March 12, 2020 Heather Provencio Forest
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Forest Insect and Disease Conditions in the Southwestern Region, 2008
United States Department of Forest Insect and Agriculture Forest Disease Conditions in Service Southwestern the Southwestern Region Forestry and Forest Health Region, 2008 July 2009 PR-R3-16-5 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720- 2600 (voice and TTY). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TTY). USDA is an equal opportunity provider and employer. Cover photo: Pandora moth caterpillar collected on the North Kaibab Ranger District, Kaibab National Forest. Forest Insect and Disease Conditions in the Southwestern Region, 2008 Southwestern Region Forestry and Forest Health Regional Office Salomon Ramirez, Director Allen White, Pesticide Specialist Forest Health Zones Offices Arizona Zone John Anhold, Zone Leader Mary Lou Fairweather, Pathologist Roberta Fitzgibbon, Entomologist Joel McMillin, Entomologist -
Maricopa County Regional Trail System Plan
Maricopa County Regional Trail System Plan Adopted August 16, 2004 Maricopa Trail Maricopa County Trail Commission Maricopa County Department of Transportation Maricopa County Parks and Recreation Maricopa County Planning and Development Flood Control District of Maricopa County We have an obligation to protect open spaces for future generations. Maricopa County Regional Trail System Plan VISION Our vision is to connect the majestic open spaces of the Maricopa County Regional Parks with a nonmotorized trail system. The Maricopa Trail Maricopa County Regional Trail System Plan - page 1 Credits Maricopa County Board of Supervisors Andrew Kunasek, District 3, Chairman Fulton Brock, District 1 Don Stapley, District 2 Max Wilson, District 4 Mary Rose Wilcox, District 5 Maricopa County Trail Commission Supervisor Max Wilson, District 4 Chairman Supervisor Andrew Kunasek, District 3 Parks Commission Members: Citizen Members: Laurel Arndt, Chair Art Wirtz, District 2 Randy Virden, Vice-Chair Jim Burke, District 3 Felipe Zubia, District 5 Stakeholders: Carol Erwin, Bureau of Reclamation (BOR) Fred Pfeifer, Arizona Public Service (APS) James Duncan, Salt River Project (SRP) Teri Raml, Bureau of Land Management (BLM) Ex-officio Members: William Scalzo, Chief Community Services Officer Pictured from left to right Laurel Arndt, Supervisor Andy Kunasek, Fred Pfeifer, Carol Erwin, Arizona’s Official State Historian, Marshall Trimble, and Art Wirtz pose with the commemorative branded trail marker Mike Ellegood, Director, Public Works at the Maricopa Trail -
Songbird Ecology in Southwestern Ponderosa
This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Chapter 1 Ecology of Southwestern Ponderosa Pine Forests William H. Moir, Brian Geils, Mary Ann Benoit, and Dan Scurlock describes natural and human induced changes in the com- What Is Ponderosa Pine Forest position and structure of these forests. and Why Is It Important? Forests dominated by ponderosa pine (Pinus ponderosa Paleoecology var. scopulorurn) are a major forest type of western North America (figure 1; Steele 1988; Daubenmire 1978; Oliver and Ryker 1990). In this publication, a ponderosa pine The oldest remains of ponderosa pine in the Western forest has an overstory, regardless of successional stage, United States are 600,000 year old fossils found in west dominated by ponderosa pine. This definition corresponds central Nevada. Examination of pack rat middens in New to the interior ponderosa pine cover type of the Society of Mexico and Texas, shows that ponderosa pine was absent American Foresters (Eyre1980). At lower elevations in the during the Wisconsin period (about 10,400 to 43,000 years mountainous West, ponderosa pine forests are generally ago), although pinyon-juniper woodlands and mixed co- bordered by grasslands, pinyon-juniper woodlands, or nifer forests were extensive (Betancourt 1990). From the chaparral (shrublands). The ecotone may be wide or nar- late Pleistocene epoch (24,000 years ago) to the end of the row, and a ponderosa pine forest is recognized when the last ice age (about 10,400 years ago), the vegetation of the overstory contains at least 5 percent ponderosa pine (USFS Colorado Plateau moved southward or northward with 1986). -
A Conceptual Hydrogeologic Model for Fossil Springs, Western
A CONCEPTUAL HYDROGEOLOGIC MODEL FOR FOSSIL SPRINGS, WESTERN MOGOLLON RIM, ARIZONA: IMPLICATIONS FOR REGIONAL SPRINGS PROCESSES By L. Megan Green A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Geology Northern Arizona University May 2008 Approved: _________________________________ Abraham E. Springer, Ph.D., Chair _________________________________ Roderic A. Parnell, Jr., Ph.D. _________________________________ Paul J. Umhoefer, Ph.D. ABSTRACT A CONCEPTUAL HYDROGEOLOGIC MODEL FOR FOSSIL SPRINGS, WEST MOGOLLON MESA, ARIZONA: IMPLICATIONS FOR REGIONAL SPRINGS PROCESSES L. Megan Green Fossil Springs is the largest spring system discharging along the western Mogollon Rim in central Arizona and is a rare and important resource to the region. The purpose of this study was to gain a better understanding of the source of groundwater discharging at Fossil Springs. This was accomplished by (1) constructing a 3-D digital hydrogeologic framework model from available data to depict the subsurface geology of the western Mogollon Rim region and (2) by compiling and interpreting regional structural and geophysical data for Arizona’s central Transition Zone. EarthVision, a 3-D GIS modeling software, was used to construct the framework model. Two end-member models were created; the first was a simple interpolation of the data and the second was a result of geologic interpretations. The second model shows a monocline trending along the Diamond Rim fault. Both models show Fossil Springs discharging at the intersection of the Diamond Rim fault and Fossil Springs fault, at the contact between the Redwall Limestone and Naco Formation. The second objective of this study was a compilation of regional data for Arizona’s central Transition Zone. -
Springs and Springs-Dependent Taxa of the Colorado River Basin, Southwestern North America: Geography, Ecology and Human Impacts
water Article Springs and Springs-Dependent Taxa of the Colorado River Basin, Southwestern North America: Geography, Ecology and Human Impacts Lawrence E. Stevens * , Jeffrey Jenness and Jeri D. Ledbetter Springs Stewardship Institute, Museum of Northern Arizona, 3101 N. Ft. Valley Rd., Flagstaff, AZ 86001, USA; Jeff@SpringStewardship.org (J.J.); [email protected] (J.D.L.) * Correspondence: [email protected] Received: 27 April 2020; Accepted: 12 May 2020; Published: 24 May 2020 Abstract: The Colorado River basin (CRB), the primary water source for southwestern North America, is divided into the 283,384 km2, water-exporting Upper CRB (UCRB) in the Colorado Plateau geologic province, and the 344,440 km2, water-receiving Lower CRB (LCRB) in the Basin and Range geologic province. Long-regarded as a snowmelt-fed river system, approximately half of the river’s baseflow is derived from groundwater, much of it through springs. CRB springs are important for biota, culture, and the economy, but are highly threatened by a wide array of anthropogenic factors. We used existing literature, available databases, and field data to synthesize information on the distribution, ecohydrology, biodiversity, status, and potential socio-economic impacts of 20,872 reported CRB springs in relation to permanent stream distribution, human population growth, and climate change. CRB springs are patchily distributed, with highest density in montane and cliff-dominated landscapes. Mapping data quality is highly variable and many springs remain undocumented. Most CRB springs-influenced habitats are small, with a highly variable mean area of 2200 m2, generating an estimated total springs habitat area of 45.4 km2 (0.007% of the total CRB land area). -
Legacy Image
GEOMETRIC AND CHRONOLOGIC EVOLUTION OF THE VERDE AND PAYSON BASINS OF CENTRAL ARIZONA AND POSSIBLE RELATIONSHIPS TO DETACHMENT FAULTING; D. S. Brumbaugh, Dept. of Geology, Box 6030, NAU, Flagstaff, AZ 86011 The Transition Zone of Arizona and the structural basins therein have been poorly understood features from a structural standpoint. This is true both of their overall geometry as well as their formation. Yet these basins have developed within the last 13 million years and thus represent perhaps the most recent phase of development related to the extensional tectonics of the Basin and Range province. Recent work (Smith, 1984; Vance, 1983) as well as some older studies (Anderson and Creasy, 1958; Pedersen and Royce, 1970) provide data on the geometry of the Verde and Payson basins which can be used to constrain some hypotheses related to the development of these basins. The work of Cloos (1968), Anderson et. al. (1983), Wernicke and Burchfiel (1982) and Davis et. al. (1980) suggest a spatial and chronologic relation exists between planar high angle normal faults and low angle detachmeht faults. Perhaps one of the clearest examples from the Basin and Range area appears to be from seismic reflection prof i 1es of the Sevier Desert, Basin area of Utah (Fig. 1). These profiles suggest the existence of a detachment surface which acts as a zone of structural accommodation for fault-controlled extensional basin development above it. Faults that appear either listric or planar intersect it from above. Note that the basins are asymmetric with the basin deepening in the direction of dip of the detach- ment surface. -
(Central Arizona) GEOSPHERE
Research Paper GEOSPHERE Incision history of the Verde Valley region and implications for uplift of the Colorado Plateau (central Arizona) 1 2 2 GEOSPHERE; v. 14, no. 4 Richard F. Ott , Kelin X. Whipple , and Matthijs van Soest 1Department of Earth Sciences, ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland 2School of Earth and Space Exploration, Arizona State University, 781 S. Terrace Road, Tempe, Arizona 85287, USA https://doi.org/10.1130/GES01640.1 12 figures; 3 tables; 1 supplemental file ABSTRACT et al., 2008; Moucha et al., 2009; Huntington et al., 2010; Liu and Gurnis, 2010; Flowers and Farley, 2012; Crow et al., 2014; Darling and Whipple, 2015; Karl- CORRESPONDENCE: richard .ott1900@ gmail .com The record of Tertiary landscape evolution preserved in Arizona’s transition strom et al., 2017). As part of this debate, the incision of the Mogollon Rim, zone presents an independent opportunity to constrain the timing of Colo the southwestern edge of the Colorado Plateau (Fig. 1), is not well constrained CITATION: Ott, R.F., Whipple, K.X., and van Soest, rado Plateau uplift and incision. We study this record of landscape evolution in the literature, and disparate ideas about its formation and incision history M., Incision history of the Verde Valley region and implications for uplift of the Colorado Plateau by mapping Tertiary sediments, volcanic deposits, and the erosional uncon have been proposed (Peirce et al., 1979; Lindberg, 1986; Elston and Young, ( central Ari zona): Geosphere, v. 14, no. 4, p. 1690– formity at their base, 40Ar/39Ar dating of basaltic lava flows in key locations, and 1991; Holm, 2001). -
Arizona's Wildlife Linkages Assessment
ARIZONAARIZONA’’SS WILDLIFEWILDLIFE LINKAGESLINKAGES ASSESSMENTASSESSMENT Workgroup Prepared by: The Arizona Wildlife Linkages ARIZONA’S WILDLIFE LINKAGES ASSESSMENT 2006 ARIZONA’S WILDLIFE LINKAGES ASSESSMENT Arizona’s Wildlife Linkages Assessment Prepared by: The Arizona Wildlife Linkages Workgroup Siobhan E. Nordhaugen, Arizona Department of Transportation, Natural Resources Management Group Evelyn Erlandsen, Arizona Game and Fish Department, Habitat Branch Paul Beier, Northern Arizona University, School of Forestry Bruce D. Eilerts, Arizona Department of Transportation, Natural Resources Management Group Ray Schweinsburg, Arizona Game and Fish Department, Research Branch Terry Brennan, USDA Forest Service, Tonto National Forest Ted Cordery, Bureau of Land Management Norris Dodd, Arizona Game and Fish Department, Research Branch Melissa Maiefski, Arizona Department of Transportation, Environmental Planning Group Janice Przybyl, The Sky Island Alliance Steve Thomas, Federal Highway Administration Kim Vacariu, The Wildlands Project Stuart Wells, US Fish and Wildlife Service 2006 ARIZONA’S WILDLIFE LINKAGES ASSESSMENT First Printing Date: December, 2006 Copyright © 2006 The Arizona Wildlife Linkages Workgroup Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written consent from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written consent of the copyright holder. Additional copies may be obtained by submitting a request to: The Arizona Wildlife Linkages Workgroup E-mail: [email protected] 2006 ARIZONA’S WILDLIFE LINKAGES ASSESSMENT The Arizona Wildlife Linkages Workgroup Mission Statement “To identify and promote wildlife habitat connectivity using a collaborative, science based effort to provide safe passage for people and wildlife” 2006 ARIZONA’S WILDLIFE LINKAGES ASSESSMENT Primary Contacts: Bruce D. -
Mineral Appraisal of the Kaibab National Forest, Arizona MLA 6-92
! a [MLA[6"g2 I Mineral Land Assessment Open File Report/1992 I I Mineral Appraisal of the Kaibab National Forest, I Arizona I I I I tional I I I i L I BUREAU OF MINES I UNITED STATES DEPARTMENT OF THE INTERIOR I I I I I MINERAL APPRAISAL OF THE KAIBAB NATIONAL FOREST, ARIZONA ! I by I David C. Scott I I MLA 6-92 I 1992 I I -.4 Intermountain Field Operations Center ! Denver, Colorado ! UNITED STATES DEPARTMENT OF THE INTERIOR I Manuel Lujan Jr., Secretary BUREAU OF MINES I T S ARY, Director I I l I I PREFACE A January, 1987 Interagency Agreement between the Bureau of Mines, U.S. Geological Survey, and U.S. Forest Service describes I the purpose, authority, and program operation for the forest-wide studies. The program is intended to assist the Forest Service in incorporating mineral resource data in forest plans as specified by I the National Forest Management Act (1976) and Title 36, Chapter 2, Part 219, Code of Federal Regulations, and to augment the Bureau's mineral resource data base so that it can analyze and make I available minerals information as required by the National Materials and Minerals Policy, Research and Development Act (1980). This report is based on available data from literature and field investigations. I l I I I I I I I I This open-file report summarizes the results of a Bureau of Mines forest-wide study. The report is preliminary and has not been edited or reviewed for conformity with ! the Bureau of Mines editorial standards. -
MTB Participant Manual
MTB Participant Manual Flagstaff to Grand Canyon Stagecoach Line 100-Mile Mountain Bike Race ____________________________________________ Flagstaff, Arizona September 19, 2020 6AM ____________________________________________ Presented by Babbitt Ranches Flagstaff to Grand Canyon 100 Table of Contents Race Management 3 Sponsors 4 Brief Course Description 5 Qualifying 5 Start Times 5 Time Limits & Cut-Off Requirements 5 Race Day Parking 6 Post-Race Transportation 6 Flagstaff, AZ 6 Tusayan, AZ 7 Travel 7 Accommodations 7 Race Weekend Weather 8 Our Partners 9 Awards 12 Race Weekend Agenda 13 Course Marking 14 Aid Stations 14 Race Mechanics 14 Drop Bags 15 Recommended Gear 16 Last Minute Supplies 16 Social Media 16 Aid Station Matrix: Distances, Relay Exchanges, and Services 17 Biker Rules 17 Crew Rules 19 Aid Station Driving Directions 21 Recommended Purchases 24 Detailed Course Description 25 ©2020 The Flagstaff to Grand Canyon Stagecoach Line races are conducted under special use permit of the Coconino and Kaibab National Forests. 2 Flagstaff to Grand Canyon 100 Race Management Race Director Ian Torrence Co-Race Director Emily Torrence Mountain Bike Co-Race Director Dana Ernst Medical Directors Eric True & Scott Bajer Coconino County Sheriff’s SAR Coordinator Bart Thompson Coconino Amateur Radio Club Coordinator Joe Hobart Timing & Tracking Run Flagstaff and UltraLive.net 3 Brief Event Description This mountain bike event begins a few miles north of Flagstaff, Arizona, near the intersection of Snowbowl Road and Route 180, and finishes in Tusayan, Arizona, the entrance of Grand Canyon National Park. A majority of the Stagecoach course follows the Arizona Trail and the historic Flagstaff to Grand Canyon Stagecoach Line route used by adventure seeking tourists between 1897 and 1901. -
Investigation of the Geology and Hydrology of the Coconino Plateau of Northern Arizona: a Project of the Arizona Rural Watershed Initiative
Prepared in cooperation with the ARIZONA DEPARTMENT OF WATER RESOURCES Investigation of the Geology and Hydrology of the Coconino Plateau of Northern Arizona: A Project of the Arizona Rural Watershed Initiative ����� ���� The water resources of the Coconino Each study has as its objectives: (1) the Plateau in northern Arizona are under collection, compilation, and evaluation increasing demand as a result of develop- of all existing geologic, hydrologic, and ment. The population of this arid region �������� ��������� related data pertaining to the study area continues to grow, and the number of ������� and the creation of a database that is �� visitors to the many national and state ����� ���� �� readily accessible to the public and (2) the �� �� �� � parks and monuments in the region has �� � development of an understanding of the increased annually. The sustainability, � hydrogeologic framework, which is the protection, and maintenance of springs relation between hydrologic and geologic and seeps and associated riparian ������� properties, that can be used for water- habitat on the Coconino Plateau are r e s o u r c e s management purposes major issues that have broad public and ������� and that will support governmental support. the development of Regional stakeholders agree that an conceptual and inter- improved understanding of the regional � pretive models that � � hydrogeologic system is needed to � can be used to ������ � address the concerns of water supply � e v a l u a t e t h e � � � and ground-water sustainability. The ��� � ��� effects of climate � � base of information required to ade- � � and water use on � � � � quately describe the hydrogeology of � ����� ������ � regional water � � �������� ���� � ��� ����� � the Coconino Plateau currently does � � resources. -
Geologic Map of the Hedgpeth Hills 7.5' Quadrangle, Maricopa County, Arizona
Geologic Map of the Hedgpeth Hills 7.5' Quadrangle, Maricopa County, Arizona by Robert S. Leighty and Gary Huckleberry Arizona Geological Survey Open-File Report 98-18 November, 1998 Arizona Geological Survey 416 W. Congress, Suite 100, Tucson, AZ 85701 Includes 23-page text and 1:24,000 scale geologic map. This report was supported by the Arizona Radiation Regulatory Agency, withjunds provided by the U.S. Environmental Protection Agency through the State Indoor Radon Grant Program, the U.S. Geological Survey via the STATEMAP program, and the Arizona Geological Survey. This report is preliminary and has not been edited or reviewed for conformity with Arizona Geological Survey standards INTRODUCTION The Hedgpeth Hills Quadrangle is located in the northwestern Phoenix metropolitan area, between Interstate 17 (I-17) and the Agua Fria River (Figure 1). The quadrangle is bounded by latitudes 33°37'30''N and 33°45'00"N, and longitudes 112°07'30"W and 112°15'00"W. The Hedgpeth Hills area is highly urbanized and is still undergoing rapid population growth. Thus, the knowledge of the distribution and character of bedrock and surficial deposits is important to make informed decisions concerning management of the land and its resources. Geologic mapping of the Hedgpeth Hills Quadrangle is related to other 1:24,000 scale mapping projects in and around the Phoenix metropolitan area (Figure 1). Geologic mapping of bedrock and surficial units in the quadrangle was based upon both field observations and interpretation of aerial photographs and soil surveys. Mapping of Quaternary surficial deposits was initially done by Huckleberry, whereas final mapping and interpretation of bedrock and surficial units was completed by Leighty.