Metabolic Flux Regulates Cell Signaling

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic Flux Regulates Cell Signaling Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Metabolism strikes back: metabolic flux regulates cell signaling Christian M. Metallo1 and Matthew G. Vander Heiden2,3,4 1Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; 2Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; 3Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Mammalian cells depend on growth factor signaling to feedback control on signal transduction networks so that take up nutrients; however, coordination of glucose and metabolic activity is coordinated with cell growth and glutamine uptake has been a mystery. In this issue of proliferation. Genes & Development, Wellen and colleagues (pp. In this issue of Genes & Development, Wellen et al. 2784–2799) show that glucose flux through the hexos- (2010) demonstrate that flux through the hexosamine amine biosynthesis pathway regulates growth factor re- biosynthesis pathway coordinates glucose and glutamine ceptor glycosylation and enables glutamine consumption. metabolism by regulating surface expression of growth This mechanism ensures that cells do not engage in ana- factor receptors. Using a cellular system that decouples bolic metabolism when nutrients are limiting, and high- apoptosis from nutrient deprivation, Thompson and col- lights how substrate availability for protein modifications leagues (Wellen et al. 2010) observed that glucose-deprived can modulate cell signaling. hematopoietic cells do not switch to glutamine metabolism despite the presence of the growth factor IL-3 and a plentiful extracellular supply of the amino acid. Interestingly, glu- cose-dependent glutamine uptake is restored in growth Throughout the 20th century, biochemists systemati- factor-replete cells by supplying N-acetylglucosamine cally worked to outline the pathways cells use to capture (GlcNAc). GlcNAc is unable to enter glycolysis or other energy as ATP and transform organic molecules to syn- pathways of central carbon metabolism and is therefore thesize biomass from various substrates. Often working not available to cells as a fuel source. Rather, GlcNAc enzyme by enzyme, these studies provided the foundation supplementation replenishes the supply of precursors nec- for our mechanistic understanding of metabolism, or ‘‘bio- essary for glycosylation of the IL-3 receptor a subunit (IL- chemical networks,’’ in prokaryotes and higher organisms. 3Ra), leading to proper receptor folding and trafficking to More recently, analogous efforts by molecular biologists the cell surface. Thus, GlcNAc-mediated rescue of glu- have elucidated signal transduction pathways, or ‘‘protein cose-deprived cells restores surface expression of IL-3Ra networks,’’ which control a multitude of cellular functions and allows growth factor-dependent signal transduction, related to growth, differentiation, cell death, and metabo- leading to glutamine consumption and cell growth. lism. Recent work has found that many of the same The finding that cells are unable to consume a readily signaling pathways that control growth also influence available supply of extracellular nutrients when glucose cellular metabolism (Kim and Dang 2006). For example, is absent is surprising. The Thompson group (Rathmell receptor-mediated signaling cascades initiated by growth et al. 2000; Lum et al. 2005) has reported previously that factors stimulate nutrient uptake, cell growth, and cell the ability to initiate glucose uptake is a critical function of cycle progression (DeBerardinis et al. 2008). In mammals, growth factor signaling to promote cell survival (Rathmell the two major nutrients taken up to supply carbon and et al. 2000), and that apoptosis-resistant cells survive by nitrogen for cell proliferation are glucose and glutamine. autophagy in the absence of growth factor (Lum et al. Because glucose and glutamine provide biosynthetic pre- 2005). Wellen et al. (2010) show that pools of metabolites cursors through distinct metabolic pathways, their con- involved in central carbon metabolism drop following sumption must be coordinated by cells. Nevertheless, glucose withdrawal. Nevertheless, these cells still require despite a growing understanding of how signaling path- ATP generation to maintain cellular homeostasis irrespec- ways regulate metabolism, much less is known about how tive of their inability to undergo programmed cell death. In flux through specific pathways is ‘‘sensed’’ to provide the absence of glutamine or other amino acid uptake to support bioenergetics, it is likely that these cells generate [Keywords: Metabolism; glucose; glutamine; hexosamine; growth factor ATP by autophagy. This suggests that the signals used by signaling; glycosylation] cells to initiate catabolism of endogenous cellular compo- 4Corresponding author. E-MAIL [email protected]; FAX (617) 253-3189. nents to maintain survival are distinct from those used to Article is online at http://www.genesdev.org/cgi/doi/10.1101/gad.2010510. metabolize nutrients in the extracellular environment. GENES & DEVELOPMENT 24:2717–2722 Ó 2010 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/10; www.genesdev.org 2717 Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Metallo and Vander Heiden These findings also suggest that cells are wired to avoid in excess (Fang et al. 2010). Together, these studies consuming extracellular resources unless all the metabolic demonstrate that cells require both ATP and biosynthetic components are present along with a growth signal to precursors for proper folding and surface expression of support biosynthesis and cell proliferation. growth factor receptors. The failure to effectively trans- Wellen et al. (2010) found that surface expression of the duce cell growth signals when nutrients are limited may IL-3Ra chain was dependent on the availability of UDP- ensure that cells do not activate the cell growth machinery GlcNAc for receptor N-glycosylation (Fig. 1). Production unless adequate substrates are present. of UDP-GlcNAc under standard growth conditions re- Remarkably, cells that are supplemented with GlcNAc quires glucose flux into the hexosamime biosynthesis in the absence of glucose are able to grow by consuming pathway, glutamine availability to supply the nitrogen for glutamine and other amino acids. Under these condi- the amino sugar, and acetyl-coenzyme A (AcCoA) to donate tions, glutamine serves as an anaplerotic substrate to the acetyl moiety. Numerous surface proteins and growth replenish tricarboxylic acid (TCA) cycle intermediates factor receptors are modified by N-linked glycosylation. and drive oxidative ATP generation, provide carbon for Indeed, receptors important for growth regulation—such lipid synthesis, and facilitate leucine uptake. Two key as CTLA-4, GLUT4, IGFR, EGFR, HER2/ErbB2, and observations were made upon GlcNAc-mediated rescue FGFR—are glycosylated, and the extent of glycosylation of IL-3-dependent cell growth. First, glutamine and other influences surface expression as well as cell growth or dif- amino acids did not allow cell division in the absence of ferentiation (Lau et al. 2007; Fang et al. 2010). This glucose. The finding that cells grow but do not divide in suggests that the availability of UDP-GlcNAc for protein the absence of glucose suggests another mechanism is glycosylation is a means by which cells detect glucose present to sense glucose or a downstream metabolite. Do availability. Notably, physiologically relevant changes in cells use unique metabolic checkpoints to advance through glucose concentration increased IL-3Ra surface expression different stages of the cell cycle? Second, glutamine must in a dose-dependent manner, indicating the sensitivity of have the ability to contribute to multiple metabolic path- this feedback regulation to glucose supply. Because gluta- ways in order to mediate cell growth. Through what path- mine and AcCoA are also needed to make UDP-GlcNAc, ways is glutamine preferentially metabolized within cells, glutamine withdrawal or AcCoA limitation may result in and under what physiological conditions is glutamine used decreased growth factor receptor expression via the same as a carbon source to build biomass? mechanism. Indeed, glucose uptake is also dependent on Glutamine enters the cell through amino acid trans- glutamine metabolism, as both glutamine and cell-perme- porters and acts as a critical source of nitrogen for cells. able a-ketoglutarate (aKG) can repress the MondoA tran- The amido-nitrogen of glutamine (rather than the nitro- scription factor, stimulating glucose consumption and cell gen that remains on glutamate) is essential for synthesis proliferation (Kaadige et al. 2009). Another recent study of nucleotides and hexosamines, and glutamine can also identified an energetic checkpoint that only allowed ef- be deaminated by glutaminase to generate free ammonia fective receptor glycosylation and folding when ATP was in cells. Each of these reactions produces glutamate, one Figure 1. Metabolic pathways provide sub- strates for post-translational modifications (PTMs) that influence cell signaling. Growth factor signaling induces uptake of nutrients such as glucose and glutamine that fuel bio- energetic and biosynthetic pathways in cells. In turn, the availability of UDP-GlcNAc gen- erated
Recommended publications
  • In Vivo Metabolism of [1,6-13C2]Glucose Reveals Distinct
    H OH metabolites OH Article 13 In Vivo Metabolism of [1,6- C2]Glucose Reveals Distinct Neuroenergetic Functionality between Mouse Hippocampus and Hypothalamus Antoine Cherix 1,†, Rajesh Sonti 1,‡, Bernard Lanz 1 and Hongxia Lei 2,3,*,§ 1 Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; [email protected] (A.C.); [email protected] (R.S.); bernard.lanz@epfl.ch (B.L.) 2 Animal Imaging and Technology (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland 3 Faculty of Medicine, University of Geneva, CH-1206 Geneva, Switzerland * Correspondence: [email protected] † Current address: Wellcome Centre for Integrative Neuroimaging (WIN), Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK. ‡ Current address: Department of Pharmaceutical analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad- NH 65, Hyderabad 500037, India. § Current address: Wuhan United Imaging Life Science Instruments Ltd., Wuhan 430206, China. Abstract: Glucose is a major energy fuel for the brain, however, less is known about specificities of its metabolism in distinct cerebral areas. Here we examined the regional differences in glucose utilization between the hypothalamus and hippocampus using in vivo indirect 13C magnetic res- 1 13 13 onance spectroscopy ( H-[ C]-MRS) upon infusion of [1,6- C2]glucose. Using a metabolic flux analysis with a 1-compartment mathematical model of brain metabolism, we report that compared to hippocampus, hypothalamus shows higher levels of aerobic glycolysis associated with a marked Citation: Cherix, A.; Sonti, R.; Lanz, gamma-aminobutyric acid-ergic (GABAergic) and astrocytic metabolic dependence.
    [Show full text]
  • Quantitative Analysis of Amino Acid Metabolism in Liver Cancer Links Glutamate Excretion to Nucleotide Synthesis
    Quantitative analysis of amino acid metabolism in liver cancer links glutamate excretion to nucleotide synthesis Avlant Nilssona,1, Jurgen R. Haanstrab,1, Martin Engqvista, Albert Gerdingc,d, Barbara M. Bakkerb,c, Ursula Klingmüllere, Bas Teusinkb, and Jens Nielsena,f,2 aDepartment of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden; bSystems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, NL1081HZ Amsterdam, The Netherlands; cLaboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, NL-9713AV Groningen, The Netherlands dDepartment of Laboratory Medicine, University of Groningen, University Medical Center Groningen, NL-9713AV Groningen, The Netherlands; eDivision of Systems Biology and Signal Transduction, German Cancer Research Center, D-69120 Heidelberg, Germany; and fNovo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, DK2800, Denmark Contributed by Jens Nielsen, March 9, 2020 (sent for review November 4, 2019; reviewed by Eytan Ruppin and Matthew G. Vander Heiden) Many cancer cells consume glutamine at high rates; counterintu- the excretion of lactate, glutamate, alanine, and glycine (5). How- itively, they simultaneously excrete glutamate, the first interme- ever, a full genome-wide modeling approach is required to expand diate in glutamine metabolism. Glutamine consumption has been our knowledge of how metabolism functions beyond the canonical linked to replenishment of tricarboxylic acid cycle (TCA) interme- pathways and, in particular, to understand the intricate effects of diates and synthesis of adenosine triphosphate (ATP), but the metabolic compartmentalization and the interplay between ex- reason for glutamate excretion is unclear. Here, we dynamically change fluxes and synthesis of biomass.
    [Show full text]
  • Extracellular Adenosine Triphosphate and Adenosine in Cancer
    Oncogene (2010) 29, 5346–5358 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 www.nature.com/onc REVIEW Extracellular adenosine triphosphate and adenosine in cancer J Stagg and MJ Smyth Cancer Immunology Program, Sir Donald and Lady Trescowthick Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia Adenosine triphosphate (ATP) is actively released in the mulated the hypothesis of purinergic neurotransmission extracellular environment in response to tissue damage (Burnstock, 1972). Burnstock’s hypothesis that ATP and cellular stress. Through the activation of P2X and could be released by cells to perform intercellular P2Y receptors, extracellular ATP enhances tissue repair, signaling was initially met with skepticism, as it seemed promotes the recruitment of immune phagocytes and unlikely that a molecule that acts as an intracellular dendritic cells, and acts as a co-activator of NLR family, source of energy would also function as an extracellular pyrin domain-containing 3 (NLRP3) inflammasomes. messenger. Nevertheless, Burnstock pursued his work The conversion of extracellular ATP to adenosine, in and, together with Che Su and John Bevan, reported contrast, essentially through the enzymatic activity of the that ATP was also released from sympathetic nerves ecto-nucleotidases CD39 and CD73, acts as a negative- during stimulation (Su et al., 1971). Three decades later, feedback mechanism to prevent excessive immune responses. following the cloning and characterization of ATP and Here we review the effects of extracellular ATP and adenosine adenosine cell surface receptors, purinergic signaling is a on tumorigenesis. First, we summarize the functions of well-established concept and constitutes an expanding extracellular ATP and adenosine in the context of tumor field of research in health and disease, including cancer immunity.
    [Show full text]
  • Nicotinamide Adenine Dinucleotide Is Transported Into Mammalian
    RESEARCH ARTICLE Nicotinamide adenine dinucleotide is transported into mammalian mitochondria Antonio Davila1,2†, Ling Liu3†, Karthikeyani Chellappa1, Philip Redpath4, Eiko Nakamaru-Ogiso5, Lauren M Paolella1, Zhigang Zhang6, Marie E Migaud4,7, Joshua D Rabinowitz3, Joseph A Baur1* 1Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States; 2PARC, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States; 3Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, United States; 4School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom; 5Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States; 6College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; 7Mitchell Cancer Institute, University of South Alabama, Mobile, United States Abstract Mitochondrial NAD levels influence fuel selection, circadian rhythms, and cell survival under stress. It has alternately been argued that NAD in mammalian mitochondria arises from import of cytosolic nicotinamide (NAM), nicotinamide mononucleotide (NMN), or NAD itself. We provide evidence that murine and human mitochondria take up intact NAD. Isolated mitochondria preparations cannot make NAD from NAM, and while NAD is synthesized from NMN, it does not localize to the mitochondrial matrix or effectively support oxidative phosphorylation. Treating cells *For correspondence: with nicotinamide riboside that is isotopically labeled on the nicotinamide and ribose moieties [email protected] results in the appearance of doubly labeled NAD within mitochondria. Analogous experiments with †These authors contributed doubly labeled nicotinic acid riboside (labeling cytosolic NAD without labeling NMN) demonstrate equally to this work that NAD(H) is the imported species.
    [Show full text]
  • Lipid Metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives
    cancers Review Lipid metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives 1, 1, 1 2 1 Laurence Pellerin y, Lorry Carrié y , Carine Dufau , Laurence Nieto , Bruno Ségui , 1,3 1, , 1, , Thierry Levade , Joëlle Riond * z and Nathalie Andrieu-Abadie * z 1 Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, tgrCS 53717, 31037 Toulouse CEDEX 1, France; [email protected] (L.P.); [email protected] (L.C.); [email protected] (C.D.); [email protected] (B.S.); [email protected] (T.L.) 2 Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Toulouse III Paul-Sabatier, UMR 5089, 205 Route de Narbonne, 31400 Toulouse, France; [email protected] 3 Laboratoire de Biochimie Métabolique, CHU Toulouse, 31059 Toulouse, France * Correspondence: [email protected] (J.R.); [email protected] (N.A.-A.); Tel.: +33-582-7416-20 (J.R.) These authors contributed equally to this work. y These authors jointly supervised this work. z Received: 15 September 2020; Accepted: 23 October 2020; Published: 27 October 2020 Simple Summary: Melanoma is a devastating skin cancer characterized by an impressive metabolic plasticity. Melanoma cells are able to adapt to the tumor microenvironment by using a variety of fuels that contribute to tumor growth and progression. In this review, the authors summarize the contribution of the lipid metabolic network in melanoma plasticity and aggressiveness, with a particular attention to specific lipid classes such as glycerophospholipids, sphingolipids, sterols and eicosanoids.
    [Show full text]
  • Metabolic Flux Analysis—Linking Isotope Labeling and Metabolic Fluxes
    H OH metabolites OH Review Metabolic Flux Analysis—Linking Isotope Labeling and Metabolic Fluxes Yujue Wang 1,2, Fredric E. Wondisford 1, Chi Song 3, Teng Zhang 4 and Xiaoyang Su 1,2,* 1 Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; [email protected] (Y.W.); [email protected] (F.E.W.) 2 Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA 3 Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH 43210, USA; [email protected] 4 Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-732-235-5447 Received: 14 September 2020; Accepted: 4 November 2020; Published: 6 November 2020 Abstract: Metabolic flux analysis (MFA) is an increasingly important tool to study metabolism quantitatively. Unlike the concentrations of metabolites, the fluxes, which are the rates at which intracellular metabolites interconvert, are not directly measurable. MFA uses stable isotope labeled tracers to reveal information related to the fluxes. The conceptual idea of MFA is that in tracer experiments the isotope labeling patterns of intracellular metabolites are determined by the fluxes, therefore by measuring the labeling patterns we can infer the fluxes in the network. In this review, we will discuss the basic concept of MFA using a simplified upper glycolysis network as an example. We will show how the fluxes are reflected in the isotope labeling patterns. The central idea we wish to deliver is that under metabolic and isotopic steady-state the labeling pattern of a metabolite is the flux-weighted average of the substrates’ labeling patterns.
    [Show full text]
  • Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor–Host Interaction and Therapeutic Perspectives
    Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor–Host Interaction and Therapeutic Perspectives The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation de Andrade Mello, Paola, Robson Coutinho-Silva, and Luiz Eduardo Baggio Savio. 2017. “Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor–Host Interaction and Therapeutic Perspectives.” Frontiers in Immunology 8 (1): 1526. doi:10.3389/fimmu.2017.01526. http://dx.doi.org/10.3389/ fimmu.2017.01526. Published Version doi:10.3389/fimmu.2017.01526 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:34493041 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA REVIEW published: 14 November 2017 doi: 10.3389/fimmu.2017.01526 Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor–Host Interaction and Therapeutic Perspectives Paola de Andrade Mello1, Robson Coutinho-Silva 2* and Luiz Eduardo Baggio Savio2* 1 Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States, 2Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil Cancer is still one of the world’s most pressing health-care challenges, leading to a high number of deaths worldwide. Immunotherapy is a new developing therapy that Edited by: boosts patient’s immune system to fight cancer by modifying tumor–immune cells Salem Chouaib, interaction in the tumor microenvironment (TME).
    [Show full text]
  • 1 Quantitative Determinants of Aerobic Glycolysis Identify Flux Through the Enzyme 1 GAPDH As a Limiting Step 2 3 Alexander a Sh
    1 Quantitative determinants of aerobic glycolysis identify flux through the enzyme 2 GAPDH as a limiting step 3 4 Alexander A Shestov1*, Xiaojing Liu1*, Zheng Ser1, Ahmad Cluntun2, Yin P Hung3, Lei 5 Huang4, Dongsung Kim2, Anne Le5, Gary Yellen3, John G Albeck6, Jason W 6 Locasale1,2,4** 7 8 1Division of Nutritional Sciences, Cornell University, Ithaca NY 14850 9 2Field of Biochemistry and Molecular Cell Biology, Department of Molecular Biology 10 and Genetics Cornell University, Ithaca NY 14850 11 3Department of Neurobiology, Harvard Medical School, Boston MA 02115 12 4Field of Computational Biology, Department of Biological Statistics and Computational 13 Biology, Cornell University, Ithaca NY 14850 14 5Department of Pathology and Oncology, Johns Hopkins University School of Medicine, 15 Baltimore, MD 21231 16 6Department of Molecular Cell Biology, University of California Davis, Davis CA 95616 17 * Equal contribution 18 ** Correspondence: [email protected] 19 20 Abstract 21 Aerobic glycolysis or the Warburg Effect (WE) is characterized by the increased 22 metabolism of glucose to lactate. It remains unknown what quantitative changes to the 23 activity of metabolism are necessary and sufficient for this phenotype. We developed a 24 computational model of glycolysis and an integrated analysis using metabolic control 25 analysis (MCA), metabolomics data, and statistical simulations. We identified and 26 confirmed a novel mode of regulation specific to aerobic glycolysis where flux through 27 GAPDH, the enzyme separating lower and upper glycolysis, is the rate-limiting step in 28 the pathway and the levels of fructose (1,6) bisphosphate (FBP), are predictive of the rate 29 and control points in glycolysis.
    [Show full text]
  • Cell Signaling and Regulation of Metabolism Objectives
    Cell Signaling and Regulation of Metabolism Objectives By the end of this lecture, students are expected to: • Differentiate different steps in signaling pathways • Describe the second messenger systems • Recognize the function of signaling pathways for • Signal transmission • Amplification • Discuss the role of signaling pathways in regulation and integration of metabolism No cell lives in isolation • Cells communicate with each other • Cells send and receive information (signals) • Information is relayed within cell to produce a response Signaling Process • Recognition of signal – Receptors • Transduction – Change of external signal into intracellular message with amplification and formation of second messenger • Effect – Modification of cell metabolism and function General Signaling Pathway Signaling Cascades Recognition • Performed by receptors • Ligand will produce response only in cells that have receptors for this particular ligand • Each cell has a specific set of receptors Different Responses to the Same Signaling Molecule. (A) Different Cells Different Responses to the Same Signaling Molecule. (B) One Cell but, Different Pathways Hypoglycemia Glucagon secretion Hepatocyte: Glucagon/receptor binding Second messenger: cAMP Response: Enzyme phosphorylation P P Glycogen synthase Glycogen phosphorylase (Inactive form) (Active form) Inhibition of glycogenesis Stimulation of glycogenolysis GTP-Dependant Regulatory Proteins (G-Proteins) G-Proteins: Trimeric membrane proteins (αβγ) G-stimulatory (Gs) and G-inhibitory (Gi) binds to GTP/GDP
    [Show full text]
  • The Regulatory Role of Key Metabolites in the Control of Cell Signaling
    biomolecules Review The Regulatory Role of Key Metabolites in the Control of Cell Signaling Riccardo Milanesi, Paola Coccetti * and Farida Tripodi Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; [email protected] (R.M.); [email protected] (F.T.) * Correspondence: [email protected]; Tel.: +39-02-6448-3521 Received: 8 May 2020; Accepted: 3 June 2020; Published: 5 June 2020 Abstract: Robust biological systems are able to adapt to internal and environmental perturbations. This is ensured by a thick crosstalk between metabolism and signal transduction pathways, through which cell cycle progression, cell metabolism and growth are coordinated. Although several reports describe the control of cell signaling on metabolism (mainly through transcriptional regulation and post-translational modifications), much fewer information is available on the role of metabolism in the regulation of signal transduction. Protein-metabolite interactions (PMIs) result in the modification of the protein activity due to a conformational change associated with the binding of a small molecule. An increasing amount of evidences highlight the role of metabolites of the central metabolism in the control of the activity of key signaling proteins in different eukaryotic systems. Here we review the known PMIs between primary metabolites and proteins, through which metabolism affects signal transduction pathways controlled by the conserved kinases Snf1/AMPK, Ras/PKA and TORC1. Interestingly, PMIs influence also the mitochondrial retrograde response (RTG) and calcium signaling, clearly demonstrating that the range of this phenomenon is not limited to signaling pathways related to metabolism. Keywords: Snf1/AMPK/SnRK1; Ras/PKA; TORC1; RTG; calcium; glucose; glycolysis; TCA; amino acids; protein-metabolite interaction 1.
    [Show full text]
  • Prediction of Metabolic Fluxes by Incorporating Genomic Context And
    Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses Jong Myoung Parka,b, Tae Yong Kima,b, and Sang Yup Leea,b,c,1 aMetabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, Daejeon 305-701, Republic of Korea; bCenter for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 305-701, Republic of Korea; and cDepartment of Bio and Brain Engineering, BioProcess Engineering Research Center and Bioinformatics Research Center, KAIST, Daejeon 305-701, Republic of Korea Edited* by Bernhard Ø. Palsson, University of California at San Diego, La Jolla, CA, and accepted by the Editorial Board July 6, 2010 (received for review March 26, 2010) Flux balance analysis (FBA) of a genome-scale metabolic model However, this approach still works with a flux solution space that allows calculation of intracellular fluxes by optimizing an objective is too large compared with the biologically feasible flux solution function, such as maximization of cell growth, under given con- space of a real organism (15–17). Thus, additional information straints, and has found numerous applications in the field of systems and procedures, such as providing more constraints, are needed to biology and biotechnology. Due to the underdetermined nature of narrow down the set of candidate solutions. the system, however, it has limitations such as inaccurate prediction One example of a suitable constraint that can be applied is the of fluxes and existence of multiple solutions for an optimal objective experimentally measured metabolic flux data obtained from 13C- value. Here, we report a strategy for accurate prediction of meta- based flux analysis and fermentation data (18–21).
    [Show full text]
  • Glucose Flux in Relation to Energy Expenditure in Malnourished Patients with and Without Cancer During Periods of Fasting and Feeding1
    [CANCER RESEARCH 44, 1718-1724, April 1984] Glucose Flux in Relation to Energy Expenditure in Malnourished Patients with and without Cancer during Periods of Fasting and Feeding1 Elisabeth Edén,Staffar) Edström,Klas Bennegárd, Tore Scherstén,and Kent Lundholm2 Surgical Metabolic Research Laboratory, Department of Surgery I [T. S., K. L], Anaesthasiology l-ll [E. E., K. B.] and Otolaryngology [S. £.],Sahlgrenska Hospital, University of Gothenburg, Gothenburg, Sweden ABSTRACT fuel economy in progressive neoplasia (12). Our recent evidence suggests that elevated lactate turnover in cancer patients may Glucose dynamics, energy metabolism, and nitrogen balance be counteracted by depressed recycling of carbon in the glucose- were studied in eight malnourished cancer patients and seven alanine cycle (2), supported by the findings that a decreased malnourished patients without cancer. Glucose flux was mea alanine release occurred in combination with a diminished glu sured by single injection of [6-3H]glucose and [U-14C]glucose. cose uptake across the leg in cancer patients after an overnight Energy expenditure was measured by indirect calorimetry. Each fast (2), and that intrahepatic cycling of glucose carbon was patient was studied after an overnight fast and during constant decreased in sarcoma-bearing mice (21). Thus, the evidence gastric infusion of a formula diet. points to the possibility that net recycling of glucose in cancer Cancer patients had elevated glucose flux when fasting, cor cachexia may not influence the overall fuel economy, even if the responding to 42% of their spontaneous daily intake of glucose. Cori cycle activity is highly elevated (16). Instead, it is rather the At least one-half of the elevated flux in cancer patients compared sum of whole-body gluconeogenesis and glycogenolysis, mea with controls was due to increased recycling of glucose carbon sured as glucose turnover, that may be of quantitative impor after an overnight fast.
    [Show full text]