Corticosteroids and Contact Dermatitis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent 19 11 Patent Number: 5,449,515 Hamilton Et Al
USOO5449515A United States Patent 19 11 Patent Number: 5,449,515 Hamilton et al. 45 Date of Patent: Sep. 12, 1995 (54). ANTI-INFLAMMATORY COMPOSITIONS WO9005183 5/1990 WIPO : AND METHODS OTHER PUBLICATIONS 75 Inventors: John A. Hamilton, Kew; Prudence H. Schleimer, R. P. et al., "Regulation of Human Basophil Hart, Millswood, both of Australia mediator ... ', J. Immuno., vol. 143, (4), Aug. 15, 1989, 73 Assignee: University of Melbourne, Victoria, pp. 1310-1317. Australia Hart et al., “Augmentation of Glucocorhicoid Action 21 Appl. No.: 858,967 on Human...” Lymphokine Research, vol. 9 (2), 1990, pp. 147-153. 22, PCT Filed: Nov. 21, 1990 Hart, P. H. et al., "Potential antiinflammatory effects of 86 PCT No.: PCT/AU90/00558 IL-4, Proc. Natl. Acad. Sci., vol. 86, pp. 3803-3807, May 1989. S 371 Date: Jul. 14, 1992 Hart, et al., Proc. Natl. AcadSci, vol. 86 pp. 3803-3807, S 102(e) Date: Jul. 14, 1992 May (1989). 87 PCT Pub. No.: WO91/07186 Primary Examiner-Michael G. Wityshyn Assistant Examiner-C. Sayala PCT Pub. Date: May 30, 1991 Attorney, Agent, or Firm-Jan P. Brunelle; Walter H. 30 Foreign Application Priority Data Dreger Nov. 21, 1989 IAU Australia ............................... PJTSO3 57 ABSTRACT 51 Int. CI.'.............................................. A61K 45/05 Therapeutic compositions and methods for the treat 52 U.S.C. .................................... 424/85.2; 530/351 ment of inflammation are disclosed. The compositions 58) Field of Search ........................ 424/85.2; 530/351 comprise at least one anti-inflammatory drug in combi nation with the lymphokine interleukin-4 (IL-4), which 56) References Cited components interact synergistically in the treatmement U.S. -
(12) Patent Application Publication (10) Pub. No.: US 2008/0317805 A1 Mckay Et Al
US 20080317805A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0317805 A1 McKay et al. (43) Pub. Date: Dec. 25, 2008 (54) LOCALLY ADMINISTRATED LOW DOSES Publication Classification OF CORTICOSTEROIDS (51) Int. Cl. A6II 3/566 (2006.01) (76) Inventors: William F. McKay, Memphis, TN A6II 3/56 (2006.01) (US); John Myers Zanella, A6IR 9/00 (2006.01) Cordova, TN (US); Christopher M. A6IP 25/04 (2006.01) Hobot, Tonka Bay, MN (US) (52) U.S. Cl. .......... 424/422:514/169; 514/179; 514/180 (57) ABSTRACT Correspondence Address: This invention provides for using a locally delivered low dose Medtronic Spinal and Biologics of a corticosteroid to treat pain caused by any inflammatory Attn: Noreen Johnson - IP Legal Department disease including sciatica, herniated disc, Stenosis, mylopa 2600 Sofamor Danek Drive thy, low back pain, facet pain, osteoarthritis, rheumatoid Memphis, TN38132 (US) arthritis, osteolysis, tendonitis, carpal tunnel syndrome, or tarsal tunnel syndrome. More specifically, a locally delivered low dose of a corticosteroid can be released into the epidural (21) Appl. No.: 11/765,040 space, perineural space, or the foramenal space at or near the site of a patient's pain by a drug pump or a biodegradable drug (22) Filed: Jun. 19, 2007 depot. E Day 7 8 Day 14 El Day 21 3OO 2OO OO OO Control Dexamethasone DexamethasOne Dexamethasone Fuocinolone Fluocinolone Fuocinolone 2.0 ng/hr 1Ong/hr 50 ng/hr 0.0032ng/hr 0.016 ng/hr 0.08 ng/hr Patent Application Publication Dec. 25, 2008 Sheet 1 of 2 US 2008/0317805 A1 900 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 80.0 - 7OO – 6OO - 5OO - E Day 7 EDay 14 40.0 - : El Day 21 2OO - OO = OO – Dexamethasone Dexamethasone Dexamethasone Fuocinolone Fluocinolone Fuocinolone 2.0 ng/hr 1Ong/hr 50 ng/hr O.OO32ng/hr O.016 ng/hr 0.08 nghr Patent Application Publication Dec. -
(CD-P-PH/PHO) Report Classification/Justifica
COMMITTEE OF EXPERTS ON THE CLASSIFICATION OF MEDICINES AS REGARDS THEIR SUPPLY (CD-P-PH/PHO) Report classification/justification of medicines belonging to the ATC group D07A (Corticosteroids, Plain) Table of Contents Page INTRODUCTION 4 DISCLAIMER 6 GLOSSARY OF TERMS USED IN THIS DOCUMENT 7 ACTIVE SUBSTANCES Methylprednisolone (ATC: D07AA01) 8 Hydrocortisone (ATC: D07AA02) 9 Prednisolone (ATC: D07AA03) 11 Clobetasone (ATC: D07AB01) 13 Hydrocortisone butyrate (ATC: D07AB02) 16 Flumetasone (ATC: D07AB03) 18 Fluocortin (ATC: D07AB04) 21 Fluperolone (ATC: D07AB05) 22 Fluorometholone (ATC: D07AB06) 23 Fluprednidene (ATC: D07AB07) 24 Desonide (ATC: D07AB08) 25 Triamcinolone (ATC: D07AB09) 27 Alclometasone (ATC: D07AB10) 29 Hydrocortisone buteprate (ATC: D07AB11) 31 Dexamethasone (ATC: D07AB19) 32 Clocortolone (ATC: D07AB21) 34 Combinations of Corticosteroids (ATC: D07AB30) 35 Betamethasone (ATC: D07AC01) 36 Fluclorolone (ATC: D07AC02) 39 Desoximetasone (ATC: D07AC03) 40 Fluocinolone Acetonide (ATC: D07AC04) 43 Fluocortolone (ATC: D07AC05) 46 2 Diflucortolone (ATC: D07AC06) 47 Fludroxycortide (ATC: D07AC07) 50 Fluocinonide (ATC: D07AC08) 51 Budesonide (ATC: D07AC09) 54 Diflorasone (ATC: D07AC10) 55 Amcinonide (ATC: D07AC11) 56 Halometasone (ATC: D07AC12) 57 Mometasone (ATC: D07AC13) 58 Methylprednisolone Aceponate (ATC: D07AC14) 62 Beclometasone (ATC: D07AC15) 65 Hydrocortisone Aceponate (ATC: D07AC16) 68 Fluticasone (ATC: D07AC17) 69 Prednicarbate (ATC: D07AC18) 73 Difluprednate (ATC: D07AC19) 76 Ulobetasol (ATC: D07AC21) 77 Clobetasol (ATC: D07AD01) 78 Halcinonide (ATC: D07AD02) 81 LIST OF AUTHORS 82 3 INTRODUCTION The availability of medicines with or without a medical prescription has implications on patient safety, accessibility of medicines to patients and responsible management of healthcare expenditure. The decision on prescription status and related supply conditions is a core competency of national health authorities. -
A New Robust Technique for Testing of Glucocorticosteroids in Dogs and Horses Terry E
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 A new robust technique for testing of glucocorticosteroids in dogs and horses Terry E. Webster Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Veterinary Toxicology and Pharmacology Commons Recommended Citation Webster, Terry E., "A new robust technique for testing of glucocorticosteroids in dogs and horses" (2007). Retrospective Theses and Dissertations. 15029. https://lib.dr.iastate.edu/rtd/15029 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A new robust technique for testing of glucocorticosteroids in dogs and horses by Terry E. Webster A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Toxicology Program o f Study Committee: Walter G. Hyde, Major Professor Steve Ensley Thomas Isenhart Iowa State University Ames, Iowa 2007 Copyright © Terry Edward Webster, 2007. All rights reserved UMI Number: 1446027 Copyright 2007 by Webster, Terry E. All rights reserved. UMI Microform 1446027 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 ii DEDICATION I want to dedicate this project to my wife, Jackie, and my children, Shauna, Luke and Jake for their patience and understanding without which this project would not have been possible. -
Canine Vascular Tissues Are Targets for Androgens, Estrogens, Progestins, and Glucocorticoids
Canine vascular tissues are targets for androgens, estrogens, progestins, and glucocorticoids. K B Horwitz, L D Horwitz J Clin Invest. 1982;69(4):750-758. https://doi.org/10.1172/JCI110513. Research Article Sex differences and steroid hormones are known to influence the vascular system as shown by the different incidence of atherosclerosis in men and premenopausal women, or by the increased risk of cardiovascular diseases in women taking birth control pills or men taking estrogens. However, the mechanisms for these effects in vascular tissues are not known. Since steroid actions in target tissues are mediated by receptors, we have looked for cytoplasmic steroid receptor proteins in vascular tissues of dogs. We find specific saturable receptors, sedimenting at 8S on sucrose density gradients for estrogens (measured with [3H]estradiol +/- unlabeled diethylstilbestrol), androgens (measured with [3H]R1881 +/- unlabeled R1881 and triamcinolone acetonide), and glucocorticoids (measured with [3H]dexamethasone +/- unlabeled dexamethasone); they are absent for progesterone (measured with [3H]R5020 +/- unlabeled R5020 and dihydrotestosterone). Progesterone receptors can, however, be induced by 1-wk treatment of dogs with physiological estradiol concentrations (100 pg/ml serum estrogen), indicating a functional estrogen receptor. Receptor levels range from 20 to 2,000 fmol/mg DNA. They are specific for each hormone; unrelated steroids fail to complete for binding. Low dissociation constants, measured by Scatchard analyses, show that binding is of high affinity. Steroid binding sites are in the media and/or adventitia since they persist when the intima is removed. Compared with the arteries, receptor levels are reduced 80% in inferior venae cavae of […] Find the latest version: https://jci.me/110513/pdf Canine Vascular Tissues Are Targets for Androgens, Estrogens, Progestins, and Glucocorticoids KATHRYN B. -
Dexamethasone Inhibits the Induction of NAD+-Dependent 15
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1497 (2000) 61^68 www.elsevier.com/locate/bba Dexamethasone inhibits the induction of NAD-dependent 15-hydroxyprostaglandin dehydrogenase by phorbol ester in human promonocytic U937 cells Min Tong 1, Hsin-Hsiung Tai * Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA Received 29 December 1999; received in revised form 2 March 2000; accepted 9 March 2000 Abstract Pro-inflammatory prostaglandins are known to be first catabolized by NAD-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) to inactive metabolites. This enzyme is under regulatory control by various inflammation-related agents. Regulation of this enzyme was investigated in human promonocytic U937 cells. 15-PGDH activity was found to be optimally induced by phorbol 12-myristate 13-acetate (PMA) at 10 nM after 24 h of treatment. The induction was blocked by staurosporine or GF 109203X indicating that the induction was mediated by protein kinase C. The induction by PMA was inhibited by the concurrent addition of dexamethasone. Nearly complete inhibition was observed at 50 nM. Other glucocorticoids, such as hydrocortisone and corticosterone, but not sex hormones, were also inhibitory. Inhibition by dexamethasone could be reversed by the concurrent addition of antagonist mifepristone (RU-486) indicating that the inhibition was a receptor-mediated event. Either induction by PMA or inhibition by dexamethasone the 15-PGDH activity correlated well with the enzyme protein expression as shown by the Western blot analysis. These results provide the first evidence that prostaglandin catabolism is regulated by glucocorticoids at the therapeutic level. -
Dexamethasone in Patients with Acute Lung Injury from Acute Monocytic Leukaemia
Eur Respir J 2012; 39: 648–653 DOI: 10.1183/09031936.00057711 CopyrightßERS 2012 Dexamethasone in patients with acute lung injury from acute monocytic leukaemia E´. Azoulay*, E. Canet*, E. Raffoux#, E. Lengline´#, V. Lemiale*, F. Vincent*, A. de Labarthe#, A. Seguin*, N. Boissel#, H. Dombret# and B. Schlemmer* ABSTRACT: The use of steroids is not required in myeloid malignancies and remains AFFILIATIONS controversial in patients with acute lung injury (ALI) or acute respiratory distress syndrome *Medical ICU and #Hematology Dept, Saint-Louis (ARDS). We sought to evaluate dexamethasone in patients with ALI/ARDS caused by acute Hospital, Paris, France. monocytic leukaemia (AML FAB-M5) via either leukostasis or leukaemic infiltration. Dexamethasone (10 mg every 6 h until neutropenia) was added to chemotherapy and intensive CORRESPONDENCE ´ care unit (ICU) management in 20 consecutive patients between 2005 and 2008, whose data were E. Azoulay AP-HP compared with those from 20 historical controls (1994–2002). ICU mortality was the primary Hoˆpital Saint-Louis criterion. We also compared respiratory deterioration rates, need for ventilation and nosocomial Medical ICU infections. 75010 Paris 17 (85%) patients had hyperleukocytosis, 19 (95%) had leukaemic masses, and all 20 had France E-mail: [email protected] severe pancytopenia. All patients presented with respiratory symptoms and pulmonary infiltrates paris.fr prior to AML FAB-M5 diagnosis. Compared with historical controls, dexamethasone-treated patients had a significantly lower ICU mortality rate (20% versus 50%; p50.04) and a trend for less Received: respiratory deterioration (50% versus 80%; p50.07). There were no significant increases in the May 24 2011 Accepted after revision: rates of infections with dexamethasone. -
Steroid Use in Prednisone Allergy Abby Shuck, Pharmd Candidate
Steroid Use in Prednisone Allergy Abby Shuck, PharmD candidate 2015 University of Findlay If a patient has an allergy to prednisone and methylprednisolone, what (if any) other corticosteroid can the patient use to avoid an allergic reaction? Corticosteroids very rarely cause allergic reactions in patients that receive them. Since corticosteroids are typically used to treat severe allergic reactions and anaphylaxis, it seems unlikely that these drugs could actually induce an allergic reaction of their own. However, between 0.5-5% of people have reported any sort of reaction to a corticosteroid that they have received.1 Corticosteroids can cause anything from minor skin irritations to full blown anaphylactic shock. Worsening of allergic symptoms during corticosteroid treatment may not always mean that the patient has failed treatment, although it may appear to be so.2,3 There are essentially four classes of corticosteroids: Class A, hydrocortisone-type, Class B, triamcinolone acetonide type, Class C, betamethasone type, and Class D, hydrocortisone-17-butyrate and clobetasone-17-butyrate type. Major* corticosteroids in Class A include cortisone, hydrocortisone, methylprednisolone, prednisolone, and prednisone. Major* corticosteroids in Class B include budesonide, fluocinolone, and triamcinolone. Major* corticosteroids in Class C include beclomethasone and dexamethasone. Finally, major* corticosteroids in Class D include betamethasone, fluticasone, and mometasone.4,5 Class D was later subdivided into Class D1 and D2 depending on the presence or 5,6 absence of a C16 methyl substitution and/or halogenation on C9 of the steroid B-ring. It is often hard to determine what exactly a patient is allergic to if they experience a reaction to a corticosteroid. -
Corticosteroids in Terminal Cancer-A Prospective Analysis of Current Practice
Postgraduate Medical Journal (November 1983) 59, 702-706 Postgrad Med J: first published as 10.1136/pgmj.59.697.702 on 1 November 1983. Downloaded from Corticosteroids in terminal cancer-a prospective analysis of current practice G. W. HANKS* T. TRUEMAN B.Sc., M.B., B.S., M.R.C.P.(U.K.) S.R.N. R. G. TWYCROSS M.A., D.M., F.R.C.P. Sir Michael Sobell House, The Churchill Hospital, Headington, Oxford OX3 7LJ Summary Introduction Over half of a group of 373 inpatients with advanced Corticosteroids have a major role to play in the malignant disease were treated with corticosteroids control of symptoms in patients with advanced for a variety of reasons. They received either pred- malignant disease. They may be employed in a non- nisolone or dexamethasone, or replacement therapy specific way to improve mood and appetite; or they with cortisone acetate. Forty percent of those receiv- may be indicated as specific adjunctive therapy in the ing corticosteroids benefited from them. A higher relief of symptoms related to a large tumour mass or response rate was seen when corticosteroids were to nerve compression. The management of a numberProtected by copyright. prescribed for nerve compression pain, for raised of other symptoms and syndromes may also be intracranial pressure, and when used in conjunction facilitated by treatment with corticosteroids (Table with chemotherapy. No significant difference in 1). efficacy was noted between the 2 drugs. The results, The use of corticosteroids in patients with ad- however, suggest that with a larger sample, dexame- vanced cancer is empirical, as it is in other non- thasone would have been shown to be significantly endocrine indications. -
Dexamethasone and Fludrocortisone Inhibit Hedgehog Signaling In
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article Cite This: ACS Omega 2018, 3, 12019−12025 http://pubs.acs.org/journal/acsodf Dexamethasone and Fludrocortisone Inhibit Hedgehog Signaling in Embryonic Cells † ‡ † ‡ Kirti Kandhwal Chahal,*, , Milind Parle, and Ruben Abagyan*, † Department of Pharmaceutical Sciences, G. J. University of Science and Technology, Hisar 125001, India ‡ Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92037, United States ABSTRACT: The hedgehog (Hh) pathway plays a central role in the development and repair of our bodies. Therefore, dysregulation of the Hh pathway is responsible for many developmental diseases and cancers. Basal cell carcinoma and medulloblastoma have well- established links to the Hh pathway, as well as many other cancers with Hh-dysregulated subtypes. A smoothened (SMO) receptor plays a central role in regulating the Hh signaling in the cells. However, the complexities of the receptor structural mechanism of action and other pathway members make it difficult to find Hh pathway inhibitors efficient in a wide range. Recent crystal structure of SMO with cholesterol indicates that it may be a natural ligand for SMO activation. Structural similarity of fluorinated corticosterone derivatives to cholesterol motivated us to study the effect of dexamethasone, fludrocortisone, and corticosterone on the Hh pathway activity. We identified an inhibitory effect of these three drugs on the Hh pathway using a functional assay in NIH3T3 glioma response element cells. Studies using BODIPY-cyclopamine and 20(S)-hydroxy cholesterol [20(S)-OHC] as competitors for the transmembrane (TM) and extracellular cysteine-rich domain (CRD) binding sites showed a non-competitive effect and suggested an alternative or allosteric binding site for the three drugs. -
Ketoconazole Revisited: a Preoperative Or Postoperative Treatment in Cushing's Disease
European Journal of Endocrinology (2008) 158 91–99 ISSN 0804-4643 CLINICAL STUDY Ketoconazole revisited: a preoperative or postoperative treatment in Cushing’s disease F Castinetti, I Morange, P Jaquet, B Conte-Devolx and T Brue Department of Endocrinology, Diabetes, Metabolic Diseases and Nutrition, Hoˆpital de la Timone, Centre Hospitalier Universitaire de Marseille and Faculte´ de Me´decine, Universite´ de la Me´diterrane´e, 264 rue St Pierre, Cedex 5, 13385 Marseille, France (Correspondence should be addressed to T Brue; Email: [email protected]) Abstract Context: Although transsphenoidal surgery remains the first-line treatment in Cushing’s disease (CD), recurrence is observed in about 20% of cases. Adjunctive treatments each have specific drawbacks. Despite its inhibitory effects on steroidogenesis, the antifungal drug ketoconazole was only evaluated in series with few patients and/or short-term follow-up. Objective: Analysis of long-term hormonal effects and tolerance of ketoconazole in CD. Design: A total of 38 patients were retrospectively studied with a mean follow-up of 23 months (6–72). Setting: All patients were treated at the same Department of Endocrinology in Marseille, France. Patients: The 38 patients with CD, of whom 17 had previous transsphenoidal surgery. Intervention: Ketoconazole was begun at 200–400 mg/day and titrated up to 1200 mg/day until biochemical remission. Main outcome measures: Patients were considered controlled if 24-h urinary free cortisol was normalized. Results: Five patients stopped ketoconazole during the first week because of clinical or biological intolerance. On an intention to treat basis, 45% of the patients were controlled as were 51% of those treated long term. -
Pharmaceutical Services Division and the Clinical Research Centre Ministry of Health Malaysia
A publication of the PHARMACEUTICAL SERVICES DIVISION AND THE CLINICAL RESEARCH CENTRE MINISTRY OF HEALTH MALAYSIA MALAYSIAN STATISTICS ON MEDICINES 2008 Edited by: Lian L.M., Kamarudin A., Siti Fauziah A., Nik Nor Aklima N.O., Norazida A.R. With contributions from: Hafizh A.A., Lim J.Y., Hoo L.P., Faridah Aryani M.Y., Sheamini S., Rosliza L., Fatimah A.R., Nour Hanah O., Rosaida M.S., Muhammad Radzi A.H., Raman M., Tee H.P., Ooi B.P., Shamsiah S., Tan H.P.M., Jayaram M., Masni M., Sri Wahyu T., Muhammad Yazid J., Norafidah I., Nurkhodrulnada M.L., Letchumanan G.R.R., Mastura I., Yong S.L., Mohamed Noor R., Daphne G., Kamarudin A., Chang K.M., Goh A.S., Sinari S., Bee P.C., Lim Y.S., Wong S.P., Chang K.M., Goh A.S., Sinari S., Bee P.C., Lim Y.S., Wong S.P., Omar I., Zoriah A., Fong Y.Y.A., Nusaibah A.R., Feisul Idzwan M., Ghazali A.K., Hooi L.S., Khoo E.M., Sunita B., Nurul Suhaida B.,Wan Azman W.A., Liew H.B., Kong S.H., Haarathi C., Nirmala J., Sim K.H., Azura M.A., Asmah J., Chan L.C., Choon S.E., Chang S.Y., Roshidah B., Ravindran J., Nik Mohd Nasri N.I., Ghazali I., Wan Abu Bakar Y., Wan Hamilton W.H., Ravichandran J., Zaridah S., Wan Zahanim W.Y., Kannappan P., Intan Shafina S., Tan A.L., Rohan Malek J., Selvalingam S., Lei C.M.C., Ching S.L., Zanariah H., Lim P.C., Hong Y.H.J., Tan T.B.A., Sim L.H.B, Long K.N., Sameerah S.A.R., Lai M.L.J., Rahela A.K., Azura D., Ibtisam M.N., Voon F.K., Nor Saleha I.T., Tajunisah M.E., Wan Nazuha W.R., Wong H.S., Rosnawati Y., Ong S.G., Syazzana D., Puteri Juanita Z., Mohd.