The Role of International Cooperation in Invasive Species Research 13

Total Page:16

File Type:pdf, Size:1020Kb

The Role of International Cooperation in Invasive Species Research 13 The Role of International Cooperation in Invasive Species Research 13 Andrew M. Liebhold, Faith T. Campbell, Doria R. Gordon, Qinfeng Guo, Nathan Havill, Bradley Kinder, Richard MacKenzie, David R. Lance, Dean E. Pearson, Sharlene E. Sing, Travis Warziniack, Robert C. Venette, and Denys Yemshanov The study of invasive species in both their native and 13.1 Introduction introduced ranges is critical to mitigating the invasion prob- lem. The translocation of organisms beyond their native The root cause of the biological invasion problem is global- ranges can, in some cases, simply extend the range of species ization, which has facilitated the planet-wide breakdown of that are already pests, and in other cases it can create new biogeographic barriers to species migration (Mooney and pests. It is widely hypothesized that such translocations Hobbs 2000). In order to understand and manage the prob- result in novel ecological interactions, which may cause lem, coordination on a global scale is essential, and interna- these introduced (non-native) species to become more abun- tional cooperation among affected countries as well as with dant and/or modify their ecosystem impacts in their new countries of pest origin must therefore play a critical role in range (e.g., Broennimann et al. 2007; Torchin et al. 2003). virtually all aspects of research on biological invasions Based on this assumption, several mechanisms have been (Chornesky et al. 2005; McNeely et al. 2001; Perrings et al. proposed to explain why introduced species sometimes 2010; Wingfeld et al. 2015). Here we discuss key aspects of become serious pests in their new ranges (Colautti et al. research on biological invasions, where international collab- 2004; Mitchell et al. 2006). Remarkably few studies have oration and coordination are important, and what infrastruc- actually quantifed the abundance and impact of invading tures play a role in this work. species in both native and introduced ranges, to test the D. R. Lance A. M. Liebhold (*) U.S. Department of Agriculture, Animal and Plant U.S. Department of Agriculture, Forest Service, Northern Research Health Inspection Service, Plant Protection and Quarantine, Station, Morgantown, WV, USA Center for Plant Health Science and Technology, Buzzards Bay, e-mail: [email protected] MA, USA F. T. Campbell D. E. Pearson Center for Invasive Species Prevention, Springfeld, VA, USA U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Missoula, MT, USA D. R. Gordon Environmental Defense Fund, Washington, DC, USA Ecology and Evolution, Division of Biological Sciences, University of Montana, Missoula, MT, USA Q. Guo U.S. Department of Agriculture, Forest Service, Southern Research S. E. Sing Station, Eastern Forest Environmental Threat Assessment Center, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Triangle Park, NC, USA Research Station, Bozeman, MT, USA N. Havill T. Warziniack U.S. Department of Agriculture, Forest Service, Northern Research U.S. Department of Agriculture, Forest Service, Rocky Mountain Station, Hamden, CT, USA Research Station, Fort Collins, CO, USA B. Kinder R. C. Venette U.S. Department of Agriculture, Forest Service, Washington U.S. Department of Agriculture, Forest Service, Northern Research Offce, Washington, DC, USA Station, St. Paul, MN, USA R. MacKenzie D. Yemshanov U.S. Department of Agriculture, Forest Service, Pacifc Southwest Natural Resources Canada, Canadian Forest Service, Great Lakes Research Station, Institute of Pacifc Islands Forestry, Hilo, HI, USA Forestry Centre, Sault Ste. Marie, ON, Canada © The Author(s) 2021 293 T. M. Poland et al. (eds.), Invasive Species in Forests and Rangelands of the United States, https://doi.org/10.1007/978-3-030-45367-1_13 294 A. M. Liebhold et al. occurrence of assumed novel ecological interactions (but see cation to a new range, comparing its population biology in Firn et al. 2011; Parker et al. 2013). Nonetheless, there are the native and invaded ranges can identify which factor(s) well-documented examples of non-native plants or animals drives population release in the newly invaded range, infor- that became serious pests as a result of their invasions alter- mation that may be critical in formulating management strat- ing hydrology, nutrient availability, fre regimes, etc. in ways egies. For organisms that are known pest species in both that extensively change the recipient environment (see Chap. ranges, studies of their populations in the native range before 2). Many vertebrate predator species not known to be prob- they are suffciently abundant to study in the new range can lem species in their native ranges have become devastating be critical to containing and controlling the invader before it pests after being introduced to island ecosystems that histori- becomes widespread. Furthermore, when eradication is cally lacked predators (Blackburn et al. 2004). Extreme pop- being employed, it is impractical to work with target organ- ulation growth and impacts on susceptible host trees, isms in the feld in the introduced range; aside from working exhibited by many non-native herbivorous insects and tree in a quarantine facility, the only alternative for acquiring pathogens, can be attributed in some cases to their lack of needed research involves conducting biological studies in top-down control by natural enemies, or, in other systems, to the native range or elsewhere within the introduced range. a lack of coevolved resistance in host trees (Bonello et al. Consequently, international collaboration among researchers 2006; Colautti et al. 2004; Keane and Crawley 2002). In and managers across the native and introduced ranges is many cases, the transformations that create pests are much crucial. more subtle and can only be understood via international col- All biological invasions can be partitioned into three laborations by studying the invader’s population dynamics major phases: arrival, establishment, and spread. Management and community interactions in both its native and introduced strategies corresponding to each of these phases are preven- ranges (Hierro et al. 2005). tion of species arrival, eradication (purposefully driving a In order to address the question of why non-native spe- species to extinction over a specifc area) to prevent estab- cies transform into invasive pests when introduced into a lishment, and containment to prevent or slow spread (see new geographic range, it is critical to understand the spe- Chap. 6). Once non-native species become widely estab- cifc changes in their ecology and community interactions lished and eradication is no longer possible, other manage- that allow them to become pests. Acquiring that knowledge ment options, such as biological control or breeding resistant requires understanding how ecological interactions differ in trees, may be appropriate (see Chaps. 7 and 8). a species’ native and introduced ranges. For example, the enemy release hypothesis postulates that non-native species become problematic in their newly invaded ranges because 13.2 Prevention they are released from population controls afforded by their specialist natural enemies (Keane and Crawley 2002). If this A key step in the prevention of destructive invasions is to hypothesis is valid, then introducing natural enemies from identify potentially damaging species in native habitats in the pest’s native range could potentially reestablish control their regions of origin and use this information to designate over its populations in the newly invaded range. This con- import quarantines. However, obtaining information about cept provides the theoretical basis for classical biological potential invaders, both in their native ranges and invaded control, i.e., the introduction of natural enemies from the ranges outside of the United States, may be diffcult. Thus, pest’s native range to control its populations in the invaded international collaboration and data sharing are critical to range (van Driesche and Bellows 1996), a widely applied implementing effective biosecurity strategies. management tool for invasive pests which in many cases has proven to be highly successful (Huffaker and Kennett 1959; Available Data Information that is available through the McFadyen 1998; van Driesche et al. 2008) (see Chap. 7). public domain has vastly increased our ability to access and Similarly, when the pestilence of non-native insects or share specialized information on invasive species. The pathogens can be attributed to a lack of coevolved host tree International Association for the Plant Protection Sciences resistance, this suggests that benefts may be gained through disseminates largely informal reports on plant pests and their breeding for tree resistance (Sniezko 2006) (see Chaps. 7 management in both their native and invaded ranges through and 8). a dedicated website, Global Plant Protection News (https:// Whether translocations create new invasive pests or sim- iapps2010.me). The Centre for Agriculture and Bioscience ply extend populations of pests, study of the invasive pest in International’s (CABI) Invasive Species Compendium both its native and newly invaded range can be crucial to the (https://www.cabi.org/isc) is an encyclopedic resource with development of effective management strategies (e.g., detailed datasheets that have been sourced from experts and McEvoy and Coombs 1999). Accordingly, for a non-native peer-reviewed literature and includes images and range organism which becomes an invasive
Recommended publications
  • Some Injurious Scale Insects
    Volume 4 Article 1 Number 43 Some injurious scale insects. July 2017 Some injurious scale insects. Wilmon Newell Iowa State College Follow this and additional works at: http://lib.dr.iastate.edu/bulletin Part of the Agriculture Commons, and the Entomology Commons Recommended Citation Newell, Wilmon (2017) "Some injurious scale insects.," Bulletin: Vol. 4 : No. 43 , Article 1. Available at: http://lib.dr.iastate.edu/bulletin/vol4/iss43/1 This Article is brought to you for free and open access by the Extension and Experiment Station Publications at Iowa State University Digital Repository. It has been accepted for inclusion in Bulletin by an authorized editor of Iowa State University Digital Repository. For more information, please contact [email protected]. Newell: Some injurious scale insects. BULLETIN NO. 4-3. 1899. IOWA AGRICULTURAL COLLEGE XPERIMENT STATION. AMES, IOWA. Som e Injurious Sonle Insects. AMES, IOWA. INTELLIGENCER PRINTING HOUSE. Published by Iowa State University Digital Repository, 1898 1 Bulletin, Vol. 4 [1898], No. 43, Art. 1 Board of Trustees Members by virtue of office— His Excellency, L. M. Sh a w , Governor of the State. H on . R. C. B a r r e t t , Supt. of Public Instruction. Term Expires First District—H o n . S. H. W a t k in s, Libertyville, 1904 Second District—H o n . C. S. B a r c la y ,West Liberty 1904 Third District—H o n . J . S. J o n e s, Manchester, 1902 Fourth District—H o n . A . Schermerhorn . Charles C i t y , ....................................................1904 Fifth District—Hon.
    [Show full text]
  • Hemiptera: Sternorrhyncha: Coccoidea: Diaspididae) from Fiji
    Zootaxa 3384: 60–67 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Two more new species of armoured scale insect (Hemiptera: Sternorrhyncha: Coccoidea: Diaspididae) from Fiji BOZENA ŁAGOWSKA1 & CHRIS HODGSON2 1Department of Entomology, University of Life Sciences in Lublin, ul. Leszczynskiego 7, 20–069 Lublin, Poland. E-mail: [email protected] 2Department of Biodiversity and Biological Systematics, The National Museum of Wales, Cardiff, CF10 3NP, UK. E-mail: [email protected] Abstract The adult females of two new species of Diaspididae (Hemiptera: Coccoidea) are described and placed in Anzaspis Henderson (previously only known from New Zealand): A. neocordylinidis Łagowska & Hodgson and A. pandani Łagowska & Hodgson. The former is close to A. cordylinidis (Maskell), currently only known from New Zealand and found on the same host plant species, and the latter is very close to Chionaspis pandanicola Williams & Watson, only currently known from Fiji, and also collected on the same host plant species. Two previously described Chionaspis species already known from Fiji, i.e. C. freycinetiae Williams & Watson and C. pandanicola Williams & Watson are transferred to Anzaspis as Anzaspis freycinetiae (Williams & Watson) comb. nov. and A. pandanicola (Williams & Watson) comb. nov., and a third species, C. rhaphidophorae Williams & Watson, is transferred to Serenaspis as Serenaspis rhaphidophorae (Williams & Watson) comb. nov.. The reasons for these nomenclatural decisions and the relationship between the scale insect fauna of Fiji and New Zealand are discussed. A key is provided to all related species in the tropical South Pacific and New Zealand.
    [Show full text]
  • THE SCALE INSECT GENUS CHIONASPIS : a REVISED CONCEPT (HOMOPTERA : COCCOIDEA : Title DIASPIDIDAE)
    THE SCALE INSECT GENUS CHIONASPIS : A REVISED CONCEPT (HOMOPTERA : COCCOIDEA : Title DIASPIDIDAE) Author(s) Takagi, Sadao Insecta matsumurana. New series : journal of the Faculty of Agriculture Hokkaido University, series entomology, 33, 1- Citation 77 Issue Date 1985-11 Doc URL http://hdl.handle.net/2115/9832 Type bulletin (article) File Information 33_p1-77.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP INSECTA MATSUMURANA NEW SERIES 33 NOVEMBER 1985 THE SCALE INSECT GENUS CHIONASPIS: A REVISED CONCEPT (HOMOPTERA: COCCOIDEA: DIASPIDIDAE) By SADAO TAKAGI Research Trips for Agricultural and Forest Insects in the Subcontinent of India (Grants-in-Aid for Overseas Scientific Survey, Ministry of Education, Japanese Government, 1978, No_ 304108; 1979, No_ 404307; 1983, No_ 58041001; 1984, No_ 59043001), Scientific Report No_ 21. Scientific Results of the Hokkaid6 University Expeditions to the Himalaya_ Abstract TAKAGI, S_ 1985_ The scale insect genus Chionaspis: a revised concept (Homoptera: Coc­ coidea: Diaspididae)_ Ins_ matsum_ n_ s. 33, 77 pp., 7 tables, 30 figs. (3 text-figs., 27 pis.). The genus Chionaspis is revised, and a modified concept of the genus is proposed. Fifty-nine species are recognized as members of the genus. All these species are limited to the Northern Hemisphere: many of them are distributed in eastern Asia and North America, and much fewer ones in western Asia and the Mediterranean Region. In Eurasia most species have been recorded from particular plants and many are associated with Fagaceae, while in North America polyphagy is rather prevailing and the hosts are scattered over much more diverse plants. In the number and arrangement of the modified macroducts in the 2nd instar males many eastern Asian species are uniform, while North American species show diverse patterns.
    [Show full text]
  • 2009 IBS Program
    Fourth biennial conference of the INTERNATIONAL BIOGEOGRAPHY SOCIETY an international and interdisciplinary society contributing to the advancement of all studies of the geography of nature Mérida, Yucatán, México 8 – 12 January 2009 Organization Committee Ella Vázquez Domínguez (Instituto de Ecología, UNAM) Jorge Muñoz (InterMeeting) Alberto Rosenbaum (InterMeeting) David J. Hafner (University of New Mexico) Jens-Christian Svenning (University of Aarhus) Graphic design D.G. Julio César Montero Rojas (Instituto de Biología, UNAM) Logistic Support Héctor T. Arita, José María Fernández-Palacios, Enrique Martínez Meyer, Tania Gutiérrez García, Lorena Garrido Olvera, Edith Calixto Pérez, Susette Castañeda Rico, Gerardo Rodríguez Tapia, David Ortíz Ramírez, Sunny García Aguilar, Habacuc Flores Moreno Universidad Nacional Autónoma de México (UNAM) Instituto de Ecología, UNAM Secretaría de Fomento Turístico, Gobierno del Estado de Yucatán Funding Support Wiley-Blackwell, publishers of Ecography and Journal of Biogeography National Science Foundation (USA) The International Biogeography Society gratefully acknowledges the generous support of the following: Wiley-Blackwell, publishers of Ecography (sponsors of the Symposium on Extinction Biogeography and student travel awards); and the Journal of Biogeography (sponsors of the Alfred Russel Wallace Award and the welcoming reception) The National Science Foundation (USA; Systematic Biology, Biodiversity Inventories, Population and Evolutionary Processes, and Sedimentary Geology and Paleobiology programs), sponsors of student travel awards and for logistic support provided by the Universidad Nacional Autónoma de México (UNAM), Instituto de Ecología, UNAM, and the Secretaría de Fomento Turístico, Gobierno del Estado de Yucatán International Biogeography Society 2007—2009 Officers President—Vicki Funk President-elect—Robert Whittaker Vice President for Conferences—David J. Hafner Vice President for Public Affairs & Communications—Miguel B.
    [Show full text]
  • Checklist of the Scale Insects (Hemiptera : Sternorrhyncha : Coccomorpha) of New Caledonia
    Checklist of the scale insects (Hemiptera: Sternorrhyncha: Coccomorpha) of New Caledonia Christian MILLE Institut agronomique néo-calédonien, IAC, Axe 1, Station de Recherches fruitières de Pocquereux, Laboratoire d’Entomologie appliquée, BP 32, 98880 La Foa (New Caledonia) [email protected] Rosa C. HENDERSON† Landcare Research, Private Bag 92170 Auckland Mail Centre, Auckland 1142 (New Zealand) Sylvie CAZÈRES Institut agronomique néo-calédonien, IAC, Axe 1, Station de Recherches fruitières de Pocquereux, Laboratoire d’Entomologie appliquée, BP 32, 98880 La Foa (New Caledonia) [email protected] Hervé JOURDAN Institut méditerranéen de Biodiversité et d’Écologie marine et continentale (IMBE), Aix-Marseille Université, UMR CNRS IRD Université d’Avignon, UMR 237 IRD, Centre IRD Nouméa, BP A5, 98848 Nouméa cedex (New Caledonia) [email protected] Published on 24 June 2016 Rosa Henderson† left us unexpectedly on 13th December 2012. Rosa made all our recent c occoid identifications and trained one of us (SC) in Hemiptera Sternorrhyncha slide preparation and identification. The idea of publishing this article was largely hers. Thus we dedicate this article to our late and dear Rosa. Rosa Henderson† nous a quittés prématurément le 13 décembre 2012. Rosa avait réalisé toutes les récentes identifications de cochenilles et avait formé l’une d’entre nous (SC) à la préparation des Hemiptères Sternorrhynques entre lame et lamelle. Grâce à elle, l’idée de publier cet article a pu se concrétiser. Nous dédicaçons cet article à notre chère et regrettée Rosa. urn:lsid:zoobank.org:pub:90DC5B79-725D-46E2-B31E-4DBC65BCD01F Mille C., Henderson R. C.†, Cazères S. & Jourdan H. 2016. — Checklist of the scale insects (Hemiptera: Sternorrhyncha: Coccomorpha) of New Caledonia.
    [Show full text]
  • Natural Enemies of Armored Scales (Hemiptera: Diaspididae) and Soft Scales (Hemiptera
    bioRxiv preprint doi: https://doi.org/10.1101/429357; this version posted September 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Natural enemies of armored scales (Hemiptera: Diaspididae) and soft scales (Hemiptera: 2 Coccoidae) in Chile: molecular and morphological identification 3 4 Amouroux, P.1*; Crochard, D.2; Correa, M.C.G. 2,3; Groussier, G. 2; Kreiter, P. 2; Roman, C.4; 5 Guerrieri, E.5,6; Garonna, A.P.7; Malausa, T. 2 & Zaviezo, T1. 6 7 1 Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, 8 Pontificia Universidad Católica de Chile, Santiago, Chile 9 2 Université Côte d'Azur, INRA, CNRS, ISA, France. 10 3 Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Talca, 11 Chile 12 4 Xilema-ANASAC Control Biológico, San Pedro, Quillota, Chile. 13 5 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici 14 (NA), Italy 15 6 Department of Life Sciences, the Natural History Museum, London, United Kingdom 16 7 Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy. 17 18 * Corresponding author e-mail: 19 [email protected] (AP) 20 [email protected] (EG) 21 22 bioRxiv preprint doi: https://doi.org/10.1101/429357; this version posted September 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • A Comparison of Chionaspis Salicis Infestation Intensity Under Artificially Elevated Co2 and O3
    2013. Proceedings of the Indiana Academy of Science 122(1):40–43 A COMPARISON OF CHIONASPIS SALICIS INFESTATION INTENSITY UNDER ARTIFICIALLY ELEVATED CO2 AND O3 Vanessa S. Quinn: Department of Biology/Chemistry, Purdue University North Central, 1401 US 421 South, Westville, IN 46391, phone: (219) 785-5298, email: [email protected] ABSTRACT. Elevated greenhouse gases have significant impacts on forest communities at multiple trophic levels. To understand the effect of greenhouse gases on the phytophagous Chionaspis salicis bi-weekly observations were made at the Aspen Free-air Carbon Enrichment site in northern Wisconsin. These observations show that although the presence versus absence of scale was not related to greenhouse gas treatment, the intensity of scale infestation is related to greenhouse gas treatment. Keywords: Chionaspis salicis, greenhouse gases INTRODUCTION roughleaf dogwood (C. florida), white ash (Fraxinus americana L.), balsam poplar (Popu- Atmospheric carbon dioxide (CO2) levels are increasing with the current average concentra- lus balsamifera), eastern cottonwood (P. del- toides), quaking aspen (P. grandidentata), tion of CO2 being approximately 360 parts per million (ppm) and the concentration is expected sandbar willow (Salix exigua), and black willow to increase to 550 ppm by 2050 (IPCC 2007). (S. nigra; Kosztarab 1963; Dekle 1976). Infesta- tion by C. salicis can completely cover twigs and Troposopheric ozone (O3) levels have also increased by 40% (IPCC 2007). Given these branches of trees. Sap extraction by C. salicis increases it is important to understand how can result in decreased tree vigor, dieback, changes in greenhouse gases affect forest stunting, and eventual death (Ulgenturk & ecosystems and at what trophic level these Canakeloglu 2004).
    [Show full text]
  • A Dissertation By
    WEB-INTEGRATED TAXONOMY AND SYSTEMATICS OF THE PARASITIC WASP FAMILY SIGNIPHORIDAE (HYMENOPTERA, CHALCIDOIDEA) A Dissertation by ANAMARIA DAL MOLIN Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, James B. Woolley Committee Members, Mariana Mateos Raul F. Medina Robert A. Wharton John M. Heraty Head of Department, David Ragsdale December 2014 Major Subject: Entomology Copyright 2014 Anamaria Dal Molin ABSTRACT This work focuses on the taxonomy and systematics of parasitic wasps of the family Signiphoridae (Hymenoptera: Chalcidoidea), a relatively small family of chalcidoid wasps, with 79 described valid species in 4 genera: Signiphora Ashmead, Clytina Erdös, Chartocerus Motschulsky and Thysanus Walker. A phylogenetic analysis of the internal relationships in Signiphoridae, a discussion of its supra-specific classification based on DNA sequences of the 18S rDNA, 28S rDNA and COI genes, and taxonomic studies on the genera Clytina, Thysanus and Chartocerus are presented. In the phylogenetic analyses, all genera except Clytina were recovered as monophyletic. The classification into subfamilies was not supported. Out of the four currently recognized species groups in Signiphora, only the Signiphora flavopalliata species group was supported. The taxonomic work was conducted using advanced digital imaging, content management systems, having in sight the online delivery of taxonomic information. The evolution of changes in the taxonomic workflow and dissemination of results are reviewed and discussed in light of current bioinformatics. The species of Thysanus and Clytina are revised and redescribed, including documentation of type material. Four new species of Thysanus and one of Clytina are described.
    [Show full text]
  • CIRCULAR Issue No
    FDACS-P-02132 CIRCULAR Issue No. 443 | December 2019 Florida Department of Agriculture and Consumer Services Division of Plant Industry Chionaspis pinifoliae (Fitch) (Diaspididae: Coccomorpha: Hemiptera), pine needle scale, a potential pest of Florida pines and the Christmas tree industry, but not established in Florida Muhammad Z. Ahmed, Ph.D., Douglass Miller, Ph.D.; Bureau of Entomology, Nematology and Plant Pathology [email protected] or 1-888-397-1517 INTRODUCTION Chionaspis pinifoliae (Fitch), pine needle scale, is a common pest of conifers, especially in urban environments and Christmas tree farms. This insect is considered one of the most serious pests of ornamental pines in the U.S., especially mugo pine and Scotch pine (Johnson and Lyon, 1991; Miller and Davidson, 2005). In Québec, C. pinifoliae is an emerging pest of Christmas trees, but is not known to cause significant damage. Although not generally monitored by growers, C. pinifoliae can be an obstacle for export (Doherty et al., 2018). Morphological and biological similarities between C. pinifoliae and a closely related species, pine scale, C. heterophyllae Cooley, have led to taxonomic confusion. For example, there is a historical case of misidentification where a research program focusing on C. pinifoliae was found to have actually worked with C. heterophyllae when voucher specimens were reexamined (Nielsen and Johnson, 1973). For the past two years, many Abies fraseri (Pursh) Poiret (Pinaceae) and Pinus strobus L. (Pinaceae) Christmas trees were rejected for sale in Florida because of contamination with C. pinifoliae. Rejected plant shipments were from North Carolina (FDACS-DPI sample numbers E2017-4458, E2017-4501, E2017-4688, E2018-6007, E2018-6128) and Canada (E2017-4743).
    [Show full text]
  • Corroborating Molecular Species Discovery: Four New Pine-Feeding Species of Chionaspis (Hemiptera, Diaspididae)
    A peer-reviewed open-access journal ZooKeys Corroborating270: 37–58 (2012) molecular species discovery: Four new pine-feeding species of Chionaspis... 37 doi: 10.3897/zookeys.270.2910 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Corroborating molecular species discovery: Four new pine-feeding species of Chionaspis (Hemiptera, Diaspididae) Isabelle M. Vea1,†, Rodger A. Gwiazdowski2,3,‡, Benjamin B. Normark2,4,§ 1 Richard Gilder Graduate School, Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA 2 Graduate Program in Organismic and Evolutionary Biology, University of Massachu- setts, Amherst, MA, USA 3 Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada 4 Department of Biology, University of Massachusetts, Amherst, MA, USA † urn:lsid:zoobank.org:author:8BBB3812-34F1-47BD-8313-801CF3E2C59C ‡ urn:lsid:zoobank.org:author:1C2FD887-7430-494A-B7AD-AD4169463799 § urn:lsid:zoobank.org:author:7C99F545-4A8B-446C-B7A9-3B56E321B39D Corresponding author: Isabelle M. Vea ([email protected]) Academic editor: R. Blackman | Received 20 November 2012 | Accepted 19 December 2012 | Published 18 February 2013 urn:lsid:zoobank.org:pub:C0347556-25CF-4D57-A273-85B66D9913C0 Citation: Vea IM, Gwiazdowski RA, Normark BB (2012) Corroborating molecular species discovery: Four new pine- feeding species of Chionaspis (Hemiptera, Diaspididae). ZooKeys 270: 37–58. doi: 10.3897/zookeys.270.2910 Abstract The genus Chionaspis (Hemiptera, Diaspididae) includes two North American species of armored scale in- sects feeding on Pinaceae: Chionaspis heterophyllae Cooley, and C. pinifoliae (Fitch). Despite the economic impact of conifer-feeding Chionaspis on horticulture, the species diversity in this group has only recently been systematically investigated using samples from across the group’s geographic and host range.
    [Show full text]
  • Benjamin B. Normark Department of Plant, Soil, and Insect Sciences, Fernald Hall, 270 Stockbridge Road, University of Massachusetts, Amherst, MA 01003, USA
    Benjamin B. Normark Department of Plant, Soil, and Insect Sciences, Fernald Hall, 270 Stockbridge Road, University of Massachusetts, Amherst, MA 01003, USA. Phone: 1-413-577-3780; fax: 1-413-545-2115; [email protected] EDUCATION 1994 Ph.D., Ecology and Evolutionary Biology, Cornell University. 1985 B.A., Linguistics, Yale University. Magna cum laude with distinction in the major. POSITIONS AND FELLOWSHIPS 2006- Associate Professor, Dept. of Plant Soil and Insect Sciences, UMass Amherst. 2006-07 Visiting Scholar, School of Integrative Biology, University of Queensland. 2004-06 Assistant Professor, Dept. of Plant Soil and Insect Sciences, UMass Amherst. 2000-04 Assistant Professor, Dept. of Entomology, UMass Amherst. 1997-2000 Postdoctoral Fellow (w/ Brian Farrell), MCZ, Harvard University. 1996-97 N.S.F. International Research Fellow (w/ Roger Blackman), NHM, London. 1994-96 A. P. Sloan Postdoctoral Fellow (w/ Nancy Moran), Dept. of EEB, Univ. of Arizona. 1989-92 N.S.F. Graduate Fellow, Cornell University. 1988-93 Andrew D. White Fellow, Cornell University. PEER-REVIEWED JOURNAL ARTICLES Normark, B. B., and N. A. Johnson. In presss. Niche explosion. Genetica. Andersen, J. C., Wu, J., Gruwell, M. E. Gwiazdowski, R., Santana, S., Feliciano, N. M., Morse, G. E., and B. B. Normark. 2010. Phylogenetic analysis of armored scale insects (Hemiptera: Diaspididae) based on nuclear, mitochondrial, and endosymbiont DNA sequences. Molecular Phylogenetics and Evolution 57: 992-1003. Andersen, J. C., Gruwell, M. E. Morse, G. E., and B. B. Normark. 2010. Cryptic diversity in the Aspidiotus nerii complex in Australia. Annals of the Entomological Society of America 103: 844-854. Rugman-Jones, P., J.
    [Show full text]
  • Species Richness and Variety of Life in Arizona's Ponderosa Pine Forest Type
    United States Department of Agriculture Species Richness and Variety of Life in Arizona’s Ponderosa Pine Forest Type David R. Patton, Richard W. Hofstetter, John D. Bailey and Mary Ann Benoit Forest Service Rocky Mountain Research Station General Technical Report RMRS-GTR-332 December 2014 Patton, David R.; Hofstetter, Richard W.; Bailey, John D.; Benoit, Mary Ann. 2014. Species richness and variety of life in Arizona’s ponderosa pine forest type. Gen. Tech. Rep. RMRS-GTR-332. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Species richness (SR) is a tool that managers can use to include diversity in planning and decision-making and is a convenient and useful way to characterize the first level of biological diversity. A richness list derived from existing inventories enhances a manager’s understanding of the complexity of the plant and animal communities they manage. Without a list of species, resource management decisions may have negative or unknown effects on all species occupying a forest type. Without abundance data, a common quantitative index for species diversity cannot be determined. However, SR data can include life his- tory information from published literature to enhance the SR value. This report provides an example of how inventory information can characterize the complexity of biological diversity in the ponderosa pine forest type in Arizona. The SR process broadly categorizes the number of plant and animal life forms to arrive at a composite species richness value. Common sense dictates that plants and animals exist in a biotic community because that community has sufficient resources to sustain life.
    [Show full text]