Extracellular Adenosine Triphosphate and Adenosine in Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Extracellular Adenosine Triphosphate and Adenosine in Cancer Oncogene (2010) 29, 5346–5358 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 www.nature.com/onc REVIEW Extracellular adenosine triphosphate and adenosine in cancer J Stagg and MJ Smyth Cancer Immunology Program, Sir Donald and Lady Trescowthick Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia Adenosine triphosphate (ATP) is actively released in the mulated the hypothesis of purinergic neurotransmission extracellular environment in response to tissue damage (Burnstock, 1972). Burnstock’s hypothesis that ATP and cellular stress. Through the activation of P2X and could be released by cells to perform intercellular P2Y receptors, extracellular ATP enhances tissue repair, signaling was initially met with skepticism, as it seemed promotes the recruitment of immune phagocytes and unlikely that a molecule that acts as an intracellular dendritic cells, and acts as a co-activator of NLR family, source of energy would also function as an extracellular pyrin domain-containing 3 (NLRP3) inflammasomes. messenger. Nevertheless, Burnstock pursued his work The conversion of extracellular ATP to adenosine, in and, together with Che Su and John Bevan, reported contrast, essentially through the enzymatic activity of the that ATP was also released from sympathetic nerves ecto-nucleotidases CD39 and CD73, acts as a negative- during stimulation (Su et al., 1971). Three decades later, feedback mechanism to prevent excessive immune responses. following the cloning and characterization of ATP and Here we review the effects of extracellular ATP and adenosine adenosine cell surface receptors, purinergic signaling is a on tumorigenesis. First, we summarize the functions of well-established concept and constitutes an expanding extracellular ATP and adenosine in the context of tumor field of research in health and disease, including cancer immunity. Second, we present an overview of the immuno- (Burnstock, 2007). Although early studies focused on suppressive and pro-angiogenic effects of extracellular the role of purinergic receptors in neurotransmission, it adenosine. Third, we present experimental evidence that soon became obvious that extracellular ATP and extracellular ATP and adenosine receptors are expressed adenosine have important roles in another system by tumor cells and enhance tumor growth. Finally, we discuss requiring efficient cell-to-cell communication: the recent studies, including our own work, which suggest that immune system. Over the last decade, there has been therapeutic approaches that promote ATP-mediated activa- increasing interest not only in the effects of extracellular tion of inflammasomes, or inhibit the accumulation of tumor- purines and pyrimidines on inflammatory responses, derived extracellular adenosine, may constitute effective new but also on general biological pathways, such as cell means to induce anticancer activity. survival, proliferation, differentiation and motility. Oncogene (2010) 29, 5346–5358; doi:10.1038/onc.2010.292; It is becoming increasingly clear that the release of published online 26 July 2010 extracellular purines and pyrimidines represents a ubiquitous means of intercellular communication Keywords: immunosuppression; adenosine; used by different cell types, involved in various ecto-nucleotidases; inflammasome; ATP biological processes and conserved throughout evolu- tion, as evidenced by the discovery of ATP receptors in invertebrates (Fountain et al., 2007) and plants (Kim et al., 2006). Introduction Extracellular ATP in immunity For many scientists in the 1960s, cells could not possibly release a molecule as fundamental as adenosine tripho- ATP receptors sphate (ATP). Owing to its established role in the Krebs In 1978, Burnstock proposed two types of purinergic cycle, there was considerable skepticism to the notion receptors: P1 receptors selective for adenosine and that ATP—and purines in general—could exert extra- P2 receptors selective for ATP and ADP. Some P2 cellular function. In 1970, Burnstock et al. described the receptors additionally bind UTP or UDP (Burnstock, release of extracellular ATP as a transmitter substance by 2006). In 1985, a pharmacological approach was non-adrenergic inhibitory nerves, and later in 1972, for- proposed to distinguish between two types of P2 receptors: ionotropic P2X and metabotropic P2Y Correspondence: Dr J Stagg or Professor MJ Smyth, Cancer receptors. Currently, four subtypes of P1 receptors Immunology Program, Sir Donald and Lady Trescowthick Labora- (A1, A2A, A2B and A3), seven subtypes of P2X tories, Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett receptors and eight subtypes of P2Y receptors have Street, East Melbourne, Victoria 8006, Australia. E-mails: [email protected] or [email protected] been identified (Figure 1). P2Y receptors are subdivided Received 12 May 2010; revised 11 June 2010; accepted 13 June 2010; into five Gq/G11-coupled subtypes (P2Y1, P2Y2, P2Y4, published online 26 July 2010 P2Y6 and P2Y11) and three Gi/o-coupled subtypes Extracellular adenosine triphosphate and adenosine J Stagg and MJ Smyth 5347 Figure 1 Adenosine triphosphate (ATP) and adenosine receptor signaling. Extracellular ATP binds G-protein-coupled P2Y and trimeric ion channel P2X receptors. P2Y receptors are subdivided into Gq/G11-coupled subtypes that activate the phospholipase C and inositol triphosphate pathways, and Gi/o-coupled subtypes that inhibit adenylyl cyclase. P2X7 is an atypical ATP receptor, forming ion channels at low concentrations of ATP, activating NLRP3 inflammasomes by K þ efflux and the recruitment of the pannexin-1 hemichannel, and inducing cell death at high concentrations of ATP. Extracellular adenosine binds Gi/o-coupled A1 and A3 receptors and Gs-coupled A2A and A2B receptors. In contrast to A1 and A3 receptors, A2A and A2B receptors increase intracellular cyclic AMP levels. (P2Y12, P2Y13 and P2Y14). Gq/G11-coupled P2Y recep- 2006) and the processing and secretion of the cytokines tors generally activate the phospholipase C and inositol interleukin-1b (IL-1b) and IL-18, important activators triphosphate pathways, whereas Gi/o-coupled P2Y of innate and adaptive immune responses. The NLRP3 receptors generally inhibit adenylyl cyclase and mod- inflammasome is the best-characterized inflammasome ulate ion channels (Abbracchio et al., 2009). and belongs to the intracellular NOD-like receptor In contrast to G-protein-coupled P2Y receptors, P2X (NLR) family. Together with Toll-like receptors (TLRs) receptors are trimeric cationic channels permeable to and C-type lectins, NLRs scan the extracellular and Na þ ,Kþ and Ca2 þ upon activation. Six homomeric intracellular environment for pathogen-associated mo- (P2X1À5 and P2X7) and six heteromeric (P2X1/2, P2X1/4, lecular patterns and host-derived danger-associated P2X1/5, P2X2/3, P2X2/6 and P2X4/6) receptors have been molecular patterns to alert the immune system (Schro- described. The homomeric P2X7 receptor is an atypical der and Tschopp, 2010). The NLRP3 inflammasome is purinergic receptor with a longer carboxy-terminal activated in response to various danger signals, such as tail and a number of polymorphisms or spliced variants co-activation of P2X7 and TLRs, increased cytosolic (Gunosewoyo et al., 2007; Wu et al., 2009). The DNA levels, monosodium urate crystals, fibrillar activation of P2X7 receptors is highly regulated by amyloid-b peptide and high extracellular glucose levels extracellular levels of ATP. Whereas low ATP concen- (Schroder and Tschopp, 2010). The NLRP3 inflamma- trations activate P2X7 ion channels to become perme- some can also be activated independently of TLR able to small ions, high ATP concentrations result in signaling (Kanneganti et al., 2007). Schroder and pore formation permeable to molecules as large as Tschopp (2010) recently proposed that a unifying 900 kDa, which ultimately causes cell death (Khakh and element in NLRP3 activation might be the generation North, 2006). of reactive oxygen species. The activation of P2X7 receptors and the recruitment of the pannexin-1 membrane pore may also allow NLRP3 agonists to Extracellular ATP and the NLR family, pyrin enter the cells and directly activate the inflammasome domain-containing 3 inflammasome (Kanneganti et al., 2007). In the context of inflammation, the release of ATP by activated monocytes, dying, injured or stressed cells, degranulating platelets or secreted by bacteria them- Extracellular ATP and T helper type 17 cell immune selves, acts as a co-activator of the NLR family, pyrin responses domain-containing 3 (NLRP3) (cryopirin/NALP3) T-helper type 17 cell immune responses are required for inflammasome (Piccini et al., 2008; Netea et al., 2009). the control of infectious agents (Cho et al., 2010) and are The NLRP3 inflammasome is a multiprotein complex involved in the pathogenesis of various autoimmune that triggers caspase-1 activation (Mariathasan et al., diseases, such as multiple sclerosis (Axtell et al., 2010) Oncogene Extracellular adenosine triphosphate and adenosine J Stagg and MJ Smyth 5348 and inflammatory bowel disease (Cho and Weaver, responses. Extracellular ATP, by activation of P2Y 2007). The generation of Th17 cells is controlled by the receptors, has been identified as a potent chemotactic cytokines IL-6, tumor growth factor (TGF)-b and IL-23 stimulus for immature DCs (Idzko et al., 2002). In (Bettelli et al., 2007). ‘Naturally occurring’ IL-17- contrast, mature DCs exposed to ATP have decreased producing CD4 þ T cells are also present in the gut.
Recommended publications
  • P2Y Purinergic Receptors, Endothelial Dysfunction, and Cardiovascular Diseases
    International Journal of Molecular Sciences Review P2Y Purinergic Receptors, Endothelial Dysfunction, and Cardiovascular Diseases Derek Strassheim 1, Alexander Verin 2, Robert Batori 2 , Hala Nijmeh 3, Nana Burns 1, Anita Kovacs-Kasa 2, Nagavedi S. Umapathy 4, Janavi Kotamarthi 5, Yash S. Gokhale 5, Vijaya Karoor 1, Kurt R. Stenmark 1,3 and Evgenia Gerasimovskaya 1,3,* 1 The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; [email protected] (D.S.); [email protected] (N.B.); [email protected] (V.K.); [email protected] (K.R.S.) 2 Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; [email protected] (A.V.); [email protected] (R.B.); [email protected] (A.K.-K.) 3 The Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA; [email protected] 4 Center for Blood Disorders, Augusta University, Augusta, GA 30912, USA; [email protected] 5 The Department of BioMedical Engineering, University of Wisconsin, Madison, WI 53706, USA; [email protected] (J.K.); [email protected] (Y.S.G.) * Correspondence: [email protected]; Tel.: +1-303-724-5614 Received: 25 August 2020; Accepted: 15 September 2020; Published: 18 September 2020 Abstract: Purinergic G-protein-coupled receptors are ancient and the most abundant group of G-protein-coupled receptors (GPCRs). The wide distribution of purinergic receptors in the cardiovascular system, together with the expression of multiple receptor subtypes in endothelial cells (ECs) and other vascular cells demonstrates the physiological importance of the purinergic signaling system in the regulation of the cardiovascular system.
    [Show full text]
  • Lipid Metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives
    cancers Review Lipid metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives 1, 1, 1 2 1 Laurence Pellerin y, Lorry Carrié y , Carine Dufau , Laurence Nieto , Bruno Ségui , 1,3 1, , 1, , Thierry Levade , Joëlle Riond * z and Nathalie Andrieu-Abadie * z 1 Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, tgrCS 53717, 31037 Toulouse CEDEX 1, France; [email protected] (L.P.); [email protected] (L.C.); [email protected] (C.D.); [email protected] (B.S.); [email protected] (T.L.) 2 Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Toulouse III Paul-Sabatier, UMR 5089, 205 Route de Narbonne, 31400 Toulouse, France; [email protected] 3 Laboratoire de Biochimie Métabolique, CHU Toulouse, 31059 Toulouse, France * Correspondence: [email protected] (J.R.); [email protected] (N.A.-A.); Tel.: +33-582-7416-20 (J.R.) These authors contributed equally to this work. y These authors jointly supervised this work. z Received: 15 September 2020; Accepted: 23 October 2020; Published: 27 October 2020 Simple Summary: Melanoma is a devastating skin cancer characterized by an impressive metabolic plasticity. Melanoma cells are able to adapt to the tumor microenvironment by using a variety of fuels that contribute to tumor growth and progression. In this review, the authors summarize the contribution of the lipid metabolic network in melanoma plasticity and aggressiveness, with a particular attention to specific lipid classes such as glycerophospholipids, sphingolipids, sterols and eicosanoids.
    [Show full text]
  • Blood Platelet Adenosine Receptors As Potential Targets for Anti-Platelet Therapy
    International Journal of Molecular Sciences Review Blood Platelet Adenosine Receptors as Potential Targets for Anti-Platelet Therapy Nina Wolska and Marcin Rozalski * Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Science, Medical University of Lodz, 92-215 Lodz, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-504-836-536 Received: 30 September 2019; Accepted: 1 November 2019; Published: 3 November 2019 Abstract: Adenosine receptors are a subfamily of highly-conserved G-protein coupled receptors. They are found in the membranes of various human cells and play many physiological functions. Blood platelets express two (A2A and A2B) of the four known adenosine receptor subtypes (A1,A2A, A2B, and A3). Agonization of these receptors results in an enhanced intracellular cAMP and the inhibition of platelet activation and aggregation. Therefore, adenosine receptors A2A and A2B could be targets for anti-platelet therapy, especially under circumstances when classic therapy based on antagonizing the purinergic receptor P2Y12 is insufficient or problematic. Apart from adenosine, there is a group of synthetic, selective, longer-lasting agonists of A2A and A2B receptors reported in the literature. This group includes agonists with good selectivity for A2A or A2B receptors, as well as non-selective compounds that activate more than one type of adenosine receptor. Chemically, most A2A and A2B adenosine receptor agonists are adenosine analogues, with either adenine or ribose substituted by single or multiple foreign substituents. However, a group of non-adenosine derivative agonists has also been described. This review aims to systematically describe known agonists of A2A and A2B receptors and review the available literature data on their effects on platelet function.
    [Show full text]
  • The Interaction of Selective A1 and A2A Adenosine Receptor Antagonists with Magnesium and Zinc Ions in Mice: Behavioural, Biochemical and Molecular Studies
    International Journal of Molecular Sciences Article The Interaction of Selective A1 and A2A Adenosine Receptor Antagonists with Magnesium and Zinc Ions in Mice: Behavioural, Biochemical and Molecular Studies Aleksandra Szopa 1,* , Karolina Bogatko 1, Mariola Herbet 2 , Anna Serefko 1 , Marta Ostrowska 2 , Sylwia Wo´sko 1, Katarzyna Swi´ ˛ader 3, Bernadeta Szewczyk 4, Aleksandra Wla´z 5, Piotr Skałecki 6, Andrzej Wróbel 7 , Sławomir Mandziuk 8, Aleksandra Pochodyła 3, Anna Kudela 2, Jarosław Dudka 2, Maria Radziwo ´n-Zaleska 9, Piotr Wla´z 10 and Ewa Poleszak 1,* 1 Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, 1 Chod´zkiStreet, PL 20–093 Lublin, Poland; [email protected] (K.B.); [email protected] (A.S.); [email protected] (S.W.) 2 Chair and Department of Toxicology, Medical University of Lublin, 8 Chod´zkiStreet, PL 20–093 Lublin, Poland; [email protected] (M.H.); [email protected] (M.O.); [email protected] (A.K.) [email protected] (J.D.) 3 Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chod´zkiStreet, PL 20–093 Lublin, Poland; [email protected] (K.S.);´ [email protected] (A.P.) 4 Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Sm˛etnaStreet, PL 31–343 Kraków, Poland; [email protected] 5 Department of Pathophysiology, Medical University of Lublin, 8 Jaczewskiego Street, PL 20–090 Lublin, Poland; [email protected] Citation: Szopa, A.; Bogatko, K.; 6 Department of Commodity Science and Processing of Raw Animal Materials, University of Life Sciences, Herbet, M.; Serefko, A.; Ostrowska, 13 Akademicka Street, PL 20–950 Lublin, Poland; [email protected] M.; Wo´sko,S.; Swi´ ˛ader, K.; Szewczyk, 7 Second Department of Gynecology, 8 Jaczewskiego Street, PL 20–090 Lublin, Poland; B.; Wla´z,A.; Skałecki, P.; et al.
    [Show full text]
  • Adenosine A1 Receptor-Mediated Activation of Phospholipase C in Cultured Astrocytes Depends on the Level of Receptor Expression
    The Journal of Neuroscience, July 1, 1997, 17(13):4956–4964 Adenosine A1 Receptor-Mediated Activation of Phospholipase C in Cultured Astrocytes Depends on the Level of Receptor Expression Knut Biber,1,2 Karl-Norbert Klotz,3 Mathias Berger,1 Peter J. Gebicke-Ha¨ rter,1 and Dietrich van Calker1 1Department of Psychiatry, University of Freiburg, D-79104 Freiburg, Germany, 2Institute for Biology II, University of Freiburg, D-79104 Freiburg, Germany, and 3Institute for Pharmacology and Toxicology, University of Wu¨ rzburg, D-97078 Wu¨ rzburg, Germany Adenosine A1 receptors induce an inhibition of adenylyl cyclase dependent on the expression level of A1 receptor, and (4) the via G-proteins of the Gi/o family. In addition, simultaneous potentiating effect on PLC activity is unrelated to extracellular stimulation of A1 receptors and of receptor-mediated activation glutamate. of phospholipase C (PLC) results in a synergistic potentiation of Taken together, our data support the notion that bg subunits PLC activity. Evidence has accumulated that Gbg subunits are the relevant signal transducers for A1 receptor-mediated mediate this potentiating effect. However, an A1 receptor- PLC activation in rat astrocytes. Because of the lower affinity of mediated increase in extracellular glutamate was suggested to bg, as compared with a subunits, more bg subunits are re- be responsible for the potentiating effect in mouse astrocyte quired for PLC activation. Therefore, only in cultures with higher cultures. We have investigated the synergistic activation of PLC levels of adenosine A1 receptors is the release of bg subunits by adenosine A1 and a1 adrenergic receptors in primary cul- via Gi/o activation sufficient to stimulate PLC.
    [Show full text]
  • G Protein-Coupled Receptor Heteromers Are Key Players in Substance Use Disorder
    G protein-coupled receptor heteromers are key players in substance use disorder. Lyes Derouiche, Dominique Massotte To cite this version: Lyes Derouiche, Dominique Massotte. G protein-coupled receptor heteromers are key players in substance use disorder.. Neuroscience & Biobehavioral Reviews, Oxford: Elsevier Ltd., 2019, 106, 10.1016/j.neubiorev.2018.09.026. hal-02264889 HAL Id: hal-02264889 https://hal.archives-ouvertes.fr/hal-02264889 Submitted on 18 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. G Protein-Coupled Receptor Heteromers Are Key Players in Substance Use Disorder. Lyes Derouiche and Dominique Massotte* Institut des Neurosciences Cellulaires et Integratives, UPR 3212 5 rue Blaise Pascal, F-67000 Strasbourg, France Highlights Heteromers are functional entities with behavioral impact Heteromers are increasingly recognized as key players in substance use disorder Heteromers may be part of larger functional multiprotein complexes Heteromers represent emerging innovative therapeutic targets Funding sources: The work was received the financial support of the Fondation pour la Recherche Médicale (DPA20140129364), the CNRS and the University of Strasbourg. L. Derouiche was the recipient of an IDEX post-doctoral fellowship of the University of Strasbourg. * Author for correspondence : Dominique Massotte, INCI UPR 3212, 5 rue Blaise Pascal, F-67000 Strasbourg, France, email: [email protected] 1 Abstract G protein–coupled receptors (GPCR) represent the largest family of membrane proteins in the human genome.
    [Show full text]
  • Bioinformatics Unmasks the Maneuverers of Pain Pathways In
    www.nature.com/scientificreports OPEN Bioinformatics Unmasks the Maneuverers of Pain Pathways in Acute Kidney Injury Received: 4 March 2019 Aprajita Gupta 1, Sanjeev Puri 2 & Veena Puri 1 Accepted: 31 July 2019 Acute Kidney injury (AKI) is one of the leading health concerns resulting in accumulation of nitrogenous Published: xx xx xxxx as well as non-nitrogenous wastes in body and characterised by a rapid deterioration in kidney functions. Besides the major toll from the primary insult in the kidney, consequential extra-renal secondary insults endowed with the pathways of infammatory milieu often complicates the disease outcome. Some of the known symptoms of AKI leading to clinical reporting are fatigue, loss of appetite, headache, nausea, vomiting, and pain in the fanks, wherein proinfammatory cytokines have been strongly implicated in pathogenesis of AKI and neuro-infammation. Taking in account these clues, we have tried to decode the neuro-infammation and pain perception phenomenon during the progression of AKI using the pathway integration and biological network strategies. The pathways and networks were generated using bioinformatics software viz. PANTHER, Genomatix and PathVisio to establish the relationship between immune and neuro related pathway in AKI. These observations envisage a neurol-renal axis that is predicted to involve calcium channels in neuro-infammatory pathway of AKI. These observations, thus, pave a way for a new paradigm in understanding the interplay of neuro- immunological signalling in AKI. Acute kidney injury (AKI) is a clinical event associated with a rapid loss of kidney function, leading to high mor- bidity and mortality1. Every year about 2 million people die from AKI due to late detection of disease or paucity of efective therapeutic interventions2.
    [Show full text]
  • Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor–Host Interaction and Therapeutic Perspectives
    Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor–Host Interaction and Therapeutic Perspectives The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation de Andrade Mello, Paola, Robson Coutinho-Silva, and Luiz Eduardo Baggio Savio. 2017. “Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor–Host Interaction and Therapeutic Perspectives.” Frontiers in Immunology 8 (1): 1526. doi:10.3389/fimmu.2017.01526. http://dx.doi.org/10.3389/ fimmu.2017.01526. Published Version doi:10.3389/fimmu.2017.01526 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:34493041 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA REVIEW published: 14 November 2017 doi: 10.3389/fimmu.2017.01526 Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor–Host Interaction and Therapeutic Perspectives Paola de Andrade Mello1, Robson Coutinho-Silva 2* and Luiz Eduardo Baggio Savio2* 1 Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States, 2Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil Cancer is still one of the world’s most pressing health-care challenges, leading to a high number of deaths worldwide. Immunotherapy is a new developing therapy that Edited by: boosts patient’s immune system to fight cancer by modifying tumor–immune cells Salem Chouaib, interaction in the tumor microenvironment (TME).
    [Show full text]
  • Cell Signaling and Regulation of Metabolism Objectives
    Cell Signaling and Regulation of Metabolism Objectives By the end of this lecture, students are expected to: • Differentiate different steps in signaling pathways • Describe the second messenger systems • Recognize the function of signaling pathways for • Signal transmission • Amplification • Discuss the role of signaling pathways in regulation and integration of metabolism No cell lives in isolation • Cells communicate with each other • Cells send and receive information (signals) • Information is relayed within cell to produce a response Signaling Process • Recognition of signal – Receptors • Transduction – Change of external signal into intracellular message with amplification and formation of second messenger • Effect – Modification of cell metabolism and function General Signaling Pathway Signaling Cascades Recognition • Performed by receptors • Ligand will produce response only in cells that have receptors for this particular ligand • Each cell has a specific set of receptors Different Responses to the Same Signaling Molecule. (A) Different Cells Different Responses to the Same Signaling Molecule. (B) One Cell but, Different Pathways Hypoglycemia Glucagon secretion Hepatocyte: Glucagon/receptor binding Second messenger: cAMP Response: Enzyme phosphorylation P P Glycogen synthase Glycogen phosphorylase (Inactive form) (Active form) Inhibition of glycogenesis Stimulation of glycogenolysis GTP-Dependant Regulatory Proteins (G-Proteins) G-Proteins: Trimeric membrane proteins (αβγ) G-stimulatory (Gs) and G-inhibitory (Gi) binds to GTP/GDP
    [Show full text]
  • The Regulatory Role of Key Metabolites in the Control of Cell Signaling
    biomolecules Review The Regulatory Role of Key Metabolites in the Control of Cell Signaling Riccardo Milanesi, Paola Coccetti * and Farida Tripodi Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; [email protected] (R.M.); [email protected] (F.T.) * Correspondence: [email protected]; Tel.: +39-02-6448-3521 Received: 8 May 2020; Accepted: 3 June 2020; Published: 5 June 2020 Abstract: Robust biological systems are able to adapt to internal and environmental perturbations. This is ensured by a thick crosstalk between metabolism and signal transduction pathways, through which cell cycle progression, cell metabolism and growth are coordinated. Although several reports describe the control of cell signaling on metabolism (mainly through transcriptional regulation and post-translational modifications), much fewer information is available on the role of metabolism in the regulation of signal transduction. Protein-metabolite interactions (PMIs) result in the modification of the protein activity due to a conformational change associated with the binding of a small molecule. An increasing amount of evidences highlight the role of metabolites of the central metabolism in the control of the activity of key signaling proteins in different eukaryotic systems. Here we review the known PMIs between primary metabolites and proteins, through which metabolism affects signal transduction pathways controlled by the conserved kinases Snf1/AMPK, Ras/PKA and TORC1. Interestingly, PMIs influence also the mitochondrial retrograde response (RTG) and calcium signaling, clearly demonstrating that the range of this phenomenon is not limited to signaling pathways related to metabolism. Keywords: Snf1/AMPK/SnRK1; Ras/PKA; TORC1; RTG; calcium; glucose; glycolysis; TCA; amino acids; protein-metabolite interaction 1.
    [Show full text]
  • 5-HT2B Receptors Are Required for Serotonin-Selective Antidepressant
    Molecular Psychiatry (2012) 17, 154–163 & 2012 Macmillan Publishers Limited All rights reserved 1359-4184/12 www.nature.com/mp IMMEDIATE COMMUNICATION 5-HT2B receptors are required for serotonin-selective antidepressant actions SL Diaz1,2,3, S Doly1,2,3, N Narboux-Neˆme1,2,3, S Ferna´ndez1,2,3, P Mazot1,2,3, SM Banas1,2,3, K Boutourlinsky1,2,3, I Moutkine1,2,3, A Belmer1,2,3, A Roumier1,2,3 and L Maroteaux1,2,3 1UMR-S839 INSERM, Paris, France; 2Universite´ Pierre et Marie Curie, Paris, France and 3Institut du Fer a` Moulin, Paris, France The therapeutic effects induced by serotonin-selective reuptake inhibitor (SSRI) antidepres- sants are initially triggered by blocking the serotonin transporter and rely on long-term adaptations of pre- and post-synaptic receptors. We show here that long-term behavioral and neurogenic SSRI effects are abolished after either genetic or pharmacological inactivation of 5-HT2B receptors. Conversely, direct agonist stimulation of 5-HT2B receptors induces an SSRI-like response in behavioral and neurogenic assays. Moreover, the observation that (i) this receptor is expressed by raphe serotonergic neurons, (ii) the SSRI-induced increase in hippocampal extracellular serotonin concentration is strongly reduced in the absence of functional 5-HT2B receptors and (iii) a selective 5-HT2B agonist mimics SSRI responses, supports a positive regulation of serotonergic neurons by 5-HT2B receptors. The 5-HT2B receptor appears, therefore, to positively modulate serotonergic activity and to be required for the therapeutic actions of SSRIs. Consequently, the 5-HT2B receptor should be considered as a new tractable target in the combat against depression.
    [Show full text]
  • Plasma Membrane Receptors for Steroid Hormones in Cell Signaling and Nuclear Function
    Chapter 5 / Plasma Membrane Receptors for Steroids 67 5 Plasma Membrane Receptors for Steroid Hormones in Cell Signaling and Nuclear Function Richard J. Pietras, PhD, MD and Clara M. Szego, PhD CONTENTS INTRODUCTION STEROID RECEPTOR SIGNALING MECHANISMS PLASMA MEMBRANE ORGANIZATION AND STEROID HORMONE RECEPTORS INTEGRATION OF MEMBRANE AND NUCLEAR SIGNALING IN STEROID HORMONE ACTION MEMBRANE-ASSOCIATED STEROID RECEPTORS IN HEALTH AND DISEASE CONCLUSION 1. INTRODUCTION Steroid hormones play an important role in coordi- genomic mechanism is generally slow, often requiring nating rapid, as well as sustained, responses of target hours or days before the consequences of hormone cells in complex organisms to changes in the internal exposure are evident. However, steroids also elicit and external environment. The broad physiologic rapid cell responses, often within seconds (see Fig. 1). effects of steroid hormones in the regulation of growth, The time course of these acute events parallels that development, and homeostasis have been known for evoked by peptide agonists, lending support to the con- decades. Often, these hormone actions culminate in clusion that they do not require precedent gene activa- altered gene expression, which is preceded many hours tion. Rather, many rapid effects of steroids, which have earlier by enhanced nutrient uptake, increased flux of been termed nongenomic, appear to be owing to spe- critical ions, and other preparatory changes in the syn- cific recognition of hormone at the cell membrane. thetic machinery of the cell. Because of certain homo- Although the molecular identity of binding site(s) logies of molecular structure, specific receptors for remains elusive and the signal transduction pathways steroid hormones, vitamin D, retinoids, and thyroid require fuller delineation, there is firm evidence that hormone are often considered a receptor superfamily.
    [Show full text]