Oxidation of Thiol Using Ionic Liquid-Supported Organotelluride As a Recyclable Catalyst

Total Page:16

File Type:pdf, Size:1020Kb

Oxidation of Thiol Using Ionic Liquid-Supported Organotelluride As a Recyclable Catalyst catalysts Communication Oxidation of Thiol Using Ionic Liquid-Supported Organotelluride as a Recyclable Catalyst Aya Mihoya 1, Shinichi Koguchi 1,*, Yuga Shibuya 1, Minato Mimura 1 and Makoto Oba 2,* 1 Department of Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan; [email protected] (A.M.); [email protected] (Y.S.); [email protected] (M.M.) 2 Graduate School of Science and Technology, Tokai University, 3-20-1 Orido, Shimizu-ku, Shizuoka 424-8610, Japan * Correspondence: [email protected] (S.K.); [email protected] (M.O.); Tel.: +81-46-358-1211 (ext. 3752) (S.K.); +81-54-334-0411 (ext. 3210) (M.O.) Received: 16 March 2020; Accepted: 3 April 2020; Published: 4 April 2020 Abstract: Organotellurium compounds are known to be useful oxidation reagents. For developing a recoverable and reusable reagent, this paper describes the use of an ionic liquid (IL) support for the organotellurium reagent and its application as a recyclable catalyst for thiol oxidation. We have successfully prepared a novel diphenyl telluride derivative 5 bearing an imidazolium hexafluorophosphate group in its structure. It is found that the IL-supported diphenyl telluride 5 efficiently catalyzed the aerobic oxidation of various thiols in [bmim]PF6 solution under photosensitized conditions to provide the corresponding disulfides in excellent yields. The product can be isolated by simple ether extraction. The IL-supported catalyst 5 remaining in the ionic liquid phase can be reused for five successive runs while retaining high catalytic activity (97% yield even in the fifth run). Keywords: ionic liquid; recyclable catalyst; organotellurium compound; aerobic oxidation; thiol; photosensitized oxygenation 1. Introduction Recently, organotellurium oxides have been recognized as useful oxidation reagents [1]. In particular, diaryl telluroxides, tellurones, and aryltellurinic acid derivatives have been identified as versatile and effective oxidants for alcohols, phosphines, thiols, thiocarbonyl compounds, and so on [2–11]. Generally, these oxidation reactions require stoichiometric amounts of organotellurium reagents. From synthetic, economic, and environmental perspectives, the development of a catalytic process is desirable. Herein, we have developed organotelluride-catalyzed oxidation of phosphites to phosphates [12], silanes to silanols [13], and thiols to disulfides [14] while employing aerobic oxygen as a terminal oxidant under photosensitized conditions, where the in situ generation of tellurium oxide species by singlet oxygen oxidation is expected. However, the protocol is not without disadvantages, for instance, the product requires isolation by chromatographic purification, and the organotelluride catalyst is rarely reusable. To overcome these issues, we envisioned to immobilize the organotelluride catalyst on an ionic liquid (IL) support. IL-supported organic synthesis and catalysis have been extensively studied in recent years [15]. Due to its high polarity, the IL support offers the advantages of easy product isolation and catalyst recycling via simple phase separation. We have previously reported the synthesis of IL-supported 18-crown-6 ether [16], ascorbate-based IL [17], and IL-supported benzyl chloride [18] for Huisgen click chemistry, IL-supported hypervalent iodine reagent [19] for alcohol oxidation, and IL-supported 1,3-dimethylimidazolidin-2-one for halogenation [20]. Herein, we describe the synthesis of IL-supported Catalysts 2020, 10, 398; doi:10.3390/catal10040398 www.mdpi.com/journal/catalysts Catalysts 2020, 10, 398 2 of 8 diphenyl telluride as a recoverable and reusable oxidation catalyst. The catalytic activity and recyclability of the reagent are evaluated via aerobic oxidation of thiols under photosensitized Catalysts 2019, 9, x FOR PEER REVIEW 2 of 8 conditions. The transformation of thiols to disulfides is of interest from the viewpoint of organic and biologicaland recyclability processes. of the reagent are evaluated via aerobic oxidation of thiols under photosensitized conditions. The transformation of thiols to disulfides is of interest from the viewpoint of organic and 2.biological Results andprocess Discussiones. The IL-supported diphenyl telluride was prepared in the following manner 2. Results and Discussion (Scheme1). Using (4-(hydroxymethyl)phenyl)boronic acid ( 1) as the starting material, (4- (phenyltellanyl)phenyl)methanolThe IL-supported diphenyl telluride (2) was was prepared produced in the following in 84% manner yield (Scheme from 1). the Using coupling (4-(hydroxymethyl)phenyl)boronic acid (1) as the starting material, (4- reaction with diphenyl ditelluride. Next, (4-(chloromethyl)phenyl)(phenyl)tellane (3) was (phenyltellanyl)phenyl)methanol (2) was produced in 84% yield from the coupling reaction with prepared in 94% yield via halogenation with thionyl chloride followed by basic hydrolysis. diphenyl ditelluride. Next, (4-(chloromethyl)phenyl)(phenyl)tellane (3) was prepared in 94% yield Then,via halogen 1-methyl-3-(4-(phenyltellanyl)benzyl)-1ation with thionyl chloride followedH-imidazol-3-ium by basic hydrolysis. chloride (4Then,) was 1 obtained-methyl-3 in-(4 75%- yield by(phenyltellanyl)benzyl) reacting the compound-1H-3imidazolwith methyl-3-ium imidazole.chloride (4)Since was obtained this IL-supported in 75% yield telluride by reacting4 was the extremely hygroscopic,compound 3 thewith anion methyl was imidazole. subsequently Since this converted IL-supported to PF telluride6− to produce 4 was extremely hydrophobic hygroscopic, IL-supported diphenylthe anion telluride was subsequently (5) in 96% yield,converted which to wasPF6− insolubleto produce in hydrophobic low polarity IL organic-supported solvents diphenyl and water. telluride (5) in 96% yield, which was insoluble in low polarity organic solvents and water. SchemeScheme 1. 1. SynthesisSynthesis of ionic of ionic liquid liquid-supported-supported diphenyl diphenyl telluride. telluride. Initially,Initially,we we investigatedinvestigated the the catalytic catalytic oxidation oxidation of ofthiol thiol using using IL-supported IL-supported diphenyl diphenyl telluride telluride in variousin various ILs ILs employing employing thiophenol thiophenol as the the model model substrate. substrate. An IL An solution IL solution of the ofthiol, the IL thiol,-supported IL-supported catalyst,catalyst, and and roserose bengalbengal as as a a pho photosensitizertosensitizer were were stirred stirred in an in open an open flask flask and irradiated and irradiated with a with 500- a 500-W halogenW halogen lamp. lamp. After After 3 h, 3 theh, the produced produced diphenyl diphenyl disulfidedisulfide was isolated isolated by by extracting extracting with with diethyl diethyl ether. ether. The yields are compiled in Table 1. The catalytic activities of the IL-supported diphenyl The yields are compiled in Table1. The catalytic activities of the IL-supported diphenyl tellurides 4 tellurides 4 and 5 were similar to or higher than that of free diphenyl telluride (Entry 7), whereas the andreaction5 were was similar significantly to or retarded higher than in the that absence of free of the diphenyl catalyst telluride(Entry 8). The (Entry presence 7), whereas of oxygen the is reaction wasalso significantly essential for retardedthis transformation in the absence. In fact, of the the reaction catalyst under (Entry nitrogen 8). The atmosphere presence resulted of oxygen in is also essentialsignificant for yield this transformation.reduction (Entry 9). In Although fact, the reaction the reaction under in [bmim](CF nitrogen atmosphere3SO2)2N and [bmim]MeSO resulted in significant4 yieldreached reduction completion, (Entry the 9). isolated Although yields the were reaction slightly in [bmim](CF lowered owing3SO2) 2toN the and phase [bmim]MeSO separation4 reached completion,problems (Entries the isolated 1 and yields2). The werebest result slightly was lowered obtained owing using toa thehydrophobic phase separation IL, [bmim]PF problems6, as a (Entries solvent (Entry 3). Diphenyl disulfide was also isolated in quantitative yields in Entries 4 and 6, 1 and 2). The best result was obtained using a hydrophobic IL, [bmim]PF6, as a solvent (Entry 3). however, the IL [bmim]BF4 and the IL-supported catalyst 4 were unsuitable for reuse because of their Diphenyl disulfide was also isolated in quantitative yields in Entries 4 and 6, however, the IL [bmim]BF4 andhygroscopic the IL-supported nature. catalyst 4 were unsuitable for reuse because of their hygroscopic nature. AlthoughTable the active 1. Oxidation species of forthiophenol this oxidation in the presence reaction of organotellurium could not be catalysts identified a. at the present stage, a possible catalytic cycle was proposed according to our previous paper (Figure1)[ 14]. Namely, singlet oxygen oxidation of the telluride catalyst 5 gave the corresponding telluroxide (and/or tellurone), which underwent a nucleophilic attack by thiol to afford an adduct A. Then, the adduct A reacted with another thiol to give the disulfide along with regeneration of the catalyst 5 . Entry Tellurium catalyst Solvent Yield (%) b 1 5 [bmim](CF3SO2)2N 78 Catalysts 2019, 9, x FOR PEER REVIEW 2 of 8 and recyclability of the reagent are evaluated via aerobic oxidation of thiols under photosensitized conditions. The transformation of thiols to disulfides is of interest from the viewpoint of organic and biological processes. 2. Results and Discussion The IL-supported diphenyl telluride was prepared in the following
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,575,037 B2 Acharya Et Al
    USOO9575037B2 (12) United States Patent (10) Patent No.: US 9,575,037 B2 Acharya et al. (45) Date of Patent: Feb. 21, 2017 (54) DETECTION OF GAS-PHASE ANALYTES G01N 33/0037: G01N 33/0044; Y10T USING LIQUID CRYSTALS 436/17; Y10T 436/173076; Y10T 436/177692; Y1OT 436/18: Y10T (71) Applicant: Platypus Technologies, LLC, Madison, 436/184; Y10T 436/20: Y10T WI (US) 436/200833; Y10T 436/202499; Y10T 436/25875 (72) Inventors: Bharat R. Acharya, Madison, WI (US); Kurt A. Kupcho, Madison, WI USPC ........ 436/106, 110, 116, 118, 121, 127, 128, (US); Bart A. Grinwald, Verona, WI 436/130, 164, 165, 167, 181; 422/50, (US); Sheila E. Robinson, Fitchburg, 422/68.1, 82.05, 82.09, 83, 88 WI (US): Avijit Sen, Madison, WI See application file for complete search history. (US); Nicholas Abbott, Madison, WI (US) (56) References Cited U.S. PATENT DOCUMENTS (73) Assignee: PLATYPUS TECHNOLOGIES, LLC, Madison, WI (US) 4,772,376 A * 9/1988 Yukawa ............... GON 27,417 204,410 (*) Notice: Subject to any disclaimer, the term of this 6,284, 197 B1 9, 2001 Abbott et al. patent is extended or adjusted under 35 6,858,423 B1* 2/2005 Abbott ................... B82Y 15.00 435/287.2 U.S.C. 154(b) by 0 days. 7,135,143 B2 11/2006 Abbott et al. 2010/0093.096 A1* 4/2010 Acharya ................ B82Y 3O/OO (21) Appl. No.: 14/774,964 436/4 2012/0288951 A1 11/2012 Acharya et al. (22) PCT Fed: Mar. 12, 2014 FOREIGN PATENT DOCUMENTS (86) PCT No.: PCT/US2O14/O24735 WO 99.63329 12/1999 S 371 (c)(1), WO O1? 61325 8, 2001 (2) Date: Sep.
    [Show full text]
  • Highly Selective Addition of Organic Dichalcogenides to Carbon-Carbon Unsaturated Bonds
    Highly Selective Addition of Organic Dichalcogenides to Carbon-Carbon Unsaturated Bonds Akiya Ogawa and Noboru Sonoda Department of Applied Chemistry, Faculty of Engineering, Osaka University, Abstract: Highly chemo-, regio- and/or stereoselective addition of organic dichalcogenides to carbon-carbon unsaturated bonds has been achieved based on two different methodologies for activation of the chalcogen-chalcogen bonds, i.e., by the aid of transition metal catalysts and by photoirradiation. The former is the novel transition metal-catalyzed reactions of organic dichalcogenides with acetylenes via oxidative addition of dichalcogenides to low valent transition metal complexes such as Pd(PPh3)4. The latter is the photoinitiated radical addition of organic dichalcogenides to carbon-carbon unsaturated bonds via homolytic cleavage of the chalcogen-chalcogen bonds to generate the corresponding chalcogen-centered radicals as the key species. 1. Introduction The clarification of the specific chemical properties of heteroatoms and the development of useful synthetic reactions based on these characteristic features have been the subject of continuing interest (ref. 1). This paper deals with new synthetic methods for introducing group 16 elements into organic molecules, particularly, synthetic reactions based on the activation of organic dichalcogenides, i.e., disulfides, diselenides, and ditellurides, by transition metal catalysts and by photoirradiation. In transition metal-catalyzed reactions, metal sulfides (RS-ML) are formed as the key species, whereas the thiyl radicals (ArS•E) play important roles in photoinitiated reactions. These species exhibit different selectivities toward the addition process to carbon-carbon unsaturated compounds. The intermediates formed in situ by the addition, i.e., vinylic metals and vinylic radicals, could successfully be subjected to further manipulation leading to useful synthetic transformations.
    [Show full text]
  • Working with Hazardous Chemicals
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • Disulfide-Catalyzed Visible-Light-Mediated Oxidative Cleavage of C=C Bonds and Evidence of an Olefin–Disulfide Charge- Transfer Complex
    Disulfide-catalyzed visible-light-mediated oxidative cleavage of C=C Bonds and evidence of an olefin–disulfide charge- transfer complex Citation for published version (APA): Deng, Y., Wang, H., Wei, X., Sun, Y., Noël, T., & Wang, X. (2017). Disulfide-catalyzed visible-light-mediated oxidative cleavage of C=C Bonds and evidence of an olefin–disulfide charge-transfer complex. Angewandte Chemie - International Edition, 56(3), 832-836. https://doi.org/10.1002/anie.201607948 DOI: 10.1002/anie.201607948 Document status and date: Published: 16/01/2017 Document Version: Accepted manuscript including changes made at the peer-review stage Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
    [Show full text]
  • Lawrence Berkeley Laboratory UNIVERSITY of CALIFORNIA Materials & Molecular L': Research Division
    Lawrence Berkeley National Laboratory Recent Work Title THE EFFECTS OF ZINC CHLORIDE ON SULFUR REMOVAL FROM COAL-RELATED STRUCTURES Permalink https://escholarship.org/uc/item/1rg844h5 Author Mobley, D.P. Publication Date 1980 eScholarship.org Powered by the California Digital Library University of California LBL-9023 (J :z Prepri nt ' • Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA Materials & Molecular l': Research Division . Submitted to FUEL THE EFFECTS OF ZINC CHLORIDE ON SULFUR REMOVAL FROM COAL-RELATED STRUCTURES l"?ECEI'IED LAWRENCE BERI<61.EVLAIlORATORY David P. Mobley and Alexis T. Bell FEB 251980 January 1980 LIBRARY AND DOCUMENTS SECTION TWO-WEEK LOAN COpy This is a Library Circulating Copy which may be borrowed for two weeks. \' For a personal retention copy, call ~ f' Tech. Info. Division~ Ext. 6782. ! '\.~ ~ ." R; ~. Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 ~ '" DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California.
    [Show full text]
  • Photoinduced Synthesis of Unsymmetrical Diaryl Selenides from Triarylbismuthines and Diaryl Diselenides
    Photoinduced synthesis of unsymmetrical diaryl selenides from triarylbismuthines and diaryl diselenides Yohsuke Kobiki, Shin-ichi Kawaguchi, Takashi Ohe and Akiya Ogawa* Letter Open Access Address: Beilstein J. Org. Chem. 2013, 9, 1141–1147. Department of Applied Chemistry, Graduate School of Engineering, doi:10.3762/bjoc.9.127 Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan Received: 16 April 2013 Accepted: 22 May 2013 Email: Published: 13 June 2013 Akiya Ogawa* - [email protected] This article is part of the Thematic Series "Organic free radical chemistry". * Corresponding author Guest Editor: C. Stephenson Keywords: arylation; unsymmetrical diaryl selenide; free radical; organobismuth; © 2013 Kobiki et al; licensee Beilstein-Institut. photoinduced reaction License and terms: see end of document. Abstract A novel method of photoinduced synthesis of unsymmetrical diaryl selenides from triarylbismuthines and diaryl diselenides has been developed. Although the arylation reactions with triarylbismuthines are usually catalyzed by transition-metal complexes, the present arylation of diaryl diselenides with triarylbismuthines proceeds upon photoirradiation in the absence of transition-metal catalysts. A variety of unsymmetrical diaryl selenides can be conveniently prepared by using this arylation method. Introduction A number of organoselenium compounds are known to be bio- has led to several applications in organic synthesis [33]. There- logically active [1-4]. In particular, diaryl selenides are known fore, numerous transition-metal-catalyzed coupling reactions to have antioxidative effects [5]. Therefore, many studies on the with organobismuth compounds have been reported [34-53]. synthetic methods for unsymmetrical diaryl selenides have Although triphenylbismuthine can generate a phenyl radical recently been reported [6-32].
    [Show full text]
  • Defining Potential Chemical Peaks and Management Options
    PROJECT NO. 4991 Defining Potential Chemical Peaks and Management Options Defining Potential Chemical Peaks and Management Options Prepared by: Jean Debroux Kennedy Jenks Consultants Megan H. Plumlee Orange County Water District Shane Trussell Trussell Technologies, Inc. Co-sponsored by: California State Water Resources Control Board 2021 The Water Research Foundation (WRF) is a nonprofit (501c3) organization which provides a unified source for One Water research and a strong presence in relationships with partner organizations, government and regulatory agencies, and Congress. The foundation conducts research in all areas of drinking water, wastewater, stormwater, and water reuse. The Water Research Foundation’s research portfolio is valued at over $700 million. WRF plays an important role in the translation and dissemination of applied research, technology demonstration, and education, through creation of research-based educational tools and technology exchange opportunities. WRF serves as a leader and model for collaboration across the water industry and its materials are used to inform policymakers and the public on the science, economic value, and environmental benefits of using and recovering resources found in water, as well as the feasibility of implementing new technologies. For more information, contact: The Water Research Foundation 1199 North Fairfax Street, Suite 900 6666 West Quincy Avenue Alexandria, VA 22314-1445 Denver, Colorado 80235-3098 www.waterrf.org P 571.384.2100 P 303.347.6100 [email protected] ©Copyright 2021 by The Water Research Foundation. All rights reserved. Permission to copy must be obtained from The Water Research Foundation. WRF ISBN: 978-1-60573-555-9 WRF Project Number: 4991 This report was prepared by the organization(s) named below as an account of work sponsored by The Water Research Foundation.
    [Show full text]
  • Catalytic Antioxidant Activity of Bis-Aniline-Derived Diselenides As Gpx Mimics
    molecules Article Catalytic Antioxidant Activity of Bis-Aniline-Derived Diselenides as GPx Mimics Giancarlo V. Botteselle 1,*, Welman C. Elias 2, Luana Bettanin 2,Rômulo F. S. Canto 3, Drielly N. O. Salin 2, Flavio A. R. Barbosa 2, Sumbal Saba 4 , Hugo Gallardo 2 , Gianluca Ciancaleoni 5 , Josiel B. Domingos 2 , Jamal Rafique 6,* and Antonio L. Braga 2,7,* 1 Departamento de Química, Universidade Estadual do Centro-Oeste (UNICENTRO), Guarapuava 85040-167, PR, Brazil 2 Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-970, SC, Brazil; [email protected] (W.C.E.); [email protected] (L.B.); [email protected] (D.N.O.S.); fl[email protected] (F.A.R.B.); [email protected] (H.G.); [email protected] (J.B.D.) 3 Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; [email protected] 4 Instituto de Química—IQ, Universidade Federal de Goiás—(UFG), Goiânia 74690-900, GO, Brazil; [email protected] 5 Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; [email protected] 6 Instituto de Química—INQUI, Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande 79074-460, MS, Brazil 7 Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein 2028, South Africa Citation: Botteselle, G.V.; Elias, W.C.; * Correspondence: [email protected] (G.V.B.); [email protected] (J.R.); Bettanin, L.; Canto, R.F.S.; Salin, [email protected] (A.L.B.) D.N.O.; Barbosa, F.A.R.; Saba, S.; Gallardo, H.; Ciancaleoni, G.; Abstract: Herein, we describe a simple and efficient route to access aniline-derived diselenides and Domingos, J.B.; et al.
    [Show full text]
  • Transmittal Letter Walnut Creek California 94597 To: Copies: Tel 925 274 1100 Tony Natera/DTSC Bob Gray/PG&E Fax 925 274 1103 Jeff Gove/BAAQMD Don Carpenter/ARCADIS
    ARCADIS U.S., Inc. 2999 Oak Road Suite 300 Transmittal Letter Walnut Creek California 94597 To: Copies: Tel 925 274 1100 Tony Natera/DTSC Bob Gray/PG&E Fax 925 274 1103 Jeff Gove/BAAQMD Don Carpenter/ARCADIS Dave Montanari/ARCADIS Matt Nicely/ARCADIS Greg Ertel/ARCADIS Josh Gravenmier/ARCADIS Bridgette DeShields/ARCADIS Chris Lutes/ARCADIS Kim Walsh/ARCADIS From: Date: Aaron Svitana/ARCADIS February 12, 2012 Subject: ARCADIS Project No.: Draft Data Transmittal B0092353.0003 Preliminary Air Sampling – January 2012 Shell Pond, Bay Point, California We are sending you: Attached Under Separate Cover Via the Following Items: Shop Drawings Plans Specifications Change Order Prints Samples Copy of Letter Reports Other: Please see below. Copies Date Drawing No. Rev. Description Action* 1 2/12/12 DRAFT January 2012 Air Data Tables AS 1 2/12/12 January 2012 Ambient Air and Field-Constructed Flux AS Chamber Laboratory Analytical Data Reports 1 2/12/12 Table 1 Return Water Sample Results from Monthly Phase AS 2 Summary Report to RWQCB for January 2012 1 2/12/12 January 2012 Return Water Laboratory Analytical Data AS Reports Action* A Approved CR Correct and Resubmit Resubmit Copies AN Approved As Noted F File Return Copies AS As Requested FA For Approval Review and Comment Other: Mailing Method U.S. Postal Service 1st Class Courier/Hand Delivery FedEx Priority Overnight FedEx 2-Day Delivery Certified/Registered Mail United Parcel Service (UPS) FedEx Standard Overnight FedEx Economy Other: Electronic Mail Page: 1/3 Comments: Please see below. BACKGROUND ARCADIS is providing construction and environmental consulting services to PG&E to implement the Corrective Measures Implementation Plan (CMIP) for the Shell Pond and Carbon Black Area property, Bay Point, California.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Preparation Date: 08/08/2019 Revision date 08/08/2019 Revision Number: G1 1. IDENTIFICATION Product identifier Product code: D1458 Product Name: 2,2-Dithiodianiline Other means of identification Synonyms: Benzenamine, 2,2'-dithiobis- Bis(2-aminophenyl)disulfide Disulfide, bis(o-aminophenyl)- o,o'-Diamino diphenyl disulfide 2,2'-Diaminodiphenyl disulfide Disulfide, 1,1'-bis(2-aminophenyl) o,o-Dithio-bis-aniline 2,2'-Dithiobis(aniline) Intramine Aniline, 2,2'-dithiodi- CAS #: 1141-88-4 RTECS # BX9540000 CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: No information available. Uses advised against No information available Supplier: Spectrum Chemical Mfg. Corp 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Tom Tyner (USA - West Coast) Contact Person: Ibad Tirmiz (USA - East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Considered a dangerous substance or mixture according to the Globally Harmonized System (GHS) Skin corrosion/irritation Category 2 Serious eye damage/eye irritation Category 1 Label elements Danger Product code: D1458 Product name: 2,2-Dithiodianiline Page 1 / 12 Hazard statements Causes skin irritation Causes serious eye damage Hazards not otherwise classified (HNOC) Not Applicable Other hazards Not available Precautionary Statements - Prevention Wash face, hands and any exposed skin thoroughly after handling Wear protective gloves/protective clothing/eye protection/face protection Precautionary Statements - Response IF IN EYES: Rinse cautiously with water for several minutes.
    [Show full text]
  • Thiyl Radicals: Versatile Reactive Intermediates for Cyclization of Unsaturated Substrates
    molecules Review Thiyl Radicals: Versatile Reactive Intermediates for Cyclization of Unsaturated Substrates Dylan M. Lynch and Eoin M. Scanlan * School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland; [email protected] * Correspondence: [email protected] Academic Editor: John C. Walton Received: 15 June 2020; Accepted: 2 July 2020; Published: 7 July 2020 Abstract: Sulfur centered radicals are widely employed in chemical synthesis, in particular for alkene and alkyne hydrothiolation towards thioether bioconjugates. The steadfast radical chain process that enables efficient hydrothiolation has been explored in the context of cascade reactions to furnish complex molecular architectures. The use of thiyl radicals offers a much cheaper and less toxic alternative to the archetypal organotin-based radical methods. This review outlines the development of thiyl radicals as reactive intermediates for initiating carbocyclization cascades. Key developments in cascade cyclization methodology are presented and applications for natural product synthesis are discussed. The review provides a chronological account of the field, beginning in the early seventies up to very recent examples; a span of almost 50 years. Keywords: radical; cyclisation; thiyl radicals; sulfur; carbocyclization 1. Introduction Since the turn of the millennium, organosulfur compounds have garnered substantial interest in the fields of medicinal chemistry, chemical biology and material science [1–7]. Of the
    [Show full text]