I Garden Festival
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MEDICINAL HERBS and FLOWERING PLANTS GARDEN in VIGNAN's CAMPUS Objectives: 1. to Grow and Maintain the Flowering and Medicinal
MEDICINAL HERBS AND FLOWERING PLANTS GARDEN IN VIGNAN’S CAMPUS Objectives : 1. To grow and maintain the flowering and medicinal important herbs in the vicinity of Hanuman Statue to bring elegance to the campus. 2. To design compost units and develop organic manure for the cultivation of herbs. 3. To prepare herbal decoction, syrup and infusions using roots, leaves, stem of propagated medicinal herbs both standalone and combinatorial mixtures. 4. To train students in the identification and taxonomy of medicinal herbs and extraction procedure, to screen secondary metabolites. Rationale: As our lifestyle is now getting techno-savvy, we are moving away from nature. However, we cannot escape from nature for we are part of nature. Natural herbal flora withstood the vagaries of climatic changes through the ages of earth. In addition, they are endowed with safe compounds preferably positive health benefits and hence they are comparatively safer and eco- friendly. Traditionally there lots of herbs are in use to relieve humans and livestock from the ailments. Therefore, there is a need to promote them to save human lives. These herbal products are today are the symbol of safety in contrast to the synthetic drugs, that are regarded as unsafe to human beings and environment. Although herbs had been priced for their medicinal, flavoring and aromatic qualities for centuries, the synthetic products of the modern age surpassed their importance, for a while. It is primarily because of the marketing strategies adopted to promote synthetic products. It’s time to promote and propagate the various species of medicinal plants globally particularly among students and woman folk to appraise their value in healthcare. -
The Moral Basis of Family Relationships in the Plays of Shakespeare and His Contemporaries: a Study in Renaissance Ideas
The Moral Basis of Family Relationships in the plays of Shakespeare and his Contemporaries: a Study in Renaissance Ideas. A submission for the degree of doctor of philosophy by Stephen David Collins. The Department of History of The University of York. June, 2016. ABSTRACT. Families transact their relationships in a number of ways. Alongside and in tension with the emotional and practical dealings of family life are factors of an essentially moral nature such as loyalty, gratitude, obedience, and altruism. Morality depends on ideas about how one should behave, so that, for example, deciding whether or not to save a brother's life by going to bed with his judge involves an ethical accountancy drawing on ideas of right and wrong. It is such ideas that are the focus of this study. It seeks to recover some of ethical assumptions which were in circulation in early modern England and which inform the plays of the period. A number of plays which dramatise family relationships are analysed from the imagined perspectives of original audiences whose intellectual and moral worlds are explored through specific dramatic situations. Plays are discussed as far as possible in terms of their language and plots, rather than of character, and the study is eclectic in its use of sources, though drawing largely on the extensive didactic and polemical writing on the family surviving from the period. Three aspects of family relationships are discussed: first, the shifting one between parents and children, second, that between siblings, and, third, one version of marriage, that of the remarriage of the bereaved. -
(Caesalpiniaceae) D.E
J. Adelaide Bot. Gard. 18(2): 101-102 (1998) SENNA PHYLLODINEA A NEW COMBINATION IN SE1VNA (CAESALPINIACEAE) D.E. Symon State Herbarium of South Australia, Botanic Gardens of Adelaide, North Terrace, Adelaide, South Australia 5000 Abstract The combination Senna phyllodinea (R. Br.)Symon is made to facilitate the use of the name for those who wish to distinguish it from Senna artemisioides ssp. petiolaris. Introduction The presence of agamospermy, polyploidy and hybridity (Randell 1970) has resulted in a bewildering array of morphological forms in Senna in our arid areas. The discovery of abundant polyembryony (Symon 1956) led Randell (1970) to examine its causes and with this new understanding to present a new taxonomic account of the genus in Australia (Randell 1988, 1989, 1990). The division of the genus Cassia L. into three genera Cassia L. s.str., Senna Miller and Chamaecrista Moench has been widely accepted. It is ahnost solely in Australia in Senna ser. Subverrucosae that the taxonomic problems are acute. Randell (1989) has grouped the variants under three core taxa, S. glutinosa, S. cardiosperma and S. artemisioides, and one can agree with much of this grouping with some particular misgivings. A problem Under S. artemisioides ssp. petiolaris Randell has grouped all the variants that possess a flaftened petiole. Within this grouping are three widespread entitiesthat may be summarised as follows:- 1. A form with relatively broad phyllodes, green in aspect, straight or slightly curved, pubescent with minute appressed hairs, the lamina readilyvisible,glabrescent, sometimes pruinose, often with generally short, flattened, terminal leaflets. The pods are (6-) 7 (-9) mm wide, straight or slightly curved. -
Pollination Ecology Summary
Pollination Ecology Summary Prof. em. Klaus Ammann, Neuchâtel [email protected] June 2013 Ohne den Pollenübertragungs-Service blütenbesuchender Tiere könnten sich viele Blütenpanzen nicht geschlechtlich fortpanzen. Die komplexen und faszinierenden Bestäubungsvorgänge bei Blütenpanzen sind Ausdruck von Jahrmillionen von Selektionsvorgängen, verbunden mit Selbstorganisation der Lebewesen; eine Sicht, die auch Darwin schon unterstützte. Bei vielen zwischenartlichen Beziehungen haben sich zwei oder auch mehrere Arten in ihrer Entwicklung gegenseitig beeinusst. Man spricht hier von sogenannter Coevolution. Deutlich ist die Coevolution auch bei verschiedenen Bestäubungssystemen und -mechanismen, die von symbiontischer bis parasitischer Natur sein können. Die Art-Entstehung, die Vegetationsökologie und die Entstehung von Kulturpanzen sind eng damit verbunden Veranstalter: Naturforschende Gesellschaft Schaffhausen 1. Pollination Ecology Darwin http://en.wikipedia.org/wiki/Pollination_syndrome http://www.cas.vanderbilt.edu/bioimages/pages/pollination.htm Fenster, C.B., Armbruster, W.S., Wilson, P., Dudash, M.R., & Thomson, J.D. (2004) Pollination syndromes and floral specialization. Annual Review of Ecology Evolution and Systematics, 35, pp 375-403 http://www.botanischergarten.ch/Pollination/Fenster-Pollination-Syndromes-2004.pdf invitation to browse in the website of the Friends of Charles Darwin http://darwin.gruts.com/weblog/archive/2008/02/ Working Place of Darwin in Downe Village http://www.focus.de/wissen/wissenschaft/wissenschaft-darwin-genoss-ein-suesses-studentenleben_aid_383172.html Darwin as a human being and as a scientist Darwin, C. (1862), On the various contrivances by which orchids are fertilized by insects and on the good effects of intercrossing The Complete Work of Charles Darwin online, Scanned, OCRed and corrected by John van Wyhe 2003; further corrections 8.2006. -
Towards Resolving Lamiales Relationships
Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. -
Efficacy of A-Rest™ Or Bonzi™ on Clerodendrum Thomsoniae As a Flowering Potted Plant Jeff S
Special Research Report: #515: Production Technology Efficacy of A-Rest™ or Bonzi™ on Clerodendrum thomsoniae as a Flowering Potted Plant Jeff S. Kuehny and Annina Delaune, Deparment of Horticulture, Louisiana State University AgCenter, Baton Rouge, LA 70803-2120. ___________________________________________________________________________________ pairs were planted in May 2004 (latitude 30.43N) using one per 6-inch container filled with a mixture of Promix. All plants received FUNDING INDUSTRY SOLUTIONS THROUGH RESEARCH & ambient light levels in a EDUCATION greenhouse with temperature Phone: 703-838-5211 set points of 86° F day/73° F E-mail: [email protected] night. Plants were fertilized Website: www.endowment.org at ever irrigation with Figure 1. Effect of control, Peters™ 20-10-20 at the rate A-Rest™ (ancymidol) 0.5 of 200 ppm N. or1.0 mg a.i./pot drench on BACKGROUND C. thomsoniae. An application of A-Rest™ Two weeks after (ancymidol) or Bonzi™ transplanting, central leaders (paclobutrazol) has been were pinched. PGR recommended either as a treatments were applied after spray or a drench to control two weeks of vegetative growth of Clerodendrum growth. Measurements were thomsoniae. recorded 49 d after PGR applications. Recommendations suggest 6 to 50 ppm sprays that will RESULTS reduce plant growth by 40% A-Rest™ and Bonzi™ Figure 2. Effect of control, when compared to controls. reduced internode length of Bonzi™ (paclobutrazol) 0.5 They also increased C. thomsoniae (Table 1) and or 1.0 mg a.i./pot drench on flowering. The objectives of had minimal effect on days to C. thomsoniae. this study were to determine flower, number of laterals the efficacy of: a) A-Rest™ (average 3), or number of (ancymidol) at 100 or 200 leaves (average of 50). -
Lake Havasu City Recommended Landscaping Plant List
Lake Havasu City Recommended Landscaping Plant List Lake Havasu City Recommended Landscaping Plant List Disclaimer Lake Havasu City has revised the recommended landscaping plant list. This new list consists of plants that can be adapted to desert environments in the Southwestern United States. This list only contains water conscious species classified as having very low, low, and low-medium water use requirements. Species that are classified as having medium or higher water use requirements were not permitted on this list. Such water use classification is determined by the type of plant, its average size, and its water requirements compared to other plants. For example, a large tree may be classified as having low water use requirements if it requires a low amount of water compared to most other large trees. This list is not intended to restrict what plants residents choose to plant in their yards, and this list may include plant species that may not survive or prosper in certain desert microclimates such as those with lower elevations or higher temperatures. In addition, this list is not intended to be a list of the only plants allowed in the region, nor is it intended to be an exhaustive list of all desert-appropriate plants capable of surviving in the region. This list was created with the intention to help residents, businesses, and landscapers make informed decisions on which plants to landscape that are water conscious and appropriate for specific environmental conditions. Lake Havasu City does not require the use of any or all plants found on this list. List Characteristics This list is divided between trees, shrubs, groundcovers, vines, succulents and perennials. -
Palatability of Plants to Camels (DBIRD NT)
Technote No. 116 June 2003 Agdex No: 468/62 ISSN No: 0158-2755 The Palatability of Central Australian Plant Species to Camels Dr B. Dorges, Dr J. Heucke, Central Australian Camel Industry Association and R. Dance, Pastoral Division, Alice Springs BACKGROUND About 600,000 camels (Camelus dromedarius) are believed to inhabit the arid centre of Australia, mainly in South Australia, Western Australia and the Northern Territory. Most of these camels are feral. A small camel industry has developed, which harvests selected animals for domestic and export markets, primarily for meat. Camels can eat more than 80% of the common plant species found in Central Australia. Some plant species are actively sought by camels and may need to be protected. METHOD Observations of grazing preferences by camels were made periodically for up to 12 years on five cattle stations in Central Australia. Where camels were accustomed to the presence of humans, it was possible to observe their grazing preferences from a few metres. Radio transmitters were fitted on some camels for easy detection and observation at any time. These evaluations were used to establish a diet preference or palatability index for observed food plants. Table 1. Palatability index for camels Index Interpretation 1 only eaten when nothing else is available 2 rarely eaten 3 common food plant 4 main food plant at times 5 preferred food plant 6 highly preferred food plant 7 could be killed by camel browsing More information can be obtained from the web site of the Central Australian Camel Industry Association http://www.camelsaust.com.au 2 RESULTS Table 2. -
A Field Guide to the Early Detection of Invasive Plants and Animals on Kaua‘I, Hawai‘I Acknowledgements
‘‘ A Field Guide to the Early Detection of Invasive Plants and Animals on Kaua‘i, Hawai‘i Acknowledgements Early Detection Field Guide Development Tiffani Keanini Kaua‘i Invasive Species Committee Elizabeth Speith USGS NBII Pacific Basin Information Node Keren Gundersen Kaua‘i Invasive Species Committee Content & Review Forest & Kim Starr United States Geological Survey Hawai‘i Invasive Species Council Kaua‘i Invasive Species Committee Maui Invasive Species Committee USGS NBII Pacific Basin Information Node Illustrations Brooke Mahnken Maui Invasive Species Committee Special thanks to the Hawai‘i Invasive Species Council for providing the funds to print this field guide. April 2010 Table of Contents Quick Reference Guide ...................................................................A The Need for Your Eyes & Ears .....................................................1 How to Use this Field Guide .............................................................2 What are we protecting? .................................................................3 What Makes a Species Invasive in Hawai‘i?. ..............................3 Plant Species. .................................................................................................4-31 Invertebrate Species ..................................................................32-35 Animal Species ..........................................................................36-41 Snakes and other animals.......................................................42-43 What You Can Do to Protect Kauai -
Systematics and Relationships of Tryssophyton (Melastomataceae
A peer-reviewed open-access journal PhytoKeys 136: 1–21 (2019)Systematics and relationships of Tryssophyton (Melastomataceae) 1 doi: 10.3897/phytokeys.136.38558 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Systematics and relationships of Tryssophyton (Melastomataceae), with a second species from the Pakaraima Mountains of Guyana Kenneth J. Wurdack1, Fabián A. Michelangeli2 1 Department of Botany, MRC-166 National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA 2 The New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458, USA Corresponding author: Kenneth J. Wurdack ([email protected]) Academic editor: Ricardo Kriebel | Received 25 July 2019 | Accepted 30 October 2019 | Published 10 December 2019 Citation: Wurdack KJ, Michelangeli FA (2019) Systematics and relationships of Tryssophyton (Melastomataceae), with a second species from the Pakaraima Mountains of Guyana. PhytoKeys 136: 1–21. https://doi.org/10.3897/ phytokeys.136.38558 Abstract The systematics of Tryssophyton, herbs endemic to the Pakaraima Mountains of western Guyana, is re- viewed and Tryssophyton quadrifolius K.Wurdack & Michelang., sp. nov. from the summit of Kamakusa Mountain is described as the second species in the genus. The new species is distinguished from its closest relative, Tryssophyton merumense, by striking vegetative differences, including number of leaves per stem and leaf architecture. A phylogenetic analysis of sequence data from three plastid loci and Melastomata- ceae-wide taxon sampling is presented. The two species of Tryssophyton are recovered as monophyletic and associated with mostly Old World tribe Sonerileae. Fruit, seed and leaf morphology are described for the first time, biogeography is discussed and both species are illustrated. -
Native Plant Identification CONTACT in the Northern and Yorke Region
Government of South Australia Northern and Yorke Natural FACT SHEET NO 2.018 Resources Management Board September 2011 NRM Plan Native plant identification CONTACT In the Northern and Yorke Region Main Office Basic plant identification is a vital skill for Northern and Yorke NRM Board land managers. It assists in appreciating PO Box 175 the vegetation around you and managing 41-49 Eyre Road that vegetation. Does a plant belong on a Crystal Brook SA 5523 site or is it a weed? Ph: (08) 8636 2361 Fx: (08) 8636 2371 This fact sheet introduces some of the www.nynrm.sa.gov.au common plant groups of the Northern and Yorke Region and how to identify them. All living things have been categorized into what is known as the Linnaean System of classification. Plants are grouped using common attributes until each plant is given a unique Classification. The steps of Classification are: • Kingdom • Division • Class • Order • Family • Subfamily • Genus • Species This results in a unique Botanical or Scientific name consisting of Genus and Species. Some plants are further split into sub species. Most plants have at least one common name. These are non scientific and often vary from region to region. Some plants may have the same common name, this often causes confusion so it is important to use the Botanical name. The plants right would be referred to as Eucalyptus leucoxylon subspecies leucoxylon or the South Australian Blue Gum. This plant is known as Yellow Gum in Victoria. Glossary of common botanical terms Annual A plant that completes its life within one year. -
Tibouchina Urvilleana: Princess-Flower1 Edward F
ENH791 Tibouchina urvilleana: Princess-Flower1 Edward F. Gilman and Dennis G. Watson2 Introduction This sprawling, evergreen shrub or small ornamental tree ranges from 10 to 15 feet (20 feet with proper training) in height. It can be trimmed to any size and still put on a vivid, year-long flower display. The dark green, velvety, four to six-inch-long leaves have several prominent longitudinal veins instead of the usual one, and are often edged in red. Large, royal purple blossoms, flaring open to five inches, are held on terminal panicles above the foliage, creating a spectacular sight when in full bloom. Some flowers are open throughout the year but they are especially plentiful from May to January. Princess-Flower is ideal for the mixed shrubbery border or used in small groupings to compound the impact of bloom-time. General Information Scientific name: Tibouchina urvilleana Pronunciation: tib-oo-KYE-nuh er-vill-ee-AY-nuh Figure 1. Middle-aged Tibouchina urvilleana: Princess-Flower Common name(s): Princess-Flower Family: Melastomataceae Uses: hedge; deck orpatio; screen; specimen; container or USDA hardiness zones: 9B through 11 (Fig. 2) planter; espalier; trained as a standard Origin: not native to North America Availability: not native to North America Invasive potential: has been evaluated using the IFAS Assessment of the Status of Non-Native Plants in Florida’s Description Natural Areas (Fox et al. 2005). This species is not docu- Height: 10 to 15 feet mented in any undisturbed natural areas in Florida. Thus, Spread: 10 to 15 feet it is not considered a problem species and may be used in Crown uniformity: irregular Florida.