On the Role of the Inner State Size in Stream Ciphers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Breaking Crypto Without Keys: Analyzing Data in Web Applications Chris Eng
Breaking Crypto Without Keys: Analyzing Data in Web Applications Chris Eng 1 Introduction – Chris Eng _ Director of Security Services, Veracode _ Former occupations . 2000-2006: Senior Consulting Services Technical Lead with Symantec Professional Services (@stake up until October 2004) . 1998-2000: US Department of Defense _ Primary areas of expertise . Web Application Penetration Testing . Network Penetration Testing . Product (COTS) Penetration Testing . Exploit Development (well, a long time ago...) _ Lead developer for @stake’s now-extinct WebProxy tool 2 Assumptions _ This talk is aimed primarily at penetration testers but should also be useful for developers to understand how your application might be vulnerable _ Assumes basic understanding of cryptographic terms but requires no understanding of the underlying math, etc. 3 Agenda 1 Problem Statement 2 Crypto Refresher 3 Analysis Techniques 4 Case Studies 5 Q & A 4 Problem Statement 5 Problem Statement _ What do you do when you encounter unknown data in web applications? . Cookies . Hidden fields . GET/POST parameters _ How can you tell if something is encrypted or trivially encoded? _ How much do I really have to know about cryptography in order to exploit implementation weaknesses? 6 Goals _ Understand some basic techniques for analyzing and breaking down unknown data _ Understand and recognize characteristics of bad crypto implementations _ Apply techniques to real-world penetration tests 7 Crypto Refresher 8 Types of Ciphers _ Block Cipher . Operates on fixed-length groups of bits, called blocks . Block sizes vary depending on the algorithm (most algorithms support several different block sizes) . Several different modes of operation for encrypting messages longer than the basic block size . -
Algebraic Attacks on SOBER-T32 and SOBER-T16 Without Stuttering
Algebraic Attacks on SOBER-t32 and SOBER-t16 without stuttering Joo Yeon Cho and Josef Pieprzyk? Center for Advanced Computing – Algorithms and Cryptography, Department of Computing, Macquarie University, NSW, Australia, 2109 {jcho,josef}@ics.mq.edu.au Abstract. This paper presents algebraic attacks on SOBER-t32 and SOBER-t16 without stuttering. For unstuttered SOBER-t32, two differ- ent attacks are implemented. In the first attack, we obtain multivariate equations of degree 10. Then, an algebraic attack is developed using a collection of output bits whose relation to the initial state of the LFSR can be described by low-degree equations. The resulting system of equa- tions contains 269 equations and monomials, which can be solved using the Gaussian elimination with the complexity of 2196.5. For the second attack, we build a multivariate equation of degree 14. We focus on the property of the equation that the monomials which are combined with output bit are linear. By applying the Berlekamp-Massey algorithm, we can obtain a system of linear equations and the initial states of the LFSR can be recovered. The complexity of attack is around O(2100) with 292 keystream observations. The second algebraic attack is applica- ble to SOBER-t16 without stuttering. The attack takes around O(285) CPU clocks with 278 keystream observations. Keywords : Algebraic attack, stream ciphers, linearization, NESSIE, SOBER-t32, SOBER-t16, modular addition, multivariate equations 1 Introduction Stream ciphers are an important class of encryption algorithms. They encrypt individual characters of a plaintext message one at a time, using a stream of pseudorandom bits. -
VMPC-MAC: a Stream Cipher Based Authenticated Encryption Scheme
VMPC-MAC: A Stream Cipher Based Authenticated Encryption Scheme Bartosz Zoltak http://www.vmpcfunction.com [email protected] Abstract. A stream cipher based algorithm for computing Message Au- thentication Codes is described. The algorithm employs the internal state of the underlying cipher to minimize the required additional-to- encryption computational e®ort and maintain general simplicity of the design. The scheme appears to provide proper statistical properties, a comfortable level of resistance against forgery attacks in a chosen ci- phertext attack model and high e±ciency in software implementations. Keywords: Authenticated Encryption, MAC, Stream Cipher, VMPC 1 Introduction In the past few years the interest in message authentication algorithms has been concentrated mostly on modes of operation of block ciphers. Examples of some recent designs include OCB [4], OMAC [7], XCBC [6], EAX [8], CWC [9]. Par- allely a growing interest in stream cipher design can be observed, however along with a relative shortage of dedicated message authentication schemes. Regarding two recent proposals { Helix and Sober-128 stream ciphers with built-in MAC functionality { a powerful attack against the MAC algorithm of Sober-128 [10] and two weaknesses of Helix [12] were presented at FSE'04. This paper gives a proposition of a simple and software-e±cient algorithm for computing Message Authentication Codes for the presented at FSE'04 VMPC Stream Cipher [13]. The proposed scheme was designed to minimize the computational cost of the additional-to-encryption MAC-related operations by employing some data of the internal-state of the underlying cipher. This approach allowed to maintain sim- plicity of the design and achieve good performance in software implementations. -
(SMC) MODULE of RC4 STREAM CIPHER ALGORITHM for Wi-Fi ENCRYPTION
InternationalINTERNATIONAL Journal of Electronics and JOURNAL Communication OF Engineering ELECTRONICS & Technology (IJECET),AND ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online), Volume 6, Issue 1, January (2015), pp. 79-85 © IAEME COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) ISSN 0976 – 6464(Print) IJECET ISSN 0976 – 6472(Online) Volume 6, Issue 1, January (2015), pp. 79-85 © IAEME: http://www.iaeme.com/IJECET.asp © I A E M E Journal Impact Factor (2015): 7.9817 (Calculated by GISI) www.jifactor.com VHDL MODELING OF THE SRAM MODULE AND STATE MACHINE CONTROLLER (SMC) MODULE OF RC4 STREAM CIPHER ALGORITHM FOR Wi-Fi ENCRYPTION Dr.A.M. Bhavikatti 1 Mallikarjun.Mugali 2 1,2Dept of CSE, BKIT, Bhalki, Karnataka State, India ABSTRACT In this paper, VHDL modeling of the SRAM module and State Machine Controller (SMC) module of RC4 stream cipher algorithm for Wi-Fi encryption is proposed. Various individual modules of Wi-Fi security have been designed, verified functionally using VHDL-simulator. In cryptography RC4 is the most widely used software stream cipher and is used in popular protocols such as Transport Layer Security (TLS) (to protect Internet traffic) and WEP (to secure wireless networks). While remarkable for its simplicity and speed in software, RC4 has weaknesses that argue against its use in new systems. It is especially vulnerable when the beginning of the output key stream is not discarded, or when nonrandom or related keys are used; some ways of using RC4 can lead to very insecure cryptosystems such as WEP . Many stream ciphers are based on linear feedback shift registers (LFSRs), which, while efficient in hardware, are less so in software. -
Most Popular ■ CORN STALK RUNNER at Flock Together This 2017 TROY TURKEY TROT
COVERING FREE! UPSTATE NY NOVEMBER SINCE 2000 2018 Flock Together this Thanksgiving ■ 5K START AT 2013 TROY TURKEY TROT. JOIN THE CONTENTS 1 Running & Walking Most Popular ■ CORN STALK RUNNER AT Flock Together this 2017 TROY TURKEY TROT. Thanksgiving! 3 Alpine Skiing & Boarding Strutting Day! Ready for Ski Season! By Laura Clark 5 News Briefs 5 From the Publishers hat I enjoy most about Thanksgiving is that it is a teams are encouraged and die-hards relaxed, all-American holiday. And what is more are invited to try for the individual 50K option. 6-9 CALENDAR OF EVENTS WAmerican than our plucky, ungainly turkey? Granted, Proceeds benefit the Regional Food Bank of Northeastern New although Ben Franklin lost his bid to elevate our native species to November to January York, enabling them to ensure a bountiful Thanksgiving for every- national symbol status, the turkey gets the last cackle. For when one. (fleetfeetalbany.com) Things to Do was the last time you celebrated eagle day? On Thanksgiving Day, Thursday, November 22, get ready for 11 Hiking, Snowshoeing In a wishbone world, Thanksgiving gives the least offense. the most popular running day of the whole year. Sample one of Sure, it is a worry for turkeys but a trade-off if you consider all the these six races in our area. & Camping free publicity. While slightly distasteful for vegetarians, there are While most trots cater to the 5K crowd, perfect for strollers, West Stony Creek: Well-Suited all those yummy sides and desserts to consider. Best of all is the aspiring turklings and elders, the premiere 71st annual Troy emphasis on family members, from toms to hens to the littlest Turkey Trot is the only area race where it is still possible to double for Late Fall/Early Winter turklings (think ducklings). -
SGX Secure Enclaves in Practice Security and Crypto Review
SGX Secure Enclaves in Practice Security and Crypto Review JP Aumasson, Luis Merino This talk ● First SGX review from real hardware and SDK ● Revealing undocumented parts of SGX ● Tool and application releases Props Victor Costan (MIT) Shay Gueron (Intel) Simon Johnson (Intel) Samuel Neves (Uni Coimbra) Joanna Rutkowska (Invisible Things Lab) Arrigo Triulzi Dan Zimmerman (Intel) Kudelski Security for supporting this research Agenda .theory What's SGX, how secure is it? .practice Developing for SGX on Windows and Linux .theory Cryptography schemes and implementations .practice Our projects: reencryption, metadata extraction What's SGX, how secure is it? New instruction set in Skylake Intel CPUs since autumn 2015 SGX as a reverse sandbox Protects enclaves of code/data from ● Operating System, or hypervisor ● BIOS, firmware, drivers ● System Management Mode (SMM) ○ aka ring -2 ○ Software “between BIOS and OS” ● Intel Management Engine (ME) ○ aka ring -3 ○ “CPU in the CPU” ● By extension, any remote attack = reverse sandbox Simplified workflow 1. Write enclave program (no secrets) 2. Get it attested (signed, bound to a CPU) 3. Provision secrets, from a remote client 4. Run enclave program in the CPU 5. Get the result, and a proof that it's the result of the intended computation Example: make reverse engineer impossible 1. Enclave generates a key pair a. Seals the private key b. Shares the public key with the authenticated client 2. Client sends code encrypted with the enclave's public key 3. CPU decrypts the code and executes it A trusted -
The Moral Character of Cryptographic Work⋆
The Moral Character of Cryptographic Work? Phillip Rogaway Department of Computer Science University of California, Davis, USA [email protected] December 2015 (minor revisions March 2016) Abstract. Cryptography rearranges power: it configures who can do what, from what. This makes cryptography an inherently political tool, and it confers on the field an intrinsically moral dimension. The Snowden revelations motivate a reassessment of the political and moral positioning of cryptography. They lead one to ask if our inability to effectively address mass surveillance constitutes a failure of our field. I believe that it does. I call for a community-wide effort to develop more effective means to resist mass surveillance. I plead for a reinvention of our disciplinary culture to attend not only to puzzles and math, but, also, to the societal implications of our work. Keywords: cryptography · ethics · mass surveillance · privacy · Snowden · social responsibility Preamble. Most academic cryptographers seem to think that our field is a fun, deep, and politically neutral game|a set of puzzles involving communicating parties and notional adversaries. This vision of who we are animates a field whose work is intellectually impressive and rapidly produced, but also quite inbred and divorced from real-world concerns. Is this what cryptography should be like? Is it how we should expend the bulk of our intellectual capital? For me, these questions came to a head with the Snowden disclosures of 2013. If cryptography's most basic aim is to enable secure communications, how could it not be a colossal failure of our field when ordinary people lack even a modicum of communication privacy when interacting electronically? Yet I soon realized that most cryptographers didn't see it this way. -
An Archeology of Cryptography: Rewriting Plaintext, Encryption, and Ciphertext
An Archeology of Cryptography: Rewriting Plaintext, Encryption, and Ciphertext By Isaac Quinn DuPont A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Faculty of Information University of Toronto © Copyright by Isaac Quinn DuPont 2017 ii An Archeology of Cryptography: Rewriting Plaintext, Encryption, and Ciphertext Isaac Quinn DuPont Doctor of Philosophy Faculty of Information University of Toronto 2017 Abstract Tis dissertation is an archeological study of cryptography. It questions the validity of thinking about cryptography in familiar, instrumentalist terms, and instead reveals the ways that cryptography can been understood as writing, media, and computation. In this dissertation, I ofer a critique of the prevailing views of cryptography by tracing a number of long overlooked themes in its history, including the development of artifcial languages, machine translation, media, code, notation, silence, and order. Using an archeological method, I detail historical conditions of possibility and the technical a priori of cryptography. Te conditions of possibility are explored in three parts, where I rhetorically rewrite the conventional terms of art, namely, plaintext, encryption, and ciphertext. I argue that plaintext has historically been understood as kind of inscription or form of writing, and has been associated with the development of artifcial languages, and used to analyze and investigate the natural world. I argue that the technical a priori of plaintext, encryption, and ciphertext is constitutive of the syntactic iii and semantic properties detailed in Nelson Goodman’s theory of notation, as described in his Languages of Art. I argue that encryption (and its reverse, decryption) are deterministic modes of transcription, which have historically been thought of as the medium between plaintext and ciphertext. -
Solutions Manual
SOLUTIONS MANUAL CRYPTOGRAPHY AND NETWORK SECURITY PRINCIPLES AND PRACTICE FOURTH EDITION WILLIAM STALLINGS Copyright 2006: William Stallings -2- © 2006 by William Stallings All rights reserved. No part of this document may be reproduced, in any form or by any means, or posted on the Internet, without permission in writing from the author. -3- NOTICE This manual contains solutions to all of the review questions and homework problems in Cryptography and Network Security, Fourth Edition. If you spot an error in a solution or in the wording of a problem, I would greatly appreciate it if you would forward the information via email to [email protected]. An errata sheet for this manual, if needed, is available at ftp://shell.shore.net/members/w/s/ws/S. W.S. -4- TABLE OF CONTENTS Chapter 1: Introduction..............................................................................................5 Chapter 2: Classical Encryption Techniques ............................................................7 Chapter 3: Block Ciphers and the Date Encryption Standard .............................. 13 Chapter 4: Finite Fields ............................................................................................ 21 Chapter 5: Advanced Encryption Standard ........................................................... 28 Chapter 6: More on Symmetric Ciphers ................................................................. 33 Chapter 7: Confidentiality Using Symmetric Encryption..................................... 38 Chapter 8: Introduction to Number Theory.......................................................... -
Bias in the LEVIATHAN Stream Cipher
Bias in the LEVIATHAN Stream Cipher Paul Crowley1? and Stefan Lucks2?? 1 cryptolabs Amsterdam [email protected] 2 University of Mannheim [email protected] Abstract. We show two methods of distinguishing the LEVIATHAN stream cipher from a random stream using 236 bytes of output and pro- portional effort; both arise from compression within the cipher. The first models the cipher as two random functions in sequence, and shows that the probability of a collision in 64-bit output blocks is doubled as a re- sult; the second shows artifacts where the same inputs are presented to the key-dependent S-boxes in the final stage of the cipher for two suc- cessive outputs. Both distinguishers are demonstrated with experiments on a reduced variant of the cipher. 1 Introduction LEVIATHAN [5] is a stream cipher proposed by David McGrew and Scott Fluhrer for the NESSIE project [6]. Like most stream ciphers, it maps a key onto a pseudorandom keystream that can be XORed with the plaintext to generate the ciphertext. But it is unusual in that the keystream need not be generated in strict order from byte 0 onwards; arbitrary ranges of the keystream may be generated efficiently without the cost of generating and discarding all prior val- ues. In other words, the keystream is “seekable”. This property allows data from any part of a large encrypted file to be retrieved efficiently, without decrypting the whole file prior to the desired point; it is also useful for applications such as IPsec [2]. Other stream ciphers with this property include block ciphers in CTR mode [3]. -
RC4-2S: RC4 Stream Cipher with Two State Tables
RC4-2S: RC4 Stream Cipher with Two State Tables Maytham M. Hammood, Kenji Yoshigoe and Ali M. Sagheer Abstract One of the most important symmetric cryptographic algorithms is Rivest Cipher 4 (RC4) stream cipher which can be applied to many security applications in real time security. However, RC4 cipher shows some weaknesses including a correlation problem between the public known outputs of the internal state. We propose RC4 stream cipher with two state tables (RC4-2S) as an enhancement to RC4. RC4-2S stream cipher system solves the correlation problem between the public known outputs of the internal state using permutation between state 1 (S1) and state 2 (S2). Furthermore, key generation time of the RC4-2S is faster than that of the original RC4 due to less number of operations per a key generation required by the former. The experimental results confirm that the output streams generated by the RC4-2S are more random than that generated by RC4 while requiring less time than RC4. Moreover, RC4-2S’s high resistivity protects against many attacks vulnerable to RC4 and solves several weaknesses of RC4 such as distinguishing attack. Keywords Stream cipher Á RC4 Á Pseudo-random number generator This work is based in part, upon research supported by the National Science Foundation (under Grant Nos. CNS-0855248 and EPS-0918970). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author (s) and do not necessarily reflect the views of the funding agencies or those of the employers. M. M. Hammood Applied Science, University of Arkansas at Little Rock, Little Rock, USA e-mail: [email protected] K. -
Cryptography and Network Security Chapter 12
Chapter 12 – Message CryptographyCryptography andand Authentication Codes NetworkNetwork SecuritySecurity • At cats' green on the Sunday he took the message from the inside of the pillar and added Peter Moran's name to ChapterChapter 1212 the two names already printed there in the "Brontosaur" code. The message now read: “Leviathan to Dragon: Martin Hillman, Trevor Allan, Peter Moran: observe and tail. ” What was the good of it John hardly knew. He felt Fifth Edition better, he felt that at last he had made an attack on Peter Moran instead of waiting passively and effecting no by William Stallings retaliation. Besides, what was the use of being in possession of the key to the codes if he never took Lecture slides by Lawrie Brown advantage of it? (with edits by RHB) • —Talking to Strange Men, Ruth Rendell Outline Message Authentication • we will consider: • message authentication is concerned with: – message authentication requirements – protecting the integrity of a message – message authentication using encryption – validating identity of originator – non -repudiation of origin (dispute resolution) – MACs • three alternative approaches used: – HMAC authentication using a hash function – hash functions (see Ch 11) – DAA – message encryption – CMAC authentication using a block cipher – message authentication codes ( MACs ) and CCM – GCM authentication using a block cipher – PRNG using Hash Functions and MACs Symmetric Message Encryption Message Authentication Code • encryption can also provides authentication (MAC) • if symmetric encryption