16-1 John Maynard Keynes and the Consumption Function

Total Page:16

File Type:pdf, Size:1020Kb

16-1 John Maynard Keynes and the Consumption Function CHAPTER SIXTEEN Consumption16 Consumption is the sole end and purpose of all production. — Adam Smith How do households decide how much of their income to consume today and how much to save for the future? This is a microeconomic question because it addresses the behavior of individual decisionmakers.Yet its answer has macroeco- nomic consequences. As we have seen in previous chapters, households’ con- sumption decisions affect the way the economy as a whole behaves both in the long run and in the short run. The consumption decision is crucial for long-run analysis because of its role in economic growth.The Solow growth model of Chapters 7 and 8 shows that the saving rate is a key determinant of the steady-state capital stock and thus of the level of economic well-being.The saving rate measures how much of its in- come the present generation is putting aside for its own future and for future generations. The consumption decision is crucial for short-run analysis because of its role in determining aggregate demand. Consumption is two-thirds of GDP,so fluctu- ations in consumption are a key element of booms and recessions.The IS–LM model of Chapters 10 and 11 shows that changes in consumers’ spending plans can be a source of shocks to the economy, and that the marginal propensity to consume is a determinant of the fiscal-policy multipliers. In previous chapters we explained consumption with a function that relates consumption to disposable income: C = C(Y − T ).This approximation allowed us to develop simple models for long-run and short-run analysis, but it is too simple to provide a complete explanation of consumer behavior. In this chapter we examine the consumption function in greater detail and develop a more thorough explanation of what determines aggregate consumption. Since macroeconomics began as a field of study,many economists have writ- ten about the theory of consumer behavior and suggested alternative ways of interpreting the data on consumption and income. This chapter presents the views of six prominent economists to show the diverse approaches to explain- ing consumption. 432 | User SONPR:Job EFF01432:6264_ch16:Pg 432:28150#/eps at 100% *28150* Wed, Feb 20, 2002 3:12 PM CHAPTER 16 Consumption | 433 16-1 John Maynard Keynes and the Consumption Function We begin our study of consumption with John Maynard Keynes’s General The- ory, which was published in 1936. Keynes made the consumption function cen- tral to his theory of economic fluctuations, and it has played a key role in macroeconomic analysis ever since. Let’s consider what Keynes thought about the consumption function, and then see what puzzles arose when his ideas were confronted with the data. Keynes’s Conjectures Today, economists who study consumption rely on sophisticated techniques of data analysis.With the help of computers, they analyze aggregate data on the be- havior of the overall economy from the national income accounts and detailed data on the behavior of individual households from surveys. Because Keynes wrote in the 1930s, however, he had neither the advantage of these data nor the computers necessary to analyze such large data sets. Instead of relying on statisti- cal analysis, Keynes made conjectures about the consumption function based on introspection and casual observation. First and most important, Keynes conjectured that the marginal propensity to consume—the amount consumed out of an additional dollar of income—is between zero and one. He wrote that the “fundamental psychological law, upon which we are entitled to depend with great confidence,...is that men are dis- posed, as a rule and on the average, to increase their consumption as their income increases, but not by as much as the increase in their income.’’ That is, when a person earns an extra dollar, he typically spends some of it and saves some of it. As we saw in Chapter 10 when we developed the Keynesian cross, the marginal propensity to consume was crucial to Keynes’s policy recommendations for how to reduce widespread unemployment.The power of fiscal policy to influence the economy—as expressed by the fiscal-policy multipliers—arises from the feed- back between income and consumption. Second, Keynes posited that the ratio of consumption to income, called the average propensity to consume, falls as income rises. He believed that saving was a luxury,so he expected the rich to save a higher proportion of their income than the poor.Although not essential for Keynes’s own analysis, the postulate that the average propensity to consume falls as income rises became a central part of early Keynesian economics. Third, Keynes thought that income is the primary determinant of consumption and that the interest rate does not have an important role.This conjecture stood in stark contrast to the beliefs of the classical economists who preceded him. The classical economists held that a higher interest rate encourages saving and discour- ages consumption. Keynes admitted that the interest rate could influence con- sumption as a matter of theory.Yet he wrote that “the main conclusion suggested User SONPR:Job EFF01432:6264_ch16:Pg 433:28151#/eps at 100% *28151* Wed, Feb 20, 2002 3:12 PM 434 | PART VI More on the Microeconomics Behind Macroeconomics figure 16-1 Consumption, C The Keynesian Consumption Function This figure graphs a = + consumption function with C C cY the three properties that Keynes conjectured. First, the marginal propensity to con- sume c is between zero and MPC 1 one. Second, the average C APC propensity to consume falls as income rises. Third, con- 1 APC sumption is determined by 1 current income. Income, Y Note: The marginal propensity to consume, MPC, is the slope of the consumption function. The average propensity to consume, APC = C/Y, equals the slope of a line drawn from the origin to a point on the consumption function. by experience, I think, is that the short-period influence of the rate of interest on individual spending out of a given income is secondary and relatively unimportant.’’ On the basis of these three conjectures, the Keynesian consumption function is often written as − − C = C + cY, C > 0, 0 < c < 1, − where C is consumption, Y is disposable income, C is a constant, and c is the marginal propensity to consume. This consumption function, shown in Figure 16-1, is graphed as a straight line. Notice that this consumption function exhibits the three properties that Keynes posited. It satisfies Keynes’s first property because the marginal propen- sity to consume c is between zero and one, so that higher income leads to higher consumption and also to higher saving. This consumption function satisfies Keynes’s second property because the average propensity to consume APC is − APC = C/Y = C/Y + c. − As Y rises, C/Y falls, and so the average propensity to consume C/Y falls.And fi- nally, this consumption function satisfies Keynes’s third property because the in- terest rate is not included in this equation as a determinant of consumption. The Early Empirical Successes Soon after Keynes proposed the consumption function, economists began col- lecting and examining data to test his conjectures.The earliest studies indicated that the Keynesian consumption function is a good approximation of how con- sumers behave. User SONPR:Job EFF01432:6264_ch16:Pg 434:28152#/eps at 100% *28152* Wed, Feb 20, 2002 3:12 PM CHAPTER 16 Consumption | 435 In some of these studies, researchers surveyed households and collected data on consumption and income.They found that households with higher income consumed more, which confirms that the marginal propensity to consume is greater than zero. They also found that households with higher income saved more, which confirms that the marginal propensity to consume is less than one. In addition, these researchers found that higher-income households saved a larger fraction of their income, which confirms that the average propensity to consume falls as income rises. Thus, these data verified Keynes’s conjectures about the marginal and average propensities to consume. In other studies, researchers examined aggregate data on consumption and in- come for the period between the two world wars.These data also supported the Keynesian consumption function. In years when income was unusually low,such as during the depths of the Great Depression, both consumption and saving were low,indicating that the marginal propensity to consume is between zero and one. In addition, during those years of low income, the ratio of consumption to in- come was high, confirming Keynes’s second conjecture. Finally,because the cor- relation between income and consumption was so strong, no other variable appeared to be important for explaining consumption.Thus, the data also con- firmed Keynes’s third conjecture that income is the primary determinant of how much people choose to consume. Secular Stagnation, Simon Kuznets, and the Consumption Puzzle Although the Keynesian consumption function met with early successes, two anomalies soon arose. Both concern Keynes’s conjecture that the average propen- sity to consume falls as income rises. The first anomaly became apparent after some economists made a dire—and, it turned out, erroneous—prediction during World War II. On the basis of the Keynesian consumption function, these economists reasoned that as incomes in the economy grew over time, households would consume a smaller and smaller fraction of their incomes.They feared that there might not be enough profitable investment projects to absorb all this saving. If so, the low consumption would lead to an inadequate demand for goods and services, resulting in a depression once the wartime demand from the government ceased. In other words, on the basis of the Keynesian consumption function, these economists predicted that the economy would experience what they called secular stagnation—a long de- pression of indefinite duration—unless fiscal policy was used to expand aggre- gate demand.
Recommended publications
  • Chapter 17: Consumption 1
    11/6/2013 Keynes’s conjectures Chapter 17: Consumption 1. 0 < MPC < 1 2. Average propensity to consume (APC) falls as income rises. (APC = C/Y ) 3. Income is the main determinant of consumption. CHAPTER 17 Consumption 0 CHAPTER 17 Consumption 1 The Keynesian consumption function The Keynesian consumption function As income rises, consumers save a bigger C C fraction of their income, so APC falls. CCcY CCcY c c = MPC = slope of the 1 CC consumption APC c C function YY slope = APC Y Y CHAPTER 17 Consumption 2 CHAPTER 17 Consumption 3 Early empirical successes: Problems for the Results from early studies Keynesian consumption function . Households with higher incomes: . Based on the Keynesian consumption function, . consume more, MPC > 0 economists predicted that C would grow more . save more, MPC < 1 slowly than Y over time. save a larger fraction of their income, . This prediction did not come true: APC as Y . As incomes grew, APC did not fall, . Very strong correlation between income and and C grew at the same rate as income. consumption: . Simon Kuznets showed that C/Y was income seemed to be the main very stable in long time series data. determinant of consumption CHAPTER 17 Consumption 4 CHAPTER 17 Consumption 5 1 11/6/2013 The Consumption Puzzle Irving Fisher and Intertemporal Choice . The basis for much subsequent work on Consumption function consumption. C from long time series data (constant APC ) . Assumes consumer is forward-looking and chooses consumption for the present and future to maximize lifetime satisfaction. Consumption function . Consumer’s choices are subject to an from cross-sectional intertemporal budget constraint, household data a measure of the total resources available for (falling APC ) present and future consumption.
    [Show full text]
  • Toward a Theory of Intertemporal Policy Choice Alan M. Jacobs
    Democracy, Public Policy, and Timing: Toward a Theory of Intertemporal Policy Choice Alan M. Jacobs Department of Political Science University of British Columbia C472 – 1866 Main Mall Vancouver, B.C. V6T 1Z1 [email protected] DRAFT: DO NOT CITE Presented at the Annual Conference of the Canadian Political Science Association, June 3-5, 2004, at the University of Manitoba, Winnipeg. In the title to a 1950 book, Harold Lasswell provided what has become a classic definition of politics: “Who Gets What, When, How.”1 Lasswell’s definition is an invitation to study political life as a fundamental process of distribution, a struggle over the production and allocation of valued goods. It is striking how much of political analysis – particularly the study of what governments do – has assumed this distributive emphasis. It would be only a slight simplification to describe the fields of public policy, welfare state politics, and political economy as comprised largely of investigations of who gets or loses what, and how. Why and through what causal mechanisms, scholars have inquired, do governments take actions that benefit some groups and disadvantage others? Policy choice itself has been conceived of primarily as a decision about how to pay for, produce, and allocate socially valued outcomes. Yet, this massive and varied research agenda has almost completely ignored one part of Lasswell’s short definition. The matter of when – when the benefits and costs of policies arrive – seems somehow to have slipped the discipline’s collective mind. While we have developed subtle theoretical tools for explaining how governments impose costs and allocate goods at any given moment, we have devoted extraordinarily little attention to illuminating how they distribute benefits and burdens over time.
    [Show full text]
  • ECON 302: Intermediate Macroeconomic Theory (Fall 2014)
    ECON 302: Intermediate Macroeconomic Theory (Fall 2014) Discussion Section 2 September 19, 2014 SOME KEY CONCEPTS and REVIEW CHAPTER 3: Credit Market Intertemporal Decisions • Budget constraint for period (time) t P ct + bt = P yt + bt−1 (1 + R) Interpretation of P : note that the unit of the equation is dollar valued. The real value of one dollar is the amount of goods this one dollar can buy is 1=P that is, the real value of bond is bt=P , the real value of consumption is P ct=P = ct. Normalization: we sometimes normalize price P = 1, when there is no ination. • A side note for income yt: one may associate yt with `t since yt = f (`t) here that is, output is produced by labor. • Two-period model: assume household lives for two periods that is, there are t = 1; 2. Household is endowed with bond or debt b0 at the beginning of time t = 1. The lifetime income is given by (y1; y2). The decision variables are (c1; c2; b1; b2). Hence, we have two budget-constraint equations: P c1 + b1 = P y1 + b0 (1 + R) P c2 + b2 = P y2 + b1 (1 + R) Combining the two equations gives the intertemporal (lifetime) budget constraint: c y b (1 + R) b c + 2 = y + 2 + 0 − 2 1 1 + R 1 1 + R P P (1 + R) | {z } | {z } | {z } | {z } (a) (b) (c) (d) (a) is called real present value of lifetime consumption, (b) is real present value of lifetime income, (c) is real present value of endowment, and (d) is real present value of bequest.
    [Show full text]
  • The Intertemporal Keynesian Cross
    The Intertemporal Keynesian Cross Adrien Auclert Matthew Rognlie Ludwig Straub February 14, 2018 PRELIMINARY AND INCOMPLETE,PLEASE DO NOT CIRCULATE Abstract This paper develops a novel approach to analyzing the transmission of shocks and policies in many existing macroeconomic models with nominal rigidities. Our approach is centered around a network representation of agents’ spending patterns: nodes are goods markets at different times, and flows between nodes are agents’ marginal propensities to spend income earned in one node on another one. Since, in general equilibrium, one agent’s spending is an- other agent’s income, equilibrium demand in each node is described by a recursive equation with a special structure, which we call the intertemporal Keynesian cross (IKC). Each solution to the IKC corresponds to an equilibrium of the model, and the direction of indeterminacy is given by the network’s eigenvector centrality measure. We use results from Markov chain potential theory to tightly characterize all solutions. In particular, we derive (a) a generalized Taylor principle to ensure bounded equilibrium determinacy; (b) how most shocks do not af- fect the net present value of aggregate spending in partial equilibrium and nevertheless do so in general equilibrium; (c) when heterogeneity matters for the aggregate effect of monetary and fiscal policy. We demonstrate the power of our approach in the context of a quantitative Bewley-Huggett-Aiyagari economy for fiscal and monetary policy. 1 Introduction One of the most important questions in macroeconomics is that of how shocks are propagated and amplified in general equilibrium. Recently, shocks that have received particular attention are those that affect households in heterogeneous ways—such as tax rebates, changes in monetary policy, falls in house prices, credit crunches, or increases in economic uncertainty or income in- equality.
    [Show full text]
  • Intertemporal Choice and Competitive Equilibrium
    Intertemporal Choice and Competitive Equilibrium Kirsten I.M. Rohde °c Kirsten I.M. Rohde, 2006 Published by Universitaire Pers Maastricht ISBN-10 90 5278 550 3 ISBN-13 978 90 5278 550 9 Printed in The Netherlands by Datawyse Maastricht Intertemporal Choice and Competitive Equilibrium PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Maastricht, op gezag van de Rector Magni¯cus, prof. mr. G.P.M.F. Mols volgens het besluit van het College van Decanen, in het openbaar te verdedigen op vrijdag 13 oktober 2006 om 14.00 uur door Kirsten Ingeborg Maria Rohde UMP UNIVERSITAIRE PERS MAASTRICHT Promotores: Prof. dr. P.J.J. Herings Prof. dr. P.P. Wakker Beoordelingscommissie: Prof. dr. H.J.M. Peters (voorzitter) Prof. dr. T. Hens (University of ZÄurich, Switzerland) Prof. dr. A.M. Riedl Contents Acknowledgments v 1 Introduction 1 1.1 Intertemporal Choice . 2 1.2 Intertemporal Behavior . 4 1.3 General Equilibrium . 5 I Intertemporal Choice 9 2 Koopmans' Constant Discounting: A Simpli¯cation and an Ex- tension to Incorporate Economic Growth 11 2.1 Introduction . 11 2.2 The Result . 13 2.3 Related Literature . 18 2.4 Conclusion . 21 2.5 Appendix A. Proofs . 21 2.6 Appendix B. Example . 25 3 The Hyperbolic Factor: a Measure of Decreasing Impatience 27 3.1 Introduction . 27 3.2 The Hyperbolic Factor De¯ned . 30 3.3 The Hyperbolic Factor and Discounted Utility . 32 3.3.1 Constant Discounting . 33 3.3.2 Generalized Hyperbolic Discounting . 33 3.3.3 Harvey Discounting . 34 i Contents 3.3.4 Proportional Discounting .
    [Show full text]
  • Intertemporal Consumption-Saving Problem in Discrete and Continuous Time
    Chapter 9 The intertemporal consumption-saving problem in discrete and continuous time In the next two chapters we shall discuss and apply the continuous-time version of the basic representative agent model, the Ramsey model. As a prepa- ration for this, the present chapter gives an account of the transition from discrete time to continuous time analysis and of the application of optimal control theory to set up and solve the household’s consumption/saving problem in continuous time. There are many fields in economics where a setup in continuous time is prefer- able to one in discrete time. One reason is that continuous time formulations expose the important distinction in dynamic theory between stock and flows in a much clearer way. A second reason is that continuous time opens up for appli- cation of the mathematical apparatus of differential equations; this apparatus is more powerful than the corresponding apparatus of difference equations. Simi- larly, optimal control theory is more developed and potent in its continuous time version than in its discrete time version, considered in Chapter 8. In addition, many formulas in continuous time are simpler than the corresponding ones in discrete time (cf. the growth formulas in Appendix A). As a vehicle for comparing continuous time modeling with discrete time mod- eling we consider a standard household consumption/saving problem. How does the household assess the choice between consumption today and consumption in the future? In contrast to the preceding chapters we allow for an arbitrary num- ber of periods within the time horizon of the household. The period length may thus be much shorter than in the previous models.
    [Show full text]
  • Behavioural Economics Mark.Hurlstone @Uwa.Edu.Au Behavioural Economics Outline
    Behavioural Economics mark.hurlstone @uwa.edu.au Behavioural Economics Outline Intertemporal Choice Exponential PSYC3310: Specialist Topics In Psychology Discounting Discount Factor Utility Streams Mark Hurlstone Delta Model Univeristy of Western Australia Implications Indifference Discount Rates Limitations Seminar 7: Intertemporal Choice Hyperbolic Discounting Beta-delta model CSIRO-UWA Behavioural Present-Bias Strengths & Economics Limitations BEL Laboratory [email protected] Behavioural Economics Today Behavioural Economics • mark.hurlstone Examine preferences (4), time (2), and utility @uwa.edu.au maximisation (1) in standard model) Outline (1) (2) (3) (4) Intertemporal Choice Exponential Discounting Discount Factor Utility Streams Delta Model Implications Indifference Discount Rates • Intertemporal choice—the exponential discounting Limitations model Hyperbolic Discounting • anomalies in the standard Model Beta-delta model Present-Bias • behavioural economic alternative—quasi-hyperbolic Strengths & Limitations discounting [email protected] Behavioural Economics Today Behavioural Economics • mark.hurlstone Examine preferences (4), time (2), and utility @uwa.edu.au maximisation (1) in standard model) Outline (1) (2) (3) (4) Intertemporal Choice Exponential Discounting Discount Factor Utility Streams Delta Model Implications Indifference Discount Rates • Intertemporal choice—the exponential discounting Limitations model Hyperbolic Discounting • anomalies in the standard Model Beta-delta model Present-Bias • behavioural
    [Show full text]
  • Intertemporal Choices with Temporal Preferences
    INTERTEMPORAL CHOICES WITH TEMPORAL PREFERENCES by Hyeon Sook Park B.A./M.A. in Economics, Seoul National University, 1992 M.A. in Economics, The University of Chicago, 1997 M.S. in Mathematics & C.S., Chicago State University, 2001 M.S. in Financial Mathematics, The University of Chicago, 2004 Submitted to the Graduate Faculty of the Kenneth P. Dietrich Arts and Sciences in partial ful…llment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2012 UNIVERSITY OF PITTSBURGH DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Hyeon Sook Park It was defended on May 24, 2012 and approved by John Du¤y, Professor of Economics, University of Pittsburgh James Feigenbaum, Associate Professor of Economics,Utah State University Marla Ripoll, Associate Professor of Economics, University of Pittsburgh David DeJong, Professor of Economics, University of Pittsburgh Dissertation Director: John Du¤y, Professor of Economics, University of Pittsburgh ii INTERTEMPORAL CHOICES WITH TEMPORAL PREFERENCES Hyeon Sook Park, PhD University of Pittsburgh, 2012 This dissertation explores the general equilibrium implications of inter-temporal decision- making from a behavioral perspective. The decision makers in my essays have psychology- driven, non-traditional preferences and they either have short term planning horizons, due to bounded rationality (Essay 1), or have present biased preferences (Essay 2) or their utilities depend not only on the periodic consumption but are also dependent upon their expectations about present and future optimal consumption (Essay 3). Finally, they get utilities from the act of caring for others through giving and volunteering (Essay 4). The decision makers who are de…ned by these preferences are re-optimizing over time if they realize that their past decisions for today are no longer optimal and this is the key mechanism that helps replicate the mean lifecycle consumption data which is known to be hump-shaped over the lifecycle.
    [Show full text]
  • Labour Market Effects of Unemployment Accounts: Insights from Behavioural Economics
    Tjalling C. Koopmans Research Institute Tjalling C. Koopmans Research Institute Utrecht School of Economics Utrecht University Janskerkhof 12 3512 BL Utrecht The Netherlands telephone +31 30 253 9800 fax +31 30 253 7373 website www.koopmansinstitute.uu.nl The Tjalling C. Koopmans Institute is the research institute and research school of Utrecht School of Economics. It was founded in 2003, and named after Professor Tjalling C. Koopmans, Dutch-born Nobel Prize laureate in economics of 1975. In the discussion papers series the Koopmans Institute publishes results of ongoing research for early dissemination of research results, and to enhance discussion with colleagues. Please send any comments and suggestions on the Koopmans institute, or this series to [email protected] çåíïÉêé=îççêÄä~ÇW=tofh=ríêÉÅÜí How to reach the authors Please direct all correspondence to the first author. Thomas van Huizen Janneke Plantenga Utrecht University Utrecht School of Economics Janskerkhof 12 3512 BL Utrecht The Netherlands. E-mail: [email protected] E-mail: [email protected] This paper can be downloaded at: http:// www.uu.nl/rebo/economie/discussionpapers Utrecht School of Economics Tjalling C. Koopmans Research Institute Discussion Paper Series 11-07 Labour market effects of unemployment accounts: insights from behavioural economics Thomas van Huizen Janneke Plantenga Utrecht School of Economics Utrecht University March 2011 Abstract This paper reconsiders the behavioural effects of replacing the existing unemployment insurance system with unemployment accounts (UAs). Under this alternative system, workers are required to save a fraction of their wage in special accounts whereas the unemployed are allowed to withdraw savings from these accounts.
    [Show full text]
  • Intertemporal Choice and Inequality
    Intertemporal Choice and Inequality Angus Deaton and ChristinaPaxson Princeton University The permanent income hypothesis implies that, for any cohort of people born at the same time, inequality in both consumption and income should grow with age. We investigate this prediction using cohort data constructed from 11 years of household survey data from the United States, 22 years from Great Britain, and 14 years from Taiwan. The data show that within-cohort consumption and income inequality measures do indeed increase with age in the three economies and that the rate of increase is similar in all three. Ac- cording to the permanent income hypothesis, the increase in in- equality reflects cumulative differences in the effects of luck on con- sumption. Other models of intertemporal choice-such as those with strong precautionary motives or liquidity constraints-can limit or even prevent the spread of inequality, as can insurance arrange- ments that share risk across individuals. The evidence on the spread of inequality can therefore be used to help quantify the extent to which private and social arrangements moderate the impact of risk on the distribution of individual welfare. I. Introduction Suppose that the permanent income hypothesis (PIH) is true, so that the consumption of each person in the economy follows a random We are grateful to James Banks and Richard Blundell for the cohort data for Great Britain and to Orazio Attanasio for the U.S. data that were used in an earlier version of this paper. We also thank Tim Besley, Anne Case, Ben Eden, Steve Davis, Marjorie Flavin, Robert Hall, Alan Krueger, Robert Lucas, Thierry Magnac, Jean-Marc Robin, Joe Stiglitz, participants in the National Bureau of Economic Research's February 1993 Economic Fluctuations Research meeting, and an anonymous referee for helpful suggestions.
    [Show full text]
  • Random Intertemporal Choice
    Available online at www.sciencedirect.com ScienceDirect Journal of Economic Theory 177 (2018) 780–815 www.elsevier.com/locate/jet ✩ Random intertemporal choice ∗ Jay Lu a, , Kota Saito b a University of California, Los Angeles, United States b California Institute of Technology, United States Received 11 April 2017; final version received 27 May 2018; accepted 15 August 2018 Available online 17 August 2018 Abstract We provide a theory of random intertemporal choice. Agents exhibit stochastic choice over consump- tion due to preference shocks to discounting attitudes. We first demonstrate how the distribution of these preference shocks can be uniquely identified from random choice data. We then provide axiomatic char- acterizations of some common random discounting models, including exponential and quasi-hyperbolic discounting. In particular, we show how testing for exponential discounting under stochastic choice in- volves checking for both a stochastic version of stationarity and a novel axiom characterizing decreasing impatience. © 2018 Elsevier Inc. All rights reserved. JEL classification: D8; D9 Keywords: Stochastic choice; Intertemporal choice; Discounting; Stationarity 1. Introduction In many economic situations, it is useful to model intertemporal choices, i.e. decisions in- volving tradeoffs between earlier or later consumption, as stochastic or random. For instance, in typical models of random utility used in discrete choice estimation, this randomness is driven by ✩ We want to thank David Ahn, Jose Apesteguia, Miguel Ballester, Yoram Halevy, Yoichiro Higashi, Vijay Krishna, Tomasz Strzalecki, Charlie Sprenger and participants at D-Day at Duke, LA Theory Bash, UCSD, Barcelona GSE Stochastic Choice Workshop, D-TEA and the 16th SAET Conference at IMPA for their helpful comments.
    [Show full text]
  • The Neurobiology of Intertemporal Choice: Insight from Imaging and Lesion Studies
    AUTHOR’S COPY | AUTORENEXEMPLAR Rev. Neurosci., Vol. 22(5): 565–574, 2011 • Copyright © by Walter de Gruyter • Berlin • Boston. DOI 10.1515/RNS.2011.046 The neurobiology of intertemporal choice: insight from imaging and lesion studies Manuela Sellitto 1,2 , Elisa Ciaramelli 1,2 and me to indulge in the present or postpone the gain ? In taking Giuseppe di Pellegrino 1,2, * into account what they prefer and how long they are willing to wait to obtain it, all intertemporal choices affect people ’ s 1 Dipartimento di Psicologia , Universit à di Bologna, 40127 health, wealth and mood (Frederick et al. , 2002 ). Bologna , Italy Humans and other animals ’ preferences for one option over 2 Centro studi e ricerche in Neuroscienze Cognitive , Polo another refl ect not just the amount of expected reward, but also Scientifi co-Didattico di Cesena, 47521 Cesena , Italy the time at which reward will be received. Economic models * Corresponding author usually explain this in terms of maximization of achieved util- e-mail: [email protected] ity (Kalenscher and Pennartz , 2008 ). In order to choose the most rewarding course of action, people consider the utility of the temporally proximal outcome against the utility they Abstract assign to a temporally distant outcome. To explore such an issue in the laboratory (both from an economic and psycho- People are frequently faced with intertemporal choices, i.e., logical point of view), these decisional situations are usually choices differing in the timing of their consequences, pre- recreated manipulating the amount of the offered rewards ferring smaller rewards available immediately over larger (e.g., money for humans), and the time at which these rewards rewards delivered after a delay.
    [Show full text]