Effects of Methylphenidate and MDMA on Appraisal of Erotic Stimuli and Intimate Relationships

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Methylphenidate and MDMA on Appraisal of Erotic Stimuli and Intimate Relationships Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Effects of methylphenidate and MDMA on appraisal of pictures oferotic stimuli and intimate relationships Schmid, Y ; Hysek, Cédric M ; Preller, Katrin H ; Bosch, Oliver G ; Bilderbeck, A C ; Rogers, R D ; Quednow, Boris B ; Liechti, Matthias E DOI: https://doi.org/10.1016/j.euroneuro.2014.11.020 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-106578 Journal Article Accepted Version Originally published at: Schmid, Y; Hysek, Cédric M; Preller, Katrin H; Bosch, Oliver G; Bilderbeck, A C; Rogers, R D; Quednow, Boris B; Liechti, Matthias E (2015). Effects of methylphenidate and MDMA on appraisal of pictures of erotic stimuli and intimate relationships. European Neuropsychopharmacology, 25:17-25. DOI: https://doi.org/10.1016/j.euroneuro.2014.11.020 *Revised Manuscript Schmid et al. Effects of methylphenidate and MDMA on appraisal of erotic stimuli and intimate relationships Short title: methylphenidate, MDMA and sexual arousal 1 1 2 2 3 Yasmin Schmid , Cédric M. Hysek , Katrin H. Preller , Oliver G. Bosch , Amy C. Bilderbeck , Robert D. Rogers4, Boris B. Quednow2, Matthias E. Liechti*,1 1Psychopharmacology Research, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Switzerland; 2Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland 3Department of Psychiatry, Oxford University, UK 4School of Psychology, Bangor University, UK *Correspondence: Matthias E. Liechti, Division of Clinical Pharmacology, University Hospital Basel, Hebelstrasse 2, CH-4031 Basel, Switzerland; E-mail: [email protected] Word count: Abstract: 216; Introduction: 698, Discussion: 1644, Manuscript: 4364 words References: 51 Tables and Figures: Tables: 2; Figures: 2 Trial registration: Clinical trials.gov: http://www.clinicaltrials.gov/ct2/show/NCT01616407 1 Schmid et al. Abstract Methylphenidate mainly enhances dopamine neurotransmission whereas 3,4- methylenedioxymethamphetamine (MDMA, “ecstasy”) mainly enhances serotonin neurotransmission. However, both drugs also induce a weaker increase of cerebral noradrenaline exerting sympathomimetic properties. Dopaminergic psychostimulants are reported to increase sexual drive, while serotonergic drugs typically impair sexual arousal and functions. Additionally, serotonin has also been shown to modulate cognitive perception of romantic relationships. Whether methylphenidate or MDMA alter sexual arousal or cognitive appraisal of intimate relationships is not known. Thus, we evaluated effects of methylphenidate (40mg) and MDMA (75mg) on subjective sexual arousal by viewing erotic pictures and on perception of romantic relationships of unknown couples in a double-blind, randomized, placebo-controlled, crossover study in 30 healthy adults. Methylphenidate, but not MDMA, increased ratings of sexual arousal for explicit sexual stimuli. The participants also sought to increase the presentation time of implicit sexual stimuli by button press after methylphenidate treatment compared with placebo. Plasma levels of testosterone, estrogen, and progesterone were not associated with sexual arousal ratings. Neither MDMA nor methylphenidate altered appraisal of romantic relationships of others. The findings indicate that pharmacological stimulation of dopaminergic but not of serotonergic neurotransmission enhances sexual drive. Whether sexual perception is altered in subjects misusing methylphenidate e.g., for cognitive enhancement or as treatment for attention deficit hyperactivity disorder is of high interest and warrants further investigation. Keywords: MDMA, methylphenidate, sexual arousal, couples appraisal 2 Schmid et al. Introduction Methylphenidate is a stimulant drug used for the treatment of attention deficit hyperactivity disorder, but it is also misused as a club drug and a cognitive enhancer (Maier et al., 2013). 3,4-Methylenedioxymethamphetamine (MDMA; “ecstasy”) is a popular recreational drug used primarily because of its empathogenic properties, i.e. the drug increases feelings of sociability and closeness to others (Hysek et al., 2013; Morgan et al., 2013). Additionally, both drugs also have psychostimulant properties (Hysek et al., 2014). It is well recognized that psychoactive substances affect sexual behavior. Users of psychostimulants including cocaine and methamphetamine report increased sexual desire and arousal and enhanced sexual pleasure (Frohmader et al., 2010; Rawson et al., 2002; Semple et al., 2002). In contrast, ecstasy users described inconsistent effects of MDMA on sexual desire (McElrath, 2005; Passie et al., 2005; Theall et al., 2006). Specifically, most users report no desire for penetrative sex but only increased feelings of sensuality, whereas some (in particular gay and bisexual females) use MDMA in particular for sexual enhancement (McElrath, 2005). In another survey, similar proportions of users reported increased or decreased interest in initiating sexual activity while on MDMA (Buffum and Moser, 1986). Additionally, sexual performance seems to be consistently impaired by the drug (Buffum and Moser, 1986; Passie et al., 2005; Zemishlany et al., 2001). Thus, MDMA induces well-being and feelings of closeness to others (Hysek et al., 2013) accompanied by a sensual rather than a sexual enhancement (Passie et al., 2005). However, research on psychoactive drug use and sexual behavior is typically based on interviews of drug users and has mainly focused on sexual risk taking (McElrath, 2005; Rawson et al., 2002; Semple et al., 2002; Theall et al., 2006). Few studies have objectively evaluated sexual arousal in stimulant drug users (Aguilar de Arcos et al., 2008) or investigated the effects of acute administration of a psychostimulant on sexual perception (Volkow et al., 2007). In particular, intravenous administration of methylphenidate at a high dose of 0.5 mg/kg body weight has been shown to enhance self-reported sexual desire 3 Schmid et al. (Volkow et al., 2007) while administration of a moderate oral dose of methylphenidate (20 mg) had no effects (Volkow et al., 2007). Finally, to our knowledge there are no experimental data on the effects of MDMA on sexual perception and arousal. Methylphenidate increases dopamine (DA) and norepinephrine (NE) neurotransmission by DA and NA reuptake inhibition (Schmeichel and Berridge, 2013), while MDMA mainly releases serotonin (5-hydroxytryptamine, 5-HT) but also NE (Hysek et al., 2012b). While DA is thought to facilitate sexual drive, 5-HT is stated to inhibit sexual arousal and function (Fabre-Nys, 1998; Frohmader et al., 2010; Melis and Argiolas, 1995; Passie et al., 2005; Pfaus, 2009; Zemishlany et al., 2001). For example, dopaminergic antiparkinson therapy is associated with hypersexuality (Kelley et al., 2012; Uitti et al., 1989; Weintraub et al., 2010) whereas decreased libido and sexual dysfunction are common adverse effects of serotonergic antidepressants (Serretti and Chiesa, 2009). Accordingly, we hypothesized that methylphenidate (40 mg), predominantly enhancing DA, would increase sexual arousal in a Sexual Arousal Task (SAT), while MDMA (75 mg), mainly increasing 5-HT, would not. Because sex hormones may alter sexual arousal (Meston and Frohlich, 2000), we measured testosterone, estrogen, and progesterone plasma levels and explored possible associations with sexual arousal ratings. Besides from having effects on sexual desire and emotion, psychoactive drugs may also influence aspects of the cognitive appraisal of romantic partnerships. For example, MDMA has been shown to acutely alter related components of social cognition including recognition of facial emotions (Bedi et al., 2010; Hysek et al., 2012a; Hysek et al., 2013; Hysek et al., 2014; Kirkpatrick et al., 2014) and emotional empathy (Hysek et al., 2013; Kuypers et al., 2014; Schmid et al., 2014). Additionally, changes in 5-HT levels may influence cognitions sustaining intimate relationships. Specifically, healthy volunteers perceived photographed couples as being less intimate and romantic after lowering cerebral 5-HT levels by tryptophan depletion (Bilderbeck et al., 2011). In contrast, sub-chronic administration of the selective 5-HT reuptake inhibitor (SSRI) citalopram increased perceived 4 Schmid et al. worth of mutual trust in relationships and reduced importance attributed to physical and intimate aspects of the participants’ own relationship (Bilderbeck et al., 2014). We therefore evaluated the effect of a 5-HT releaser (MDMA) and a DA and NA reuptake inhibitor (methylphenidate) on cognitive appraisal of intimate relationships. We hypothesized that MDMA, but not methylphenidate, would increase ratings of intimacy and romance in the Couples Appraisal Task (CAT) (Bilderbeck et al., 2011; Bilderbeck et al., 2014) parallel to its 5-HT enhancing, empathogenic and prosocial effects (Hysek et al., 2013; Kirkpatrick et al., 2014). Experimental Procedures Experimental protocol We used a double-blind, placebo-controlled, cross-over design in 30 subjects each treated with methylphenidate (40mg), MDMA (75 mg), and placebo, resulting in 90 assessments. The order of the three experimental sessions was balanced (Latin Square design), and the washout periods between sessions were
Recommended publications
  • Methylphenidate Hydrochloride
    Application for Inclusion to the 22nd Expert Committee on the Selection and Use of Essential Medicines: METHYLPHENIDATE HYDROCHLORIDE December 7, 2018 Submitted by: Patricia Moscibrodzki, M.P.H., and Craig L. Katz, M.D. The Icahn School of Medicine at Mount Sinai Graduate Program in Public Health New York NY, United States Contact: [email protected] TABLE OF CONTENTS Page 3 Summary Statement Page 4 Focal Point Person in WHO Page 5 Name of Organizations Consulted Page 6 International Nonproprietary Name Page 7 Formulations Proposed for Inclusion Page 8 International Availability Page 10 Listing Requested Page 11 Public Health Relevance Page 13 Treatment Details Page 19 Comparative Effectiveness Page 29 Comparative Safety Page 41 Comparative Cost and Cost-Effectiveness Page 45 Regulatory Status Page 48 Pharmacoepial Standards Page 49 Text for the WHO Model Formulary Page 52 References Page 61 Appendix – Letters of Support 2 1. Summary Statement of the Proposal for Inclusion of Methylphenidate Methylphenidate (MPH), a central nervous system (CNS) stimulant, of the phenethylamine class, is proposed for inclusion in the WHO Model List of Essential Medications (EML) & the Model List of Essential Medications for Children (EMLc) for treatment of Attention-Deficit/Hyperactivity Disorder (ADHD) under ICD-11, 6C9Z mental, behavioral or neurodevelopmental disorder, disruptive behavior or dissocial disorders. To date, the list of essential medications does not include stimulants, which play a critical role in the treatment of psychotic disorders. Methylphenidate is proposed for inclusion on the complimentary list for both children and adults. This application provides a systematic review of the use, efficacy, safety, availability, and cost-effectiveness of methylphenidate compared with other stimulant (first-line) and non-stimulant (second-line) medications.
    [Show full text]
  • Free PDF Download
    European Review for Medical and Pharmacological Sciences 2019; 23: 3-15 Use of cognitive enhancers: methylphenidate and analogs J. CARLIER1, R. GIORGETTI2, M.R. VARÌ3, F. PIRANI2, G. RICCI4, F.P. BUSARDÒ2 1Unit of Forensic Toxicology, Sapienza University of Rome, Rome, Italy 2Section of Legal Medicine, Universita Politecnica delle Marche, Ancona, Italy 3National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy 4School of Law, University of Camerino, Camerino, Italy Abstract. – OBJECTIVE: In the last decades, phenidate analogs should be undertaken to re- several cognitive-enhancing drugs have been duce the uprising threat, and education efforts sold onto the drug market. Methylphenidate and should be made among high-risk populations. analogs represent a sub-class of these new psy- choactive substances (NPS). We aimed to re- Key Words: view the use and misuse of methylphenidate and Cognitive enhancers, Methylphenidate, Ritalin, Eth- analogs, and the risk associated. Moreover, we ylphenidate, Methylphenidate analogs, New psycho- exhaustively reviewed the scientific data on the active substances. most recent methylphenidate analogs (methyl- phenidate and ethylphenidate excluded). MATERIALS AND METHODS: Literature Introduction search was performed on methylphenidate and analogs, using specialized search engines ac- cessing scientific databases. Additional reports Consumption of various pharmaceutical drugs were retrieved from international agencies, in- by healthy individuals in an attempt to improve stitutional websites, and drug user forums. cognitive faculties is on the rise, whether for aca- RESULTS: Methylphenidate/Ritalin has been demic or recreational purposes1. These substances used for decades to treat attention deficit disor- are stimulants that preferentially target the cate- ders and narcolepsy. More recently, it has been used as a cognitive enhancer and a recreation- cholamines of the prefrontal cortex of the brain to al drug.
    [Show full text]
  • FSI-D-16-00226R1 Title
    Elsevier Editorial System(tm) for Forensic Science International Manuscript Draft Manuscript Number: FSI-D-16-00226R1 Title: An overview of Emerging and New Psychoactive Substances in the United Kingdom Article Type: Review Article Keywords: New Psychoactive Substances Psychostimulants Lefetamine Hallucinogens LSD Derivatives Benzodiazepines Corresponding Author: Prof. Simon Gibbons, Corresponding Author's Institution: UCL School of Pharmacy First Author: Simon Gibbons Order of Authors: Simon Gibbons; Shruti Beharry Abstract: The purpose of this review is to identify emerging or new psychoactive substances (NPS) by undertaking an online survey of the UK NPS market and to gather any data from online drug fora and published literature. Drugs from four main classes of NPS were identified: psychostimulants, dissociative anaesthetics, hallucinogens (phenylalkylamine-based and lysergamide-based materials) and finally benzodiazepines. For inclusion in the review the 'user reviews' on drugs fora were selected based on whether or not the particular NPS of interest was used alone or in combination. NPS that were use alone were considered. Each of the classes contained drugs that are modelled on existing illegal materials and are now covered by the UK New Psychoactive Substances Bill in 2016. Suggested Reviewers: Title Page (with authors and addresses) An overview of Emerging and New Psychoactive Substances in the United Kingdom Shruti Beharry and Simon Gibbons1 Research Department of Pharmaceutical and Biological Chemistry UCL School of Pharmacy
    [Show full text]
  • Comparison of the Inhibitory and Excitatory Effects of ADHD Medications Methylphenidate and Atomoxetine on Motor Cortex
    Neuropsychopharmacology (2006) 31, 442–449 & 2006 Nature Publishing Group All rights reserved 0893-133X/06 $30.00 www.neuropsychopharmacology.org Comparison of the Inhibitory and Excitatory Effects of ADHD Medications Methylphenidate and Atomoxetine on Motor Cortex ,1 2 3 1 1 4 Donald L Gilbert* , Keith R Ridel , Floyd R Sallee , Jie Zhang , Tara D Lipps and Eric M Wassermann 1 2 Division of Neurology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA; University of Cincinnati 3 4 School of Medicine, Cincinnati, OH, USA; Division of Psychiatry, University of Cincinnati, Cincinnati, OH, USA; Brain Stimulation Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA Stimulant and norepinephrine (NE) reuptake inhibitor medications have different effects at the neuronal level, but both reduce symptoms of attention deficit hyperactivity disorder (ADHD). To understand their common physiologic effects and thereby gain insight into the neurobiology of ADHD treatment, we compared the effects of the stimulant methylphenidate (MPH) and NE uptake inhibitor atomoxetine (ATX) on inhibitory and excitatory processes in human cortex. Nine healthy, right-handed adults were given a single, oral dose of 30 mg MPH and 60 mg ATX at visits separated by 1 week in a randomized, double-blind crossover trial. We used paired and single transcranial magnetic stimulation (TMS) of motor cortex to measure conditioned and unconditioned motor-evoked potential amplitudes at inhibitory (3 ms) and facilitatory (10 ms) interstimulus intervals (ISI) before and after drug administration. Data were analyzed with repeated measures, mixed model regression. We also analyzed our findings and the published literature with meta-analysis software to estimate treatment effects of stimulants and NE reuptake inhibitors on these TMS measures.
    [Show full text]
  • Methylphenidate Amplifies the Potency and Reinforcing Effects Of
    ARTICLE Received 1 Aug 2013 | Accepted 7 Oct 2013 | Published 5 Nov 2013 DOI: 10.1038/ncomms3720 Methylphenidate amplifies the potency and reinforcing effects of amphetamines by increasing dopamine transporter expression Erin S. Calipari1, Mark J. Ferris1, Ali Salahpour2, Marc G. Caron3 & Sara R. Jones1 Methylphenidate (MPH) is commonly diverted for recreational use, but the neurobiological consequences of exposure to MPH at high, abused doses are not well defined. Here we show that MPH self-administration in rats increases dopamine transporter (DAT) levels and enhances the potency of MPH and amphetamine on dopamine responses and drug-seeking behaviours, without altering cocaine effects. Genetic overexpression of the DAT in mice mimics these effects, confirming that MPH self-administration-induced increases in DAT levels are sufficient to induce the changes. Further, this work outlines a basic mechanism by which increases in DAT levels, regardless of how they occur, are capable of increasing the rewarding and reinforcing effects of select psychostimulant drugs, and suggests that indivi- duals with elevated DAT levels, such as ADHD sufferers, may be more susceptible to the addictive effects of amphetamine-like drugs. 1 Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA. 2 Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada M5S1A8. 3 Department of Cell Biology, Medicine and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA. Correspondence and requests for materials should be addressed to S.R.J. (email: [email protected]). NATURE COMMUNICATIONS | 4:2720 | DOI: 10.1038/ncomms3720 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited.
    [Show full text]
  • Methylphenidate-Induced Dendritic Spine Formation and ⌬Fosb Expression in Nucleus Accumbens
    Methylphenidate-induced dendritic spine formation and ⌬FosB expression in nucleus accumbens Yong Kima, Merilee A. Teylana, Matthew Barona, Adam Sandsa, Angus C. Nairna,b, and Paul Greengarda,1 aLaboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065; and bDepartment of Psychiatry, Yale University School of Medicine, New Haven, CT 06508. Contributed by Paul Greengard, December 23, 2008 (sent for review December 3, 2008) Methylphenidate is the psychostimulant medication most com- dopamine and glutamate is within the dendritic spines of MSN, and monly prescribed to treat attention deficit hyperactivity disorder notably chronic exposure to psychostimulants has been found to (ADHD). Recent trends in the high usage of methylphenidate for increase the number of dendritic branch points and spines of MSN both therapeutic and nontherapeutic purposes prompted us to in NAcc (17, 18). investigate the long-term effects of exposure to the drug on GABAergic MSN, which represent 90–95% of all neurons in neuronal adaptation. We compared the effects of chronic methyl- striatum, are comprised of 2 intermingled subpopulations. One phenidate or cocaine (15 mg/kg, 14 days for both) exposure in mice subpopulation of MSN express high levels of dopamine D1 recep- on dendritic spine morphology and ⌬FosB expression in medium- tors (together with substance P and dynorphin) (MSN-D1), and the sized spiny neurons (MSN) from ventral and dorsal striatum. other MSN express high levels of dopamine D2 receptors (together Chronic methylphenidate increased the density of dendritic spines with enkephalin) (MSN-D2) (19–22). Through the use of selective in MSN-D1 (MSN-expressing dopamine D1 receptors) from the core agonists and antagonists, both D1 and D2 receptors have been and shell of nucleus accumbens (NAcc) as well as MSN-D2 (MSN- shown to be required for psychostimulant-dependent behavioral expressing dopamine D2 receptors) from the shell of NAcc.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • Methylphenidate Versus Dexamphetamine in Children with Attention Deficit Hyperactivity Disorder: a Double-Blind, Crossover Trial
    Methylphenidate Versus Dexamphetamine in Children With Attention Deficit Hyperactivity Disorder: A Double-blind, Crossover Trial Daryl Efron, FRACP; Frederick Jarman, FRACP; and Melinda Barker, Grad Dip Ed Psych ABSTRACT. Objective. To compare methylphenidate behavioral, academic, and social functioning. Many (MPH) and dexamphetamine (DEX) in a sample of chil- well-designed, placebo-controlled studies have dem- dren with attention deficit hyperactivity disorder onstrated beyond doubt the benefits of stimulants in (ADHD). the vast majority of children with ADHD.2–4 In a Method. A total of 125 children with ADHD received review of 110 studies on the effects of stimulant both MPH (0.3 mg/kg twice daily) and DEX (0.15 mg/kg drugs on more than 4200 children with ADHD, twice daily) for 2 weeks a double-blind, crossover study. 4 ; Outcome measures were Conners’ Parent Rating Scale– Barkley found that 75% of subjects were regarded Revised, Conners’ Teacher Rating Scale–Revised, a Par- as improved on stimulants. The mean placebo re- ent Global Perceptions questionnaire, the Continuous sponse was 39%. Performance Test, and the Barkley Side Effects Rating Methylphenidate (MPH) and dexamphetamine Scale. (DEX) are the two stimulants prescribed most fre- Results. There were significant group mean im- quently and have been shown to have similar types provements from baseline score on all measures for of positive effects in children with ADHD. However, both stimulants. On the Conners’ Teacher Rating Scal- it is not known whether one is more efficacious than e–Revised, response was greater on MPH than DEX on the other in terms of probability of producing a the conduct problems and hyperactivity factors, as well positive response, magnitude of response, quality of as on the hyperactivity index.
    [Show full text]
  • Pharmacology and Toxicology of Amphetamine and Related Designer Drugs
    Pharmacology and Toxicology of Amphetamine and Related Designer Drugs U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alcohol Drug Abuse and Mental Health Administration Pharmacology and Toxicology of Amphetamine and Related Designer Drugs Editors: Khursheed Asghar, Ph.D. Division of Preclinical Research National Institute on Drug Abuse Errol De Souza, Ph.D. Addiction Research Center National Institute on Drug Abuse NIDA Research Monograph 94 1989 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administration National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, DC 20402 Pharmacology and Toxicology of Amphetamine and Related Designer Drugs ACKNOWLEDGMENT This monograph is based upon papers and discussion from a technical review on pharmacology and toxicology of amphetamine and related designer drugs that took place on August 2 through 4, 1988, in Bethesda, MD. The review meeting was sponsored by the Biomedical Branch, Division of Preclinical Research, and the Addiction Research Center, National Institute on Drug Abuse. COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required. All other matieral in this volume except quoted passages from copyrighted sources is in the public domain and may be used or reproduced without permission from the Institute or the authors.
    [Show full text]
  • Synthetic Drugs: Overview and Issues for Congress
    Synthetic Drugs: Overview and Issues for Congress Lisa N. Sacco Analyst in Illicit Drugs and Crime Policy Kristin Finklea Specialist in Domestic Security May 3, 2016 Congressional Research Service 7-5700 www.crs.gov R42066 Synthetic Drugs: Overview and Issues for Congress Summary Synthetic drugs, as opposed to natural drugs, are chemically produced in a laboratory. Their chemical structure can be either identical to or different from naturally occurring drugs, and their effects are designed to mimic or even enhance those of natural drugs. When produced clandestinely, they are not typically controlled pharmaceutical substances intended for legitimate medical use. Designer drugs are a form of synthetic drugs. They contain slightly modified molecular structures of illegal or controlled substances, and they are modified in order to circumvent existing drug laws. While the issue of synthetic drugs and their abuse is not new, Congress has demonstrated a renewed concern with the issue. From 2009 to 2011, synthetic drug abuse was reported to have dramatically increased. During this time period, calls to poison control centers for incidents relating to harmful effects of synthetic cannabinoids (such as “K2” and “Spice”) and stimulants (such as “bath salts”) increased at what some considered to be an alarming rate. The number of hospital emergency department visits involving synthetic cannabinoids more than doubled from 2010 to 2011. In 2012 and 2013, however, the number of calls to poison control centers for incidents relating to harmful effects of synthetic cannabinoids and synthetic stimulants decreased. Calls regarding bath salts have declined each year since 2011, while calls regarding synthetic cannabinoids have increased since the drops in 2012 and 2013.
    [Show full text]
  • Amphetamine/Dextroamphetamine IR Generic
    GEORGIA MEDICAID FEE-FOR-SERVICE STIMULANT AND RELATED AGENTS PA SUMMARY Preferred Non-Preferred Amphetamine/dextroamphetamine IR generic Adzenys ER (amphetamine ER oral suspension) Armodafinil generic Adzenys XR (amphetamine ER dispersible tab) Atomoxetine generic Amphetamine/dextroamphetamine ER (generic Concerta (methylphenidate ER/SA) Adderall XR) Dextroamphetamine IR tablets generic Aptensio XR (methylphenidate ER) Focalin (dexmethylphenidate) Clonidine ER generic Focalin XR (dexmethylphenidate ER) Cotempla XR (methylphenidate ER disintegrating Guanfacine ER generic tablet) Methylin oral solution (methylphenidate) Daytrana (methylphenidate TD patch) Methylphenidate CD/CR/ER generic by Lannett Desoxyn (methamphetamine) [NDCs 00527-####-##] and Kremers Urban [NDCs Dexmethylphenidate IR generic 62175-####-##] (generic Metadate CD) Dexmethylphenidate ER generic Methylphenidate IR generic Dextroamphetamine ER capsules generic Modafinil generic Dextroamphetamine oral solution generic Quillichew ER (methylphenidate ER chew tabs) Dyanavel XR (amphetamine ER oral suspension) Quillivant XR (methylphenidate ER oral suspension) Evekeo (amphetamine tablets) Vyvanse (lisdexamfetamine) Methamphetamine generic Zenzedi 5 mg, 10 mg IR tablets (dextroamphetamine) Methylphenidate IR chewable tablets generic Methylphenidate ER/SA (generic Concerta) Methylphenidate ER/LA/SR (generic Ritalin LA, Ritalin SR, Metadate ER) Methylphenidate ER/SA 72 mg generic Methylphenidate oral solution generic Mydayis (amphetamine/dextroamphetamine ER) Ritalin LA 10 mg
    [Show full text]
  • (Adhd) Quantity Limitation Utilization Management Criteria
    ATTENTION- DEFICIT HYPERACTIVITY DISORDER (ADHD) QUANTITY LIMITATION UTILIZATION MANAGEMENT CRITERIA DRUG CLASS: Stimulants and Non-Stimulants BRAND (generic) NAMES: Adderall® (amphetamine/dextroamphetamine) Adderall XR® (amphetamine/ dextroamphetamine ER) Adzenys XR-ODTTM (amphetamine ER dispersible) Aptensio XR® (methylphenidate ER) Concerta® (methylphenidate ER) Daytrana® (methylphenidate transdermal patch) Dextroampthetamine (DextroStat®) Dexedrine® (dextroamphetamine ER) DyanavelTM XR (amphetamine ER) Focalin XR® (dexmethylphenidate ER) Focalin® (dexmethylphenidate) Intuniv® (guanfacine ER) Kapvay® (clonidine ER) Metadate CD® (methylphenidate ER) Metadate ER® (methylphenidate ER) Methylin® (methylphenidate) Procentra® (dextroamphetamine) QuillichewTM (methylphenidate ER) Quillivant XR® (methylphenidate ER) Ritalin® (methylphenidate) Ritalin® LA (methylphenidate ER) Ritalin® SR (methylphenidate ER) Strattera® (atomoxetine) Vyvanse® (lisdexamphetamine) Zenzedi® (dextroamphetamine) COVERAGE AUTHORIZATION CRITERIA Non-formulary medications - Medications included in this criterion that are not part of ASO Net Results or Essential Formularies are subject to a trial and failure of up to TWO formulary alternatives that are clinically appropriate, to treat the same condition, prior to approval (see Non-formulary Exception Criteria for detailed limitations). Quantities above the program set limit (see pgs 2-4) for ADHD agents will be approved when the following is met: 1. The quantity (dose) requested is for documented titration purposes at the initiation of therapy (authorization for a 90 day titration period); AND 2. The prescribed dose cannot be achieved using a lesser quantity of a higher strength; AND 3. The quantity (dose) requested does not exceed the maximum FDA labeled dose, when specified, or to the safest studied dose per the manufacturer’s product insert; OR BLUE CROSS®, BLUE SHIELD® and the Cross and Shield Symbols are registered marks of the Blue Cross and Blue Shield Association, an association of independent Blue Cross and Blue Shield Plans.
    [Show full text]