 62 3.1 Configure for AWS . 62 3.1.1 Configure for EC2 Role-Based Authentication . 68 3.1.2 Enable S3 Access . 70 3.1.2.1 Create Redshift Connections 81 3.1.3 Configure for EMR .
    [Show full text]
  • Delft University of Technology Arrowsam In-Memory Genomics
    Delft University of Technology ArrowSAM In-Memory Genomics Data Processing Using Apache Arrow Ahmad, Tanveer; Ahmed, Nauman; Peltenburg, Johan; Al-Ars, Zaid DOI 10.1109/ICCAIS48893.2020.9096725 Publication date 2020 Document Version Accepted author manuscript Published in 2020 3rd International Conference on Computer Applications & Information Security (ICCAIS) Citation (APA) Ahmad, T., Ahmed, N., Peltenburg, J., & Al-Ars, Z. (2020). ArrowSAM: In-Memory Genomics Data Processing Using Apache Arrow. In 2020 3rd International Conference on Computer Applications & Information Security (ICCAIS): Proceedings (pp. 1-6). [9096725] IEEE . https://doi.org/10.1109/ICCAIS48893.2020.9096725 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    [Show full text]
  • The Platform Inside and out Release 0.8
    The Platform Inside and Out Release 0.8 Joshua Patterson – GM, Data Science RAPIDS End-to-End Accelerated GPU Data Science Data Preparation Model Training Visualization Dask cuDF cuIO cuML cuGraph PyTorch Chainer MxNet cuXfilter <> pyViz Analytics Machine Learning Graph Analytics Deep Learning Visualization GPU Memory 2 Data Processing Evolution Faster data access, less data movement Hadoop Processing, Reading from disk HDFS HDFS HDFS HDFS HDFS Read Query Write Read ETL Write Read ML Train Spark In-Memory Processing 25-100x Improvement Less code HDFS Language flexible Read Query ETL ML Train Primarily In-Memory Traditional GPU Processing 5-10x Improvement More code HDFS GPU CPU GPU CPU GPU ML Language rigid Query ETL Read Read Write Read Write Read Train Substantially on GPU 3 Data Movement and Transformation The bane of productivity and performance APP B Read Data APP B GPU APP B Copy & Convert Data CPU GPU Copy & Convert Copy & Convert APP A GPU Data APP A Load Data APP A 4 Data Movement and Transformation What if we could keep data on the GPU? APP B Read Data APP B GPU APP B Copy & Convert Data CPU GPU Copy & Convert Copy & Convert APP A GPU Data APP A Load Data APP A 5 Learning from Apache Arrow ● Each system has its own internal memory format ● All systems utilize the same memory format ● 70-80% computation wasted on serialization and deserialization ● No overhead for cross-system communication ● Similar functionality implemented in multiple projects ● Projects can share functionality (eg, Parquet-to-Arrow reader) From Apache Arrow
    [Show full text]
  • Arrow: Integration to 'Apache' 'Arrow'
    Package ‘arrow’ September 5, 2021 Title Integration to 'Apache' 'Arrow' Version 5.0.0.2 Description 'Apache' 'Arrow' <https://arrow.apache.org/> is a cross-language development platform for in-memory data. It specifies a standardized language-independent columnar memory format for flat and hierarchical data, organized for efficient analytic operations on modern hardware. This package provides an interface to the 'Arrow C++' library. Depends R (>= 3.3) License Apache License (>= 2.0) URL https://github.com/apache/arrow/, https://arrow.apache.org/docs/r/ BugReports https://issues.apache.org/jira/projects/ARROW/issues Encoding UTF-8 Language en-US SystemRequirements C++11; for AWS S3 support on Linux, libcurl and openssl (optional) Biarch true Imports assertthat, bit64 (>= 0.9-7), methods, purrr, R6, rlang, stats, tidyselect, utils, vctrs RoxygenNote 7.1.1.9001 VignetteBuilder knitr Suggests decor, distro, dplyr, hms, knitr, lubridate, pkgload, reticulate, rmarkdown, stringi, stringr, testthat, tibble, withr Collate 'arrowExports.R' 'enums.R' 'arrow-package.R' 'type.R' 'array-data.R' 'arrow-datum.R' 'array.R' 'arrow-tabular.R' 'buffer.R' 'chunked-array.R' 'io.R' 'compression.R' 'scalar.R' 'compute.R' 'config.R' 'csv.R' 'dataset.R' 'dataset-factory.R' 'dataset-format.R' 'dataset-partition.R' 'dataset-scan.R' 'dataset-write.R' 'deprecated.R' 'dictionary.R' 'dplyr-arrange.R' 'dplyr-collect.R' 'dplyr-eval.R' 'dplyr-filter.R' 'expression.R' 'dplyr-functions.R' 1 2 R topics documented: 'dplyr-group-by.R' 'dplyr-mutate.R' 'dplyr-select.R' 'dplyr-summarize.R'
    [Show full text]
  • In Reference to RPC: It's Time to Add Distributed Memory
    In Reference to RPC: It’s Time to Add Distributed Memory Stephanie Wang, Benjamin Hindman, Ion Stoica UC Berkeley ACM Reference Format: D (e.g., Apache Spark) F (e.g., Distributed TF) Stephanie Wang, Benjamin Hindman, Ion Stoica. 2021. In Refer- A B C i ii 1 2 3 ence to RPC: It’s Time to Add Distributed Memory. In Workshop RPC E on Hot Topics in Operating Systems (HotOS ’21), May 31-June 2, application 2021, Ann Arbor, MI, USA. ACM, New York, NY, USA, 8 pages. Figure 1: A single “application” actually consists of many https://doi.org/10.1145/3458336.3465302 components and distinct frameworks. With no shared address space, data (squares) must be copied between 1 Introduction different components. RPC has been remarkably successful. Most distributed ap- Load balancer Scheduler + Mem Mgt plications built today use an RPC runtime such as gRPC [3] Executors or Apache Thrift [2]. The key behind RPC’s success is the Servers request simple but powerful semantics of its programming model. client data request cache In particular, RPC has no shared state: arguments and return Distributed object store values are passed by value between processes, meaning that (a) (b) they must be copied into the request or reply. Thus, argu- ments and return values are inherently immutable. These Figure 2: Logical RPC architecture: (a) today, and (b) with a shared address space and automatic memory management. simple semantics facilitate highly efficient and reliable imple- mentations, as no distributed coordination is required, while then return a reference, i.e., some metadata that acts as a remaining useful for a general set of distributed applications.
    [Show full text]
  • Ray: a Distributed Framework for Emerging AI Applications
    Ray: A Distributed Framework for Emerging AI Applications Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica, UC Berkeley https://www.usenix.org/conference/osdi18/presentation/nishihara This paper is included in the Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’18). October 8–10, 2018 • Carlsbad, CA, USA ISBN 978-1-939133-08-3 Open access to the Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation is sponsored by USENIX. Ray: A Distributed Framework for Emerging AI Applications Philipp Moritz,∗ Robert Nishihara,∗ Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, Ion Stoica University of California, Berkeley Abstract and their use in prediction. These frameworks often lever- age specialized hardware (e.g., GPUs and TPUs), with the The next generation of AI applications will continuously goal of reducing training time in a batch setting. Examples interact with the environment and learn from these inter- include TensorFlow [7], MXNet [18], and PyTorch [46]. actions. These applications impose new and demanding The promise of AI is, however, far broader than classi- systems requirements, both in terms of performance and cal supervised learning. Emerging AI applications must flexibility. In this paper, we consider these requirements increasingly operate in dynamic environments, react to and present Ray—a distributed system to address them. changes in the environment, and take sequences of ac- Ray implements a unified interface that can express both tions to accomplish long-term goals [8, 43].
    [Show full text]
  • Zero-Cost, Arrow-Enabled Data Interface for Apache Spark
    Zero-Cost, Arrow-Enabled Data Interface for Apache Spark Sebastiaan Jayjeet Aaron Chu Ivo Jimenez Jeff LeFevre Alvarez Chakraborty UC Santa Cruz UC Santa Cruz UC Santa Cruz Rodriguez UC Santa Cruz [email protected] [email protected] [email protected] Leiden University [email protected] [email protected] Carlos Alexandru Uta Maltzahn Leiden University UC Santa Cruz [email protected] [email protected] ABSTRACT which is a very expensive operation; (2) data processing sys- Distributed data processing ecosystems are widespread and tems require new adapters or readers for each new data type their components are highly specialized, such that efficient to support and for each new system to integrate with. interoperability is urgent. Recently, Apache Arrow was cho- A common example where these two issues occur is the sen by the community to serve as a format mediator, provid- de-facto standard data processing engine, Apache Spark. In ing efficient in-memory data representation. Arrow enables Spark, the common data representation passed between op- efficient data movement between data processing and storage erators is row-based [5]. Connecting Spark to other systems engines, significantly improving interoperability and overall such as MongoDB [8], Azure SQL [7], Snowflake [11], or performance. In this work, we design a new zero-cost data in- data sources such as Parquet [30] or ORC [3], entails build- teroperability layer between Apache Spark and Arrow-based ing connectors and converting data. Although Spark was data sources through the Arrow Dataset API. Our novel data initially designed as a computation engine, this data adapter interface helps separate the computation (Spark) and data ecosystem was necessary to enable new types of workloads.
    [Show full text]
  • ECSEL2017-1-737451 Fitoptivis from the Cloud to the Edge
    Ref. Ares(2019)3751938 - 12/06/2019 ECSEL2017-1-737451 FitOptiVis From the cloud to the edge - smart IntegraTion and OPtimisation Technologies for highly efficient Image and VIdeo processing Systems Deliverable: D5.1 - Components Analysis and Specification Due date of deliverable: (31-5-2019) Actual submission date: (11-06-2019) Start date of Project: 01 June 2018 Duration: 36 months Responsible: Zaid Al-Ars (Delft University of Technology) Revision: draft Dissemination level PU Public Restricted to other programme participants (including the Commission PP Service Restricted to a group specified by the consortium (including the RE Commission Services) Confidential, only for members of the consortium (excluding the CO Commission Services) WP5 D5.1, version 1.0 FitOptiVis ECSEL2017-1-737451 DOCUMENT INFO Author Author Company E-mail Francesca Palumbo UNISS [email protected] Carlo Sau, Tiziana UNICA [email protected]; Fanni, Luigi Raffo [email protected]; [email protected] Zaid Al-Ars TUDelft [email protected] Pablo Chaves SCHN [email protected] David Pampliega [email protected] Pablo Sánchez UC [email protected] Roman Čečil UWB [email protected] Document history Document Date Change version # V0.1 25/01/2019 Added table of content and initial inputs from survey V0.2 07/05/2019 Integrated partner contributions from Feb to Apr V0.3 14/05/2019 Integrated partner contributions till May 14 V0.4 22/05/2019 Integrated partner contributions till Brno meeting V0.5 29/05/2019 Integrated partner contributions till May 29
    [Show full text]
  • Open Source Software Packages
    Hitachi Ops Center 10.5.1 Open Source Software Packages Contact Information: Hitachi Ops Center Project Manager Hitachi Vantara LLC 2535 Augustine Drive Santa Clara, California 95054 Name of package Version License agreement @agoric/babel-parser 7.12.7 The MIT License @angular-builders/custom-webpack 8.0.0-RC.0 The MIT License @angular-devkit/build-angular 0.800.0-rc.2 The MIT License @angular-devkit/build-angular 0.901.12 The MIT License @angular-devkit/core 7.3.8 The MIT License @angular-devkit/schematics 7.3.8 The MIT License @angular/animations 9.1.11 The MIT License @angular/animations 9.1.12 The MIT License @angular/cdk 9.2.4 The MIT License @angular/cdk-experimental 9.2.4 The MIT License @angular/cli 8.0.0 The MIT License @angular/cli 9.1.11 The MIT License @angular/common 9.1.11 The MIT License @angular/common 9.1.12 The MIT License @angular/compiler 9.1.11 The MIT License @angular/compiler 9.1.12 The MIT License @angular/compiler-cli 9.1.12 The MIT License @angular/core 7.2.15 The MIT License @angular/core 9.1.11 The MIT License @angular/core 9.1.12 The MIT License @angular/forms 7.2.15 The MIT License @angular/forms 9.1.0-next.3 The MIT License @angular/forms 9.1.11 The MIT License @angular/forms 9.1.12 The MIT License @angular/language-service 9.1.12 The MIT License @angular/platform-browser 7.2.15 The MIT License @angular/platform-browser 9.1.11 The MIT License @angular/platform-browser 9.1.12 The MIT License @angular/platform-browser-dynamic 7.2.15 The MIT License @angular/platform-browser-dynamic 9.1.11 The MIT License @angular/platform-browser-dynamic
    [Show full text]
  • Enabling Geospatial in Big Data Lakes and Databases with Locationtech Geomesa
    Enabling geospatial in big data lakes and databases with LocationTech GeoMesa ApacheCon@Home 2020 James Hughes James Hughes ● CCRi’s Director of Open Source Programs ● Working in geospatial software on the JVM for the last 8 years ● GeoMesa core committer / product owner ● SFCurve project lead ● JTS committer ● Contributor to GeoTools and GeoServer ● What type? Big Geospatial Data ● What volume? Problem Statement for today: Problem: How do we handle “big” geospatial data? Problem Statement for today: Problem: How do we handle “big” geospatial data? First refinement: What type of data do are we interested in? Vector Raster Point Cloud Problem Statement for today: Problem: How do we handle “big” geospatial data? First refinement: What type of data do are we interested in? Vector Raster Point Cloud Problem Statement for today: Problem: How do we handle “big” vector geospatial data? Second refinement: How much data is “big”? What is an example? GDELT: Global Database of Event, Language, and Tone “The GDELT Event Database records over 300 categories of physical activities around the world, from riots and protests to peace appeals and diplomatic exchanges, georeferenced to the city or mountaintop, across the entire planet dating back to January 1, 1979 and updated every 15 minutes.” ~225-250 million records Problem Statement for today: Problem: How do we handle “big” vector geospatial data? Second refinement: How much data is “big”? What is an example? Open Street Map: OpenStreetMap is a collaborative project to create a free editable map of the world. The geodata underlying the map is considered the primary output of the project.
    [Show full text]
  • Release Notes Date Published: 2020-10-13 Date Modified
    Cloudera Runtime 7.1.4 Release Notes Date published: 2020-10-13 Date modified: https://docs.cloudera.com/ Legal Notice © Cloudera Inc. 2021. All rights reserved. The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property rights. No license under copyright or any other intellectual property right is granted herein. Copyright information for Cloudera software may be found within the documentation accompanying each component in a particular release. Cloudera software includes software from various open source or other third party projects, and may be released under the Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms. Other software included may be released under the terms of alternative open source licenses. Please review the license and notice files accompanying the software for additional licensing information. Please visit the Cloudera software product page for more information on Cloudera software. For more information on Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your specific needs. Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor liability arising from the use of products, except as expressly agreed to in writing by Cloudera. Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered trademarks in the United States and other countries. All other trademarks are the property of their respective owners. Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA, CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH.
    [Show full text]
  • Processingではじめるプログラミング 楽しく、簡単に、Javaベースの言語を学ぶ (I/O)/加藤直樹/ 著 IO編集部/編集/NEOB
    Processingではじめるプログラミング 楽しく、簡単に、Javaベースの言語を学ぶ - ダウ ンロード, PDF オンラインで読む ダウンロード オンラインで読む 概要 「Processing」の開発環境の導入から、「図形を描く」「色を塗る」といった基礎、「お絵かきスケッ チ」「算数教材」な 朝倉書店 (A5) 【2007年10月発売】 ISBNコード 9784254116366. 価格:3,132円(本体:2,900円 +税). 在庫状況:在庫あり(1~2日で出荷). 買い物かごに入れる · 欲しいものリストに追加する. Processingではじめるプログラミング. 楽しく、簡単に、Javaベースの言語を学ぶ I/O books. 加藤直樹. 工学社 (A5) 【2013年02月発売】 ISBNコード 9784777517428. 価格:2,484円(本 体:2,300円+税). 在庫状況:品切れのため入荷お知らせにご登録下さい. 入荷お知らせ希望に 登録 · 欲しいものリストに追加する · 熱力学. 教科書:清水忠昭・菅田一博 『新・ C 言語のススメ -C で始めるプログラミング-』 (サイエンス 社,2006) . また実際にそれらの機能を応用したプログラムの作成を UNIX システム上で実習する。 授業内容・授業計画. 以下の内容について講義と演習を交互に繰り返しながら単元を進めていく。 1. 概要説明・ウォームアップ. 2. 簡単なプログラミング. 3. 変数、代入. 4. 入力処理. 5. 条件分岐. 6. ... また、大学の「微分積分」が同時並行に進められるため、この講座を学ぶことが、予習復習も 兼ねることになる。 授業内容・授業計画. 2017年11月27日 . http://shiffman.net/ Daniel Shiffman - Wikipedia ダニエル・シフマンは ProcessingというJavaベースのグラフィックス開発のプログラミング言語を作っている財団のリード・デベ ロッパーで芸術系の学校の准教授だそうだ。 . 彼はThe Coding Trainというプログラミングを学べる 動画をYouTube上に公開している。 . 初心者でも随分と簡単に画像を操作するプログラムが作れ るので、円などを動かしたり、表を作ったりするのが簡単で初心者でも最初から視覚的なプログラム を作って学ぶことができる。 言語実装の楽しさ、どのように動いているかについてを共有をしたいと考えております。 cafebabepyの cafebabeとはJavaクラスファイルのマジックナンバーです。 pyはPythonのpyです。 JVM上で動く Jythonは公式 . 新しいプログラミング言語の学び方 ~ HTTPサーバーを作って学ぶJava, Scala, Clojure ~. 田所 駿佑 .. 社内新規プロダクトでDDD, CQRSの思想をベースとしたアーキテクチャを 構築し、コマンド(更新系処理)ではSpring Data JPA(Hibernate)を、クエリ(参照系処理)ではjOOQ を採用しました。結果として. 多言語、多通貨、複数会計基準、. マルチカンパニー管理に対応した「A.S.I.A.GP」を現地法人の 業務基盤として利用することで、これまでに把握が. 難しかった海外現地法人の経営状況をリアルタ イムに把握することができます。 製品 / ソリューション説明と特徴: .. を割り当て、作業を管理できま す。また、コメント機能によりチーム内でディスカッションし、内容を履歴として. 残すことができます。ま たメンション機能で特定の担当者に簡単に情報の共有ができます。JIRA
    [Show full text]