Synthetic Biology for the Directed Evolution of Protein Biocatalysts: Navigating Sequence Cite This: Chem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The University of Chicago Epistasis, Contingency, And
THE UNIVERSITY OF CHICAGO EPISTASIS, CONTINGENCY, AND EVOLVABILITY IN THE SEQUENCE SPACE OF ANCIENT PROTEINS A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE BIOLOGICAL SCIENCES AND THE PRITZKER SCHOOL OF MEDICINE IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOCHEMISTRY AND MOLECULAR BIOPHYSICS BY TYLER NELSON STARR CHICAGO, ILLINOIS AUGUST 2018 Table of Contents List of Figures .................................................................................................................... iv List of Tables ..................................................................................................................... vi Acknowledgements ........................................................................................................... vii Abstract .............................................................................................................................. ix Chapter 1 Introduction ......................................................................................................1 1.1 Sequence space and protein evolution .............................................................1 1.2 Deep mutational scanning ................................................................................2 1.3 Epistasis ...........................................................................................................3 1.4 Chance and determinism ..................................................................................4 1.5 Evolvability ......................................................................................................6 -
What Can We Learn from Fitness Landscapes?
What can we learn from fitness landscapes? The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Hartl, Daniel L. 2014. “What Can We Learn from Fitness Landscapes?” Current Opinion in Microbiology 21 (October): 51–57. doi:10.1016/j.mib.2014.08.001. Published Version 10.1016/j.mib.2014.08.001 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:22898356 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Elsevier Editorial System(tm) for Current Opinion in Microbiology Manuscript Draft Manuscript Number: Title: What Can We Learn From Fitness Landscapes? Article Type: 22 Growth&Develop: prokaryotes (2014 Corresponding Author: Dr. Daniel Hartl, Corresponding Author's Institution: First Author: Daniel Hartl Order of Authors: Daniel Hartl Manuscript Click here to view linked References What Can We Learn From Fitness Landscapes? Daniel L. Hartl Department of Organismic and Evolutionary Biology Harvard University Cambridge, Massachusetts 02138 USA Contact information: Email: [email protected], TEL: 617-396-3917 In evolutionary biology, the fitness landscape of set of mutants is the mapping of genotypes onto phenotypes when the phenotype is fitness or some proxy for fitness such as growth rate or drug resistance. When the set of mutants is not too large, it is possible to create every possible combination of mutants and map these to fitness. -
Phenotypic Landscape Inference Reveals Multiple Evolutionary Paths to C4 Photosynthesis
RESEARCH ARTICLE elife.elifesciences.org Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis Ben P Williams1†, Iain G Johnston2†, Sarah Covshoff1, Julian M Hibberd1* 1Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom; 2Department of Mathematics, Imperial College London, London, United Kingdom Abstract C4 photosynthesis has independently evolved from the ancestral C3 pathway in at least 60 plant lineages, but, as with other complex traits, how it evolved is unclear. Here we show that the polyphyletic appearance of C4 photosynthesis is associated with diverse and flexible evolutionary paths that group into four major trajectories. We conducted a meta-analysis of 18 lineages containing species that use C3, C4, or intermediate C3–C4 forms of photosynthesis to parameterise a 16-dimensional phenotypic landscape. We then developed and experimentally verified a novel Bayesian approach based on a hidden Markov model that predicts how the C4 phenotype evolved. The alternative evolutionary histories underlying the appearance of C4 photosynthesis were determined by ancestral lineage and initial phenotypic alterations unrelated to photosynthesis. We conclude that the order of C4 trait acquisition is flexible and driven by non-photosynthetic drivers. This flexibility will have facilitated the convergent evolution of this complex trait. DOI: 10.7554/eLife.00961.001 Introduction *For correspondence: Julian. The convergent evolution of complex traits is surprisingly common, with examples including camera- [email protected] like eyes of cephalopods, vertebrates, and cnidaria (Kozmik et al., 2008), mimicry in invertebrates and †These authors contributed vertebrates (Santos et al., 2003; Wilson et al., 2012) and the different photosynthetic machineries of equally to this work plants (Sage et al., 2011a). -
Print Special Issue Flyer
IMPACT FACTOR 5.923 an Open Access Journal by MDPI Proteins in Human Diseases: Molecular Insights into Drug Targets and Novel Therapeutic Modalities Guest Editors: Message from the Guest Editors Dr. Joo Hyoung Lee Proteins are fundamental biomolecules that modulate 1. R&D Center - PharmAbcine Inc., diverse cellular and molecular events in living organisms. Daejeon, Korea 2. Department of Pathology, The Scientific studies have established that aberrant levels of University of Alabama at proteins due to the dysregulation of gene transcription Birmingham, Birmingham, AL, USA cause various pathophysiological dysfunctions in humans. [email protected] In this regard, tremendous scientific endeavors and translational research efforts have been made to identify Dr. Tae-Don Kim the functions of the involved proteins and to develop Immunotherapy Research Center, Korea Research Institute of treatment modalities for disease management. Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Korea This Special Issue will collect reviews, perspectives and opinions, and research articles covering various topics, [email protected] with the aim to present less known molecular aspects of proteins that can be targeted to develop novel therapy modalities for various diseases. In this regard, as a former Deadline for manuscript scientist in an academic institution and a current primary submissions: investigator in the industry, the editor urges his Colleagues closed (28 February 2021) to communicate outstanding research findings for publication in this Special Issue as a valuable contribution to protein science. mdpi.com/si/58496 SpeciaIslsue IMPACT FACTOR 5.923 an Open Access Journal by MDPI Editor-in-Chief Message from the Editor-in-Chief Prof. -
SCIENCE CITATION INDEX EXPANDED - JOURNAL LIST Total Journals: 8631
SCIENCE CITATION INDEX EXPANDED - JOURNAL LIST Total journals: 8631 1. 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH 2. AAPG BULLETIN 3. AAPS JOURNAL 4. AAPS PHARMSCITECH 5. AATCC REVIEW 6. ABDOMINAL IMAGING 7. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG 8. ABSTRACT AND APPLIED ANALYSIS 9. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY 10. ACADEMIC EMERGENCY MEDICINE 11. ACADEMIC MEDICINE 12. ACADEMIC PEDIATRICS 13. ACADEMIC RADIOLOGY 14. ACCOUNTABILITY IN RESEARCH-POLICIES AND QUALITY ASSURANCE 15. ACCOUNTS OF CHEMICAL RESEARCH 16. ACCREDITATION AND QUALITY ASSURANCE 17. ACI MATERIALS JOURNAL 18. ACI STRUCTURAL JOURNAL 19. ACM COMPUTING SURVEYS 20. ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS 21. ACM SIGCOMM COMPUTER COMMUNICATION REVIEW 22. ACM SIGPLAN NOTICES 23. ACM TRANSACTIONS ON ALGORITHMS 24. ACM TRANSACTIONS ON APPLIED PERCEPTION 25. ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION 26. ACM TRANSACTIONS ON AUTONOMOUS AND ADAPTIVE SYSTEMS 27. ACM TRANSACTIONS ON COMPUTATIONAL LOGIC 28. ACM TRANSACTIONS ON COMPUTER SYSTEMS 29. ACM TRANSACTIONS ON COMPUTER-HUMAN INTERACTION 30. ACM TRANSACTIONS ON DATABASE SYSTEMS 31. ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS 32. ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS 33. ACM TRANSACTIONS ON GRAPHICS 34. ACM TRANSACTIONS ON INFORMATION AND SYSTEM SECURITY 35. ACM TRANSACTIONS ON INFORMATION SYSTEMS 36. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY 37. ACM TRANSACTIONS ON INTERNET TECHNOLOGY 38. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA 39. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE 40. ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION 41. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 42. ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS 43. ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS 44. -
Quantifying the Fitness of Tissue-Specific Evolutionary
bioRxiv preprint doi: https://doi.org/10.1101/401059; this version posted August 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Quantifying the fitness of tissue- specific evolutionary trajectories by harnessing cancer’s repeatability at the genetic level Tokutomi N1, Moyret-Lalle C2, Puisieux A2, Sugano S1, Martinez P2. 1 Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan. 2 Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France, INSERM U1052, Cancer Research Center of Lyon, Lyon, F-69008, France. Correspondence to Pierre Martinez: [email protected] Abstract Cancer is a potentially lethal disease, in which patients with nearly identical genetic backgrounds can develop a similar pathology through distinct combinations of genetic alterations. We aimed to reconstruct the evolutionary process underlying tumour initiation, using the combination of convergence and discrepancies observed across 2,742 cancer genomes from 9 tumour types. We developed a framework using the repeatability of cancer development to score the fitness of genetic clones, as their potential to malignantly progress and invade their environment of origin. Using this framework, we found that pre-malignant skin and colorectal lesions appeared specifically adapted to their local environment, yet insufficiently for full cancerous transformation. We found that metastatic clones were more adapted to the site of origin than to the invaded tissue, suggesting that genetics may be more important for local progression than for the invasion of distant organs. -
Correction for Barua and Mikheyev, an Ancient, Conserved Gene Regulatory Network Led to the Rise of Oral Venom Systems
Correction EVOLUTION Correction for “An ancient, conserved gene regulatory network led to the rise of oral venom systems,” by Agneesh Barua and Alexander S. Mikheyev, which was first published March 29, 2021; 10.1073/pnas.2021311118 (Proc. Natl. Acad. Sci. U.S.A. 118, e2021311118). The editors note that, due to a printer’s error, the article in- advertently published with a number of language errors. The article has been updated online to correct these errors. Published under the PNAS license. Published May 24, 2021. www.pnas.org/cgi/doi/10.1073/pnas.2108106118 CORRECTION PNAS 2021 Vol. 118 No. 22 e2108106118 https://doi.org/10.1073/pnas.2108106118 | 1of1 Downloaded by guest on October 1, 2021 An ancient, conserved gene regulatory network led to the rise of oral venom systems Agneesh Baruaa,1 and Alexander S. Mikheyeva,b aEcology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan; and bEvolutionary Genomics Group, Australian National University, Canberra, ACT 0200, Australia Edited by Günter P. Wagner, Yale University, New Haven, CT, and approved February 11, 2021 (received for review October 27, 2020) Oral venom systems evolved multiple times in numerous verte- over time; this diminishes their utility in trying to understand brates, enabling the exploitation of unique predatory niches. Yet events that lead to the rise of venom systems in the nonvenom- how and when they evolved remains poorly understood. Up to ous ancestors of snakes (14, 15). now, most research on venom evolution has focused strictly on A gene coexpression network aims to identify genes that in- toxins. -
S41467-017-02329-Y.Pdf
ARTICLE DOI: 10.1038/s41467-017-02329-y OPEN The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy Dan A. Landau1,2,3, Clare Sun 4, Daniel Rosebrock2, Sarah E.M. Herman4, Joshua Fein1,3,5, Mariela Sivina6, Chingiz Underbayev4, Delong Liu4, Julia Hoellenriegel6, Sarangan Ravichandran7, Mohammed Z.H. Farooqui4, Wandi Zhang8, Carrie Cibulskis2, Asaf Zviran1,3, Donna S. Neuberg 9, Dimitri Livitz 2, Ivana Bozic10, Ignaty Leshchiner 2, Gad Getz 2, Jan A. Burger6, Adrian Wiestner4 & Catherine J. Wu2,8,11 1234567890 Treatment of chronic lymphocytic leukemia (CLL) has shifted from chemo-immunotherapy to targeted agents. To define the evolutionary dynamics induced by targeted therapy in CLL, we perform serial exome and transcriptome sequencing for 61 ibrutinib-treated CLLs. Here, we report clonal shifts (change >0.1 in clonal cancer cell fraction, Q < 0.1) in 31% of patients during the first year of therapy, associated with adverse outcome. We also observe tran- scriptional downregulation of pathways mediating energy metabolism, cell cycle, and B cell receptor signaling. Known and previously undescribed mutations in BTK and PLCG2,or uncommonly, other candidate alterations are present in seventeen subjects at the time of progression. Thus, the frequently observed clonal shifts during the early treatment period and its potential association with adverse outcome may reflect greater evolutionary capacity, heralding the emergence of drug-resistant clones. 1 New York Genome Center, New York, NY 10013, USA. 2 Broad Institute, Cambridge, MA 02142, USA. 3 Meyer Cancer Center & Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA. 4 Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. -
Avian Influenza Virus M2e Protein: Epitope Mapping, Competitive ELISA and Phage Displayed Scfv for DIVA in H5N1 Serosurveillance
Avian Influenza virus M2e protein: Epitope mapping, competitive ELISA and phage displayed scFv for DIVA in H5N1 serosurveillance Noor Haliza Hasan A thesis submitted for the degree of Doctor of Philosophy School of Animal Veterinary Sciences The University of Adelaide Australia March 2017 1 Table of Contents Abstract………………………………………………………………………………………..v Thesis declaration …………………………………………………………………………...vii Acknowledgement ………………………………………………………………………… viii List of Tables ………………………………………………………………………………...xi List of Figures …………………………………………………………………………… xiii List of Abbreviations ………………………………………………………………………xvii List of Publications …………………………………………………………………………xix Introduction and Literature review ................................................ 1 Introduction ........................................................................................................... 3 Thesis outline ......................................................................................................... 5 Avian Influenza Virus (AIV): enzootic H5N1 and DIVA test in Indonesia ......... 6 AIV genes, M2 and M2e protein ........................................................................... 7 M2 protein ........................................................................................................... 11 M2e as potential universal vaccine ...................................................................... 12 M2e as DIVA marker .......................................................................................... 13 Antigenic mapping ............................................................................................. -
Genetics of Alternative Splicing Evolution During Sunflower Domestication
Genetics of alternative splicing evolution during sunflower domestication Chris C. R. Smitha,1, Silas Tittesa, J. Paul Mendietaa, Erin Collier-zansa, Heather C. Roweb,c, Loren H. Riesebergb, and Nolan C. Kanea aDepartment of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309-0334; bDepartment of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; and cInstitute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122-1801 Edited by Johanna Schmitt, University of California, Davis, CA, and approved May 18, 2018 (received for review February 27, 2018) Alternative splicing enables organisms to produce the diversity of studies report a high degree of splicing conservation among proteins necessary for multicellular life by using relatively few taxa (10), others report varying degrees of splicing differen- protein-coding genes. Although differences in splicing have been tiation among taxa, with more dissimilar groups having greater identified among divergent taxa, the shorter-term evolution of divergence in splicing (11). For example, there are genotype- splicing is understudied. The origins of novel splice forms, and the dependent splicing differences between tomato and (i)its contributions of alternative splicing to major evolutionary transi- relative Solanum habrochaites in response to cold stress (2) tions, are largely unknown. This study used transcriptomes of wild and (ii) its wild ancestor in response to growth environment and domesticated sunflowers to examine splice differentiation (12). Considerable evolution may be mediated by modifica- and regulation during domestication. We identified substantial tions in alternative splicing (11, 13, 14); however, little is splicing divergence between wild and domesticated sunflowers, known about the process of splice evolution and the role it mainly in the form of intron retention. -
COMP564: Advanced Computational Biology Methods and Research
COMP564: Advanced Computational Biology Methods and Research RNA sequence-structure maps and simulating the evolution of RNA populations Jérôme Waldispühl School of Computer Science, McGill RNA world In prebiotic world, RNA thought to have filled two distinct roles: 1. an information carrying role because of RNA's ability (in principle) to self-replicate, 2. a catalytic role, because of RNA's ability to form complicated 3D shapes. Over time, DNA replaced RNA in Its first role, while proteins replaced RNA in its second role. Principles Central assumptions: • The structure of a sequence can be determined using thermodynamics principles. • The structure determines the function. • Evolution tends to preserve and optimize the function. Figure from (Cowperthwaite&Meyers,2007) Outline • Mathematical modelling • Characterizing the evolutionary landscape • Evolutionary dynamics Sequence evolution For short sequences, the set of evolutionary operations can be restricted to: • Insertion • Insertion/Deletion • Mutation Figure from (Gobel,2000) Mutational landscape When the length of the sequence is fixed, the set of operations can be restricted to mutations. The mutation landscape is represented with Hamming graphs, where nodes are the sequences and edges connect sequences differing from one single nucleotide (i.e. 1 mutation). Figure from (Gobel,2000) Assigning a Phenotype Use folding programs (E.g. RNAfold, RNAstructure) to calculate the Phenotype. Usually, we assign a single structure (the M.F.E.) to the sequence but more sophisticated model have been proposed (i.e. plastic model). Figure from (Cowperthwaite&Meyers,2007) Evaluating structure similarities Hamming distance: Base pair distance: Base pair distance is the standard. It corresponds to the number of base pairs we have to remove and add to obtain one structure from the other. -
Simulating Natural Selection in Landscape Genetics
Molecular Ecology Resources (2012) 12, 363–368 doi: 10.1111/j.1755-0998.2011.03075.x Simulating natural selection in landscape genetics E. L. LANDGUTH,* S. A. CUSHMAN† and N. A. JOHNSON‡ *Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA, †Rocky Mountain Research Station, United States Forest Service, Flagstaff, AZ 86001, USA, USA, ‡Department of Plant, Soil, and Insect Sciences and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA Abstract Linking landscape effects to key evolutionary processes through individual organism movement and natural selection is essential to provide a foundation for evolutionary landscape genetics. Of particular importance is determining how spa- tially-explicit, individual-based models differ from classic population genetics and evolutionary ecology models based on ideal panmictic populations in an allopatric setting in their predictions of population structure and frequency of fixation of adaptive alleles. We explore initial applications of a spatially-explicit, individual-based evolutionary landscape genetics program that incorporates all factors – mutation, gene flow, genetic drift and selection – that affect the frequency of an allele in a population. We incorporate natural selection by imposing differential survival rates defined by local relative fitness values on a landscape. Selection coefficients thus can vary not only for genotypes, but also in space as functions of local environmental variability. This simulator enables coupling of gene flow (governed by resistance surfaces), with natural selection (governed by selection surfaces). We validate the individual-based simulations under Wright-Fisher assumptions. We show that under isolation-by-distance processes, there are deviations in the rate of change and equilibrium values of allele frequency.