History of Watershed Research in the Central Arizona Highlands

Total Page:16

File Type:pdf, Size:1020Kb

History of Watershed Research in the Central Arizona Highlands United States Department of Agriculture History of Watershed Research Forest Service Rocky Mountain in the Central Arizona Research Station Research Paper RMRS–GTR–29 Highlands April 1999 Malchus B. Baker, Jr., Compiler Abstract Baker, Jr., Malchus B. Compiler. 1999. History of Watershed Research in the Central Arizona Highlands. Gen. Tech. Rep. RMRS-GTR-29. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 56 p. The Central Arizona Highlands have been the focus of a wide range of research efforts designed to learn more about the effects of natural and human induced disturbances on the functioning, processes, and components of the region’s ecosystems. The watershed research spearheaded by the USDA Forest Service and its cooperators continues to lead to a comprehensive understanding of the region’s ecology, and to formulation of management guidelines that meet the increasing needs of people in the region, and throughout the Southwestern United States. This report assembles the pertinent details of all watershed research accomplished by the USDA Forest Service and its cooperators in the region and provides highlights of the results. An extensive literature cited section is included for additional information. Information on the current status of the 5 major research area is also provided. Keywords: watershed management, water yield, hydrology, mixed conifer, ponderosa pine, pinyon- juniper, chaparral, riparian, vegetation treatment The Authors Malchus B. Baker, Jr. is a research hydrologist with the USDA Forest Service, Rocky Mountain Research Station, Flagstaff, AZ. Leonard F. DeBano is a professor with the University of Arizona, School of Renewable Natural Resources, Tucson, AZ. Peter F. Ffolliott is a professor with the University of Arizona, School of Renewable Natural Resources, Tucson, AZ. Gerald J. Gottfried is a research forester with the USDA Forest Service, Rocky Mountain Research Station, Phoenix, AZ. Steven T. Overby is a soil scientist with the USDA Forest Service, Rocky Mountain Research Station, Flagstaff, AZ. Pesticide Precautionary Statement The publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. Caution: Pesticides can be injurious to humans, domestic animals, desirable plants, fish, and other wildlife if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. You may order additional copies of this publication by sending your mailing information in label form through one of the following media. Please send the publication title and number. Telephone (970) 498-1719 E-mail rschneider/[email protected] FAX (970) 498-1660 Mailing Address Publications Distribution Rocky Mountain Research Station 3825 E. Mulberry Street Fort Collins, CO 80524-8597 Cover photo (circa 1960): Roosevelt Dam on the Salt River, AZ, was the first reservoir to capture and store Arizona water. Photo courtesy of Salt River Project History Services. History of Watershed Research in the Central Arizona Highlands Malchus B. Baker, Jr., Compiler Contents Chapter 1 Central Arizona Highlands ........................................................................... 1 Peter F. Ffolliott Introduction ..................................................................................................... 1 Climate ............................................................................................................ 1 Vegetation Types ............................................................................................ 1 Mixed Conifer Forests ................................................................................ 2 Ponderosa Pine Forests ............................................................................. 2 Mountain Grasslands.................................................................................. 2 Pinyon-Juniper Woodlands......................................................................... 3 Chaparral Shrublands................................................................................. 3 Riparian Ecosystems .................................................................................. 3 Initial Research Emphasis .............................................................................. 4 Multiple Use Considerations ........................................................................... 5 Chapter 2 Beginning of Water Studies in the Central Arizona Highlands ................ 7 Gerald J. Gottfried, Leonard F. DeBano, and Malchus B. Baker, Jr. Introduction ..................................................................................................... 7 Sierra Ancha Experimental Forest .................................................................. 7 Short-Term Studies..................................................................................... 7 Long-Term Studies ..................................................................................... 8 Cooperators .................................................................................................... 9 Results ............................................................................................................ 10 Implications ..................................................................................................... 11 Current Status ................................................................................................. 11 Chapter 3 Providing Water and Forage in the Salt-Verde River Basin ...................... 13 Leonard F. DeBano, Malchus B. Baker, Jr., and Gerald J. Gottfried Introduction ..................................................................................................... 13 Research and Management ........................................................................... 13 Three-Bar Experimental Watersheds ......................................................... 13 Brushy Basin Management Demonstration Area ....................................... 14 Cooperators .................................................................................................... 15 Results ............................................................................................................ 15 Three-Bar Watersheds ............................................................................... 15 Other Studies .............................................................................................. 16 Implications ..................................................................................................... 17 Current Status ................................................................................................. 18 Chapter 4 Managing Chaparral in Yavapai County ..................................................... 19 Leonard F. DeBano, Malchus B. Baker, Jr., and Steven T. Overby Introduction ..................................................................................................... 19 Experimental Watersheds ............................................................................... 19 Whitespar Watersheds ............................................................................... 19 Mingus Watersheds .................................................................................... 21 Battle Flat Pilot Application Program .............................................................. 22 Study Area .................................................................................................. 22 Project Planning, Inventories, and Research ............................................. 22 Cooperators .................................................................................................... 23 Results ............................................................................................................ 23 Whitespar Watersheds ............................................................................... 23 Mingus Watersheds .................................................................................... 24 Battle Flat Watershed ................................................................................. 24 Implications ..................................................................................................... 25 Current Status ................................................................................................. 25 Chapter 5 Interdisciplinary Land Use Along the Mogollon Rim................................. 27 Malchus B. Baker, Jr. and Peter F. Ffolliott Introduction ..................................................................................................... 27 Beaver Creek Watershed ............................................................................... 27 Beaver Creek Project Design ......................................................................... 28 Pilot Watersheds ........................................................................................ 28 Responsibilities ........................................................................................... 28 Wild Bill Studies .............................................................................................. 29 Biosphere Reserve ........................................................................................
Recommended publications
  • Forest Insect and Disease Conditions in the Southwestern Region, 2008
    United States Department of Forest Insect and Agriculture Forest Disease Conditions in Service Southwestern the Southwestern Region Forestry and Forest Health Region, 2008 July 2009 PR-R3-16-5 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720- 2600 (voice and TTY). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TTY). USDA is an equal opportunity provider and employer. Cover photo: Pandora moth caterpillar collected on the North Kaibab Ranger District, Kaibab National Forest. Forest Insect and Disease Conditions in the Southwestern Region, 2008 Southwestern Region Forestry and Forest Health Regional Office Salomon Ramirez, Director Allen White, Pesticide Specialist Forest Health Zones Offices Arizona Zone John Anhold, Zone Leader Mary Lou Fairweather, Pathologist Roberta Fitzgibbon, Entomologist Joel McMillin, Entomologist
    [Show full text]
  • Journal of Arizona History Index, M
    Index to the Journal of Arizona History, M Arizona Historical Society, [email protected] 480-387-5355 NOTE: the index includes two citation formats. The format for Volumes 1-5 is: volume (issue): page number(s) The format for Volumes 6 -54 is: volume: page number(s) M McAdams, Cliff, book by, reviewed 26:242 McAdoo, Ellen W. 43:225 McAdoo, W. C. 18:194 McAdoo, William 36:52; 39:225; 43:225 McAhren, Ben 19:353 McAlister, M. J. 26:430 McAllester, David E., book coedited by, reviewed 20:144-46 McAllester, David P., book coedited by, reviewed 45:120 McAllister, James P. 49:4-6 McAllister, R. Burnell 43:51 McAllister, R. S. 43:47 McAllister, S. W. 8:171 n. 2 McAlpine, Tom 10:190 McAndrew, John “Boots”, photo of 36:288 McAnich, Fred, book reviewed by 49:74-75 books reviewed by 43:95-97 1 Index to the Journal of Arizona History, M Arizona Historical Society, [email protected] 480-387-5355 McArtan, Neill, develops Pastime Park 31:20-22 death of 31:36-37 photo of 31:21 McArthur, Arthur 10:20 McArthur, Charles H. 21:171-72, 178; 33:277 photos 21:177, 180 McArthur, Douglas 38:278 McArthur, Lorraine (daughter), photo of 34:428 McArthur, Lorraine (mother), photo of 34:428 McArthur, Louise, photo of 34:428 McArthur, Perry 43:349 McArthur, Warren, photo of 34:428 McArthur, Warren, Jr. 33:276 article by and about 21:171-88 photos 21:174-75, 177, 180, 187 McAuley, (Mother Superior) Mary Catherine 39:264, 265, 285 McAuley, Skeet, book by, reviewed 31:438 McAuliffe, Helen W.
    [Show full text]
  • Planning and Zoning
    TABLE OF CONTENTS 1.0 Summary............................................................................................................................... 1 1.1 Overview ...................................................................................................................... 1 1.2 Definitions Used in This Plan ....................................................................................... 1 1.3 How to Use the Plan .................................................................................................... 2 1.4 Land Use ...................................................................................................................... 2 1.5 Circulation .................................................................................................................... 3 1.6 Applicability .................................................................................................................. 3 1.7 Previous Comprehensive Plans ................................................................................... 3 1.8 Amendments to the Comprehensive Plan ................................................................... 3 2.0 Introduction ........................................................................................................................... 5 2.1 Role and Purpose of the Comprehensive Plan ............................................................ 5 2.2 Land Use Element........................................................................................................ 5 2.3
    [Show full text]
  • Songbird Ecology in Southwestern Ponderosa
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Chapter 1 Ecology of Southwestern Ponderosa Pine Forests William H. Moir, Brian Geils, Mary Ann Benoit, and Dan Scurlock describes natural and human induced changes in the com- What Is Ponderosa Pine Forest position and structure of these forests. and Why Is It Important? Forests dominated by ponderosa pine (Pinus ponderosa Paleoecology var. scopulorurn) are a major forest type of western North America (figure 1; Steele 1988; Daubenmire 1978; Oliver and Ryker 1990). In this publication, a ponderosa pine The oldest remains of ponderosa pine in the Western forest has an overstory, regardless of successional stage, United States are 600,000 year old fossils found in west dominated by ponderosa pine. This definition corresponds central Nevada. Examination of pack rat middens in New to the interior ponderosa pine cover type of the Society of Mexico and Texas, shows that ponderosa pine was absent American Foresters (Eyre1980). At lower elevations in the during the Wisconsin period (about 10,400 to 43,000 years mountainous West, ponderosa pine forests are generally ago), although pinyon-juniper woodlands and mixed co- bordered by grasslands, pinyon-juniper woodlands, or nifer forests were extensive (Betancourt 1990). From the chaparral (shrublands). The ecotone may be wide or nar- late Pleistocene epoch (24,000 years ago) to the end of the row, and a ponderosa pine forest is recognized when the last ice age (about 10,400 years ago), the vegetation of the overstory contains at least 5 percent ponderosa pine (USFS Colorado Plateau moved southward or northward with 1986).
    [Show full text]
  • A Conceptual Hydrogeologic Model for Fossil Springs, Western
    A CONCEPTUAL HYDROGEOLOGIC MODEL FOR FOSSIL SPRINGS, WESTERN MOGOLLON RIM, ARIZONA: IMPLICATIONS FOR REGIONAL SPRINGS PROCESSES By L. Megan Green A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Geology Northern Arizona University May 2008 Approved: _________________________________ Abraham E. Springer, Ph.D., Chair _________________________________ Roderic A. Parnell, Jr., Ph.D. _________________________________ Paul J. Umhoefer, Ph.D. ABSTRACT A CONCEPTUAL HYDROGEOLOGIC MODEL FOR FOSSIL SPRINGS, WEST MOGOLLON MESA, ARIZONA: IMPLICATIONS FOR REGIONAL SPRINGS PROCESSES L. Megan Green Fossil Springs is the largest spring system discharging along the western Mogollon Rim in central Arizona and is a rare and important resource to the region. The purpose of this study was to gain a better understanding of the source of groundwater discharging at Fossil Springs. This was accomplished by (1) constructing a 3-D digital hydrogeologic framework model from available data to depict the subsurface geology of the western Mogollon Rim region and (2) by compiling and interpreting regional structural and geophysical data for Arizona’s central Transition Zone. EarthVision, a 3-D GIS modeling software, was used to construct the framework model. Two end-member models were created; the first was a simple interpolation of the data and the second was a result of geologic interpretations. The second model shows a monocline trending along the Diamond Rim fault. Both models show Fossil Springs discharging at the intersection of the Diamond Rim fault and Fossil Springs fault, at the contact between the Redwall Limestone and Naco Formation. The second objective of this study was a compilation of regional data for Arizona’s central Transition Zone.
    [Show full text]
  • Historical Stand-Replacing Fire in Upper Montane Forests of the Madrean Sky Islands and Mogollon Plateau, Southwestern USA
    Fire Ecology Volume 7, Issue 3, 2011 Margolis et al.: Historical Stand-Replacing Fire doi: 10.4996/fireecology.0703088 Page 88 RESEARCH ARTICLE HISTORICAL STAND-REPLACING FIRE IN UPPER MONTANE FORESTS OF THE MADREAN SKY ISLANDS AND MOGOLLON PLATEAU, SOUTHWESTERN USA Ellis Q. Margolis1*, Thomas W. Swetnam1, and Craig D. Allen2 1University of Arizona Laboratory of Tree-Ring Research, 105 W. Stadium, Tucson, Arizona 85721, USA 2US Geological Survey Jemez Mountains Field Station, HCR 1, Box 1, Number 15, Los Alamos, New Mexico 87544, USA *Corresponding author: Tel.: 001-520-626-2733; e-mail: [email protected] ABSTRACT The recent occurrence of large fires with a substantial stand-replacing component in the southwestern United States (e.g., Cerro Grande, 2000; Rodeo-Chedeski, 2002; Aspen, 2003; Horseshoe 2, Las Conchas, and Wallow, 2011) has raised questions about the his- torical role of stand-replacing fire in the region. We reconstructed fire dates and stand-re- placing fire patch sizes using four lines of tree-ring evidence at four upper montane forest sites (>2600 m) in the Madrean Sky Islands and Mogollon Plateau of Arizona and New Mexico, USA. The four lines of tree-ring evidence include: (1) quaking aspen (Populus tremuloides) and spruce-fir age structure, (2) conifer death dates, (3) traumatic resin ducts and ring-width changes, and (4) conifer fire scars. Pre-1905 fire regimes in the upper montane forest sites were variable, with drier, south-facing portions of some sites record- ing frequent, low-severity fire (mean fire interval of all fires ranging from 5 yr to 11 yr among sites), others burning with stand-replacing severity, and others with no evidence of fire for >300 yr.
    [Show full text]
  • Arizona Drought Preparedness Plan
    Arizona Drought Preparedness Plan OOPPEERRAATTIIOONNAALL DDRROOUUGGHHTT PPLLAANN Governor’s Drought Task Force Governor Janet Napolitano October 8, 2004 GOVERNOR’S DROUGHT TASK FORCE ARIZONA DROUGHT PREPAREDNESS PLAN Operational Drought Plan - 10-08-2004 GOVERNOR’S DROUGHT TASK FORCE ACKNOWLEDGEMENTS The Governor’s Drought Task Force would like to thank Herb Guenther, Director of the Arizona Department of Water Resources and his staff for their support and assistance in the development of this Plan. Additionally, the Task Force would like to recognize the following individuals and organizations for their assistance and contributions: Mike Austin, Arizona Department of Water Resources Staff to the Task Force Sandy Whitney, Arizona Water Banking Authority (Coordinator) Carol Young, Arizona Department of Water Resources (Administrative Assistant) Workgroup/Committee Co-Chairs Commerce, Recreation & Tourism Jim Holt, Arizona Department of Water Resources Conservation Committee Marjie Risk, Arizona Department of Water Resources (Coordinator) Environmental Health, Watershed Management, Livestock & Wildlife Steve Barker, Natural Resources Conservation Service (Co-Chair) George Ruyle, University of Arizona (Co-Chair) Sandy Whitney (Co-Chair) Irrigated Agriculture Mike Hanrahan, Arizona Department of Water Resources (Co-Chair) Sheldon Jones, Agri-Business Council (Co-Chair) Monitoring Committee Gregg Garfin, University of Arizona – CLIMAS (Co-Chair) Tony Haffer, National Weather Service – Phoenix (Co-Chair) Municipal & Industrial Workgroup Tom
    [Show full text]
  • Springs and Springs-Dependent Taxa of the Colorado River Basin, Southwestern North America: Geography, Ecology and Human Impacts
    water Article Springs and Springs-Dependent Taxa of the Colorado River Basin, Southwestern North America: Geography, Ecology and Human Impacts Lawrence E. Stevens * , Jeffrey Jenness and Jeri D. Ledbetter Springs Stewardship Institute, Museum of Northern Arizona, 3101 N. Ft. Valley Rd., Flagstaff, AZ 86001, USA; Jeff@SpringStewardship.org (J.J.); [email protected] (J.D.L.) * Correspondence: [email protected] Received: 27 April 2020; Accepted: 12 May 2020; Published: 24 May 2020 Abstract: The Colorado River basin (CRB), the primary water source for southwestern North America, is divided into the 283,384 km2, water-exporting Upper CRB (UCRB) in the Colorado Plateau geologic province, and the 344,440 km2, water-receiving Lower CRB (LCRB) in the Basin and Range geologic province. Long-regarded as a snowmelt-fed river system, approximately half of the river’s baseflow is derived from groundwater, much of it through springs. CRB springs are important for biota, culture, and the economy, but are highly threatened by a wide array of anthropogenic factors. We used existing literature, available databases, and field data to synthesize information on the distribution, ecohydrology, biodiversity, status, and potential socio-economic impacts of 20,872 reported CRB springs in relation to permanent stream distribution, human population growth, and climate change. CRB springs are patchily distributed, with highest density in montane and cliff-dominated landscapes. Mapping data quality is highly variable and many springs remain undocumented. Most CRB springs-influenced habitats are small, with a highly variable mean area of 2200 m2, generating an estimated total springs habitat area of 45.4 km2 (0.007% of the total CRB land area).
    [Show full text]
  • The Avifauna of Apache County, Arizona
    THE AVIFAUNA OF APACHE COUNTY, ARIZONA GARY H. ROSENBERG. Museum of Natural Science, Louisiana State University. Baton Rouge, Louisiana 70803 SCOTT B. TERRILL, Departmentof BiologicalSciences, State Universityof New York at Albany, 1400 WashingtonAve., Albany, New York 12222 In general, the distributionand the seasonalstatus of the avifauna of Arizonaare fairly well understood.The Birdsof Arizona (Phillipset al. 1964) encompassesthe entirestate and is fairlycomplete for all seasons.Large sec- tions of the state, however, have received relatively little ornithological coverage. The entire region of Apache County in northeasternArizona is one such area. Even though this area is quite interestingornithologically, before 1976 it receivedlittle coveragerelative to the many popularbirding "hot spots"in other sectionsof the state. It is possibleto assemblea list of those speciesthat breed in Apache County usingPhillips et al. (1964), its revisionby Monson and Phillips(1981), and severaldetailed studies (e.g. Carotherset al. 1973, Franzreb1975). Yet there remain substantialgaps in our knowledgeof migrant, wintering,and some nestingspecies found in Apache County. Since the mid-1970s, primarilyas a resultof the "vagranthunting" boom that swept parts of the West, Apache County has been visitedrepeatedly during all seasons.A significantincrease in knowledge of the statusand distributionof birds in northeasternArizona has resulted. This paper em- phasizesthe diversityand ornithologicaluniqueness of Apache County and summarizes the status of the birds found there. Apache County coversan area of approximately15,000 km2 in the north- eastern corner of Arizona. It extends from the White Mountains in the south to the Utah border in the north. The entire eastern border is shared with New Mexico and the county extendsabout 85 km to its westernborder shared with Navajo County.
    [Show full text]
  • Appendix a Assessment Units
    APPENDIX A ASSESSMENT UNITS SURFACE WATER REACH DESCRIPTION REACH/LAKE NUM WATERSHED Agua Fria River 341853.9 / 1120358.6 - 341804.8 / 15070102-023 Middle Gila 1120319.2 Agua Fria River State Route 169 - Yarber Wash 15070102-031B Middle Gila Alamo 15030204-0040A Bill Williams Alum Gulch Headwaters - 312820/1104351 15050301-561A Santa Cruz Alum Gulch 312820 / 1104351 - 312917 / 1104425 15050301-561B Santa Cruz Alum Gulch 312917 / 1104425 - Sonoita Creek 15050301-561C Santa Cruz Alvord Park Lake 15060106B-0050 Middle Gila American Gulch Headwaters - No. Gila Co. WWTP 15060203-448A Verde River American Gulch No. Gila County WWTP - East Verde River 15060203-448B Verde River Apache Lake 15060106A-0070 Salt River Aravaipa Creek Aravaipa Cyn Wilderness - San Pedro River 15050203-004C San Pedro Aravaipa Creek Stowe Gulch - end Aravaipa C 15050203-004B San Pedro Arivaca Cienega 15050304-0001 Santa Cruz Arivaca Creek Headwaters - Puertocito/Alta Wash 15050304-008 Santa Cruz Arivaca Lake 15050304-0080 Santa Cruz Arnett Creek Headwaters - Queen Creek 15050100-1818 Middle Gila Arrastra Creek Headwaters - Turkey Creek 15070102-848 Middle Gila Ashurst Lake 15020015-0090 Little Colorado Aspen Creek Headwaters - Granite Creek 15060202-769 Verde River Babbit Spring Wash Headwaters - Upper Lake Mary 15020015-210 Little Colorado Babocomari River Banning Creek - San Pedro River 15050202-004 San Pedro Bannon Creek Headwaters - Granite Creek 15060202-774 Verde River Barbershop Canyon Creek Headwaters - East Clear Creek 15020008-537 Little Colorado Bartlett Lake 15060203-0110 Verde River Bear Canyon Lake 15020008-0130 Little Colorado Bear Creek Headwaters - Turkey Creek 15070102-046 Middle Gila Bear Wallow Creek N. and S. Forks Bear Wallow - Indian Res.
    [Show full text]
  • Legacy Image
    GEOMETRIC AND CHRONOLOGIC EVOLUTION OF THE VERDE AND PAYSON BASINS OF CENTRAL ARIZONA AND POSSIBLE RELATIONSHIPS TO DETACHMENT FAULTING; D. S. Brumbaugh, Dept. of Geology, Box 6030, NAU, Flagstaff, AZ 86011 The Transition Zone of Arizona and the structural basins therein have been poorly understood features from a structural standpoint. This is true both of their overall geometry as well as their formation. Yet these basins have developed within the last 13 million years and thus represent perhaps the most recent phase of development related to the extensional tectonics of the Basin and Range province. Recent work (Smith, 1984; Vance, 1983) as well as some older studies (Anderson and Creasy, 1958; Pedersen and Royce, 1970) provide data on the geometry of the Verde and Payson basins which can be used to constrain some hypotheses related to the development of these basins. The work of Cloos (1968), Anderson et. al. (1983), Wernicke and Burchfiel (1982) and Davis et. al. (1980) suggest a spatial and chronologic relation exists between planar high angle normal faults and low angle detachmeht faults. Perhaps one of the clearest examples from the Basin and Range area appears to be from seismic reflection prof i 1es of the Sevier Desert, Basin area of Utah (Fig. 1). These profiles suggest the existence of a detachment surface which acts as a zone of structural accommodation for fault-controlled extensional basin development above it. Faults that appear either listric or planar intersect it from above. Note that the basins are asymmetric with the basin deepening in the direction of dip of the detach- ment surface.
    [Show full text]
  • Characteristics of Adult Female Black Bear Daybeds
    CHARACTERISTICSOF ADULTFEMALE BLACK BEAR DAYBEDSIN NORTHERNARIZONA CHERYLM. MOLLOHAN,Arizona Game and Fish Department, 2222 Greenway Road, Phoenix, AZ 85023 Abstract: Ninety-four black bear (Ursus americanus) bedding sites were located between May 1982 and August 1984. Locations were identified by radio- tracking 14 adult females. Sampling from sites of females with and without cubs showed both bedding and feeding activity at 39% of the sites. Multiple daybeds were found at 28% of the sites and all sites were within 0.8 km of water. Bedding sites occurred on canyon walls 81% of the time, the slopes of which averaged 39%. Daybeds were on the uphill side of a tree 74% of the time. Bed trees averaged 73 cm dbh. Chewing and scratching of daybed trees was recorded at 38% of the sites, and scats were found at 69% of the sites. Removal of vegetative cover and large trees in black bear bedding habitat could reduce overall habitat quality. Int. Conf. Bear Res. and Manage. 7:145-149 Black bear activity patterns and habitat use have Basin Conifer Woodland (Brown et al. 1979). Ridg- been documented in the western United States (Am- etops below 2,100 m are predominately pinyon pine strup and Beecham 1976, Lindzey and Meslow 1977, (Pinus edulis) and alligator juniper (Juniperus dep- LeCount et al. 1984, Unsworth 1984, Young 1984, peana); ponderosa pine (Pinus ponderosa) is on the Mollohan 1985). Young (1984) and Unsworth (1984) west-facing slopes of major canyons and mixed con- briefly discussed black bear bedding sites but gave ifer on the east-facing slopes.
    [Show full text]