Automatically Parallelizing Embedded Legacy Software on Soft-Core Socs

Total Page:16

File Type:pdf, Size:1020Kb

Automatically Parallelizing Embedded Legacy Software on Soft-Core Socs Automatically Parallelizing Embedded Legacy Software on Soft-Core SoCs Automatische Parallelisierung bestehender eingebetteter Software mit Soft-Core SoCs Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigte Dissertation von Kris Heid aus Groß-Umstadt Tag der Einreichung: 24.06.2019, Tag der Prüfung: 20.08.2019 Darmstadt — D 17 1. Gutachten: Prof. Dr.-Ing. Christian Hochberger 2. Gutachten: Prof. Dr.-Ing. Jeronimo Castrillon Fachgebiet Rechnersysteme Fachbereich Elektrotechnik und Informationstechnik Automatically Parallelizing Embedded Legacy Software on Soft-Core SoCs Automatische Parallelisierung bestehender eingebetteter Software mit Soft-Core SoCs Genehmigte Dissertation von Kris Heid aus Groß-Umstadt 1. Gutachten: Prof. Dr.-Ing. Christian Hochberger 2. Gutachten: Prof. Dr.-Ing. Jeronimo Castrillon Tag der Einreichung: 24.06.2019 Tag der Prüfung: 20.08.2019 Darmstadt — D 17 URN: urn:nbn:de:tuda-tuprints-90205 URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/9020 Dieses Dokument wird bereitgestellt von tuprints, E-Publishing-Service der TU Darmstadt http://tuprints.ulb.tu-darmstadt.de [email protected] Die Veröffentlichung steht unter folgender Creative Commons Lizenz: Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 4.0 International https://creativecommons.org/licenses/by/4.0/deed.de Erklärungen laut Promotionsordnung § 8 Abs. 1 lit. c PromO Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftlichen Version übereinstimmt. § 8 Abs. 1 lit. d PromO Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthema und Ergebnis dieses Versuchs mitzuteilen. § 9 Abs. 1 PromO Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter Verwendung der angegebenen Quellen verfasst wurde. § 9 Abs. 2 PromO Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient. Ort, Datum und Unterschrift Abstract Nowadays, embedded systems are utilized in many areas and become omnipresent, making people’s lives more comfortable. Embedded systems have to handle more and more functionality in many products. To maintain the often required low energy consumption, multi-core systems provide high performance at moderate energy consumption. The development started with dual-core processors and has today reached many-core designs with dozens and hundreds of processor cores. However, existing applications can barely leverage the potential of that many cores. Legacy applications are usually written sequentially and thus typically use only one processor core. Thus, these applications do not benefit from the advantages provided by modern many-core systems. Rewriting those applications to use multiple cores requires new skills from developers and it is also time-consuming and highly error prone. Dozens of languages, APIs and compilers have already been presented in the past decades to aid the user with parallelizing applications. Fully automatic parallelizing compilers are seen as the holy grail, since the user effort is kept minimal. However, automatic parallelizers often cannot extract parallelism as good as user aided approaches. Most of these parallelization tools are designed for desktop and high-performance systems and are thus not tuned or applicable for low performance embedded systems. To improve this situation, this work presents an automatic parallelizer for embedded systems, which is able to mostly deliver better quality than user aided approaches and if not allows easy manual fine-tuning. Parallelization tools extract concurrently executable tasks from an application. These tasks can then be executed on different processor cores. Parallelization tools and automatic parallelizers in particular often struggle to efficiently map the extracted parallelism to an existing multi-core processor. This work uses soft-core processors on Field Programmable Gate Arrays (FPGAs), which makes it possible to realize cus- tom multi-core designs in hardware, within a few minutes. This allows to adapt the multi-core processor to the characteristics of the extracted parallelism. Especially, core-interconnects for communication can be optimized to fit the communication pattern of the parallel application. Embedded applications are often structured as follows: receive input data, (multiple) data processing steps, data output. The multiple processing steps are often realized as consecutive loosely coupled transformations. These steps naturally already model the structure of a processing pipeline. It is the goal of this work to extract this kind of pipeline-parallelism from an application and map it to multiple cores to increase the overall throughput of the system. Multiple cores forming a chain with direct communication channels ideally fit this pattern. The previously described, so called pipeline-parallelism is a barely addressed concept in most parallelization tools. Also, current multi-core designs often do not support the hardware flexibility provided by soft-cores, targeted in this approach. The main contribution of this work is an automatic parallelizer which is able to map different process- ing steps from the source-code of a sequential application to different cores in a multi-core pipeline. Users only specify the required processing speed after parallelization. The developed tool tries to ex- tract a matching parallelized software design along with a custom multi-core design out of sequential embedded legacy applications. The automatically created multi-core system already contains used pe- ripherals extracted from the source-code and is ready to be used. The presented parallelizer implements multi-objective optimization to generate a minimal hardware design, just fulfilling the user defined re- quirement. To the best of my knowledge, the possibility to generate such a multi-core pipeline defined by the demands of the parallelized software has never been presented before. The approach is implemented for two soft-core processors and evaluation shows for both targets high speedups of 12x and higher at a reasonable hardware overhead. Compared to other automatic paral- lelizers, which mainly focus on speedups through latency reduction, significantly higher speedups can be achieved depending on the given application structure. Zusammenfassung Eingebettete Systeme werden heutzutage in vielen Bereich eingesetzt, um unseren Alltag zu erleichtern. Hierbei übernehmen diese immer mehr Aufgaben. Um die wachsende Anzahl an Aufgaben erledigen zu können werden Mehrkernprozessoren benötigt, welche eine hohe Leistungsfähigkeit bei gleichzeitig moderatem Energiebedarf bieten. Waren die ersten Mehrkernprozessoren noch mit zwei Rechenker- nen ausgestattet, so existieren heute bereits Prozessoren mit dutzenden und hunderten Rechenkernen. Viele bestehende Anwendungen können jedoch ohne Anpassungen kaum von dieser hohen Anzahl an Rechenkernen profitieren. Existierende Anwendungen haben meist einen sequenziellen Programmablauf und nutzen daher per se nur einen einzigen Rechenkern. Somit können sie nicht von den Vorteilen und der Rechenleistung moder- ner Prozessoren profitieren. Die Anwendungen müssten umgeschrieben werden, um das volle Potenzial von Mehrkernprozessoren zu nutzen, was jedoch neue Fertigkeiten und Denkmuster von Entwicklern fordert und zudem sehr mühsam und fehleranfällig ist. In den letzten Jahren wurden bereits eine Reihe an Programmiersprachen, Programmierschnittstellen und Compilern entwickelt, um Entwickler bei der Parallelisierung zu unterstützen. Dabei sind vollständig automatische Parallelisierer der heilige Gral der Parallelisierung, da sie dem Nutzer den Großteil der Arbeit abnehmen. Automatische Parallelisierer kön- nen jedoch teilweise nicht die Qualität der einer manuellen Parallelisierung von erfahrenen Entwicklern erreichen. Die Meisten der entwickelten Parallelisierungswerkzeuge sind außerdem für Desktop- oder Hochleistungsrechner entworfen worden und sind daher kaum an die Bedürfnisse eingebetteter Systeme angepasst. Daher wird in dieser Arbeit ein automatischer Parallelisierer für eingebettete Systeme vor- gestellt, welcher oftmals die Qualität manueller Parallelisierungen übertrifft und auf Wunsch manuelle Anpassungen erlaubt. Parallelisierungswerkzeuge sind in der Lage parallel ausführbare Aufgaben aus einer Anwendung zu extrahieren und diese dann auf verschiedenen Prozessorkernen auszuführen. Vor allem automatische Parallelisierer haben jedoch oft Probleme den gefundenen Parallelismus effizient auf die verfügbare be- schränkte Anzahl an Kernen abzubilden. Daher werden in dieser Arbeit Soft-Core Prozessoren auf FPGAs verwendet, welche es ermöglichen ein angepasstes Mehrkernsystem innerhalb weniger Minuten zu rea- lisieren. Hierdurch kann das System auf die Charakteristiken des extrahierten Parallelismus angepasst werden. Besonders die Kommunikationsinfrastruktur kann speziell auf das Kommunikationsmuster der parallelisierten Anwendung angepasst werden. Anwendungen eingebetteter Systeme haben oftmals die folgende Struktur: Eingangsdaten empfangen, Verarbeitung der Daten (in mehreren Schritten), Ausgabe der Daten. Die verschiedenen Verarbeitungs- schritte sind hierbei meist nur locker gekoppelte aufeinanderfolgende Transformationen der Daten. Die beschriebenen Schritte weisen somit die Struktur eine Verarbeitungs-Pipeline auf. Daher ist das Ziel dieser Arbeit diesen sogenannten Pipeline-Parallelismus aus der Anwendung zu extrahieren.
Recommended publications
  • Microprocessor
    MICROPROCESSOR www.MPRonline.com THE REPORTINSIDER’S GUIDE TO MICROPROCESSOR HARDWARE EEMBC’S MULTIBENCH ARRIVES CPU Benchmarks: Not Just For ‘Benchmarketing’ Any More By Tom R. Halfhill {7/28/08-01} Imagine a world without measurements or statistical comparisons. Baseball fans wouldn’t fail to notice that a .300 hitter is better than a .100 hitter. But would they welcome a trade that sends the .300 hitter to Cleveland for three .100 hitters? System designers and software developers face similar quandaries when making trade-offs EEMBC’s role has evolved over the years, and Multi- with multicore processors. Even if a dual-core processor Bench is another step. Originally, EEMBC was conceived as an appears to be better than a single-core processor, how much independent entity that would create benchmark suites and better is it? Twice as good? Would a quad-core processor be certify the scores for accuracy, allowing vendors and customers four times better? Are more cores worth the additional cost, to make valid comparisons among embedded microproces- design complexity, power consumption, and programming sors. (See MPR 5/1/00-02, “EEMBC Releases First Bench- difficulty? marks.”) EEMBC still serves that role. But, as it turns out, most The Embedded Microprocessor Benchmark Consor- EEMBC members don’t openly publish their scores. Instead, tium (EEMBC) wants to help answer those questions. they disclose scores to prospective customers under an NDA or EEMBC’s MultiBench 1.0 is a new benchmark suite for use the benchmarks for internal testing and analysis. measuring the throughput of multiprocessor systems, Partly for this reason, MPR rarely cites EEMBC scores including those built with multicore processors.
    [Show full text]
  • Real-Time Visualization of Aerospace Simulations Using Computational Steering and Beowulf Clusters
    The Pennsylvania State University The Graduate School Department of Computer Science and Engineering REAL-TIME VISUALIZATION OF AEROSPACE SIMULATIONS USING COMPUTATIONAL STEERING AND BEOWULF CLUSTERS A Thesis in Computer Science and Engineering by Anirudh Modi Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2002 We approve the thesis of Anirudh Modi. Date of Signature Paul E. Plassmann Associate Professor of Computer Science and Engineering Thesis Co-Advisor Co-Chair of Committee Lyle N. Long Professor of Aerospace Engineering Professor of Computer Science and Engineering Thesis Co-Advisor Co-Chair of Committee Rajeev Sharma Associate Professor of Computer Science and Engineering Padma Raghavan Associate Professor of Computer Science and Engineering Mark D. Maughmer Professor of Aerospace Engineering Raj Acharya Professor of Computer Science and Engineering Head of the Department of Computer Science and Engineering iii ABSTRACT In this thesis, a new, general-purpose software system for computational steering has been developed to carry out simulations on parallel computers and visualize them remotely in real-time. The steering system is extremely lightweight, portable, robust and easy to use. As a demonstration of the capabilities of this system, two applications have been developed. A parallel wake-vortex simulation code has been written and integrated with a Virtual Reality (VR) system via a separate graphics client. The coupling of computational steering of paral- lel wake-vortex simulation with VR setup provides us with near real-time visualization of the wake-vortex data in stereoscopic mode. It opens a new way for the future Air-Traffic Control systems to help reduce the capacity constraint and safety problems resulting from the wake- vortex hazard that are plaguing the airports today.
    [Show full text]
  • Programmers' Tool Chain
    Reduce the complexity of programming multicore ++ Offload™ for PlayStation®3 | Offload™ for Cell Broadband Engine™ | Offload™ for Embedded | Custom C and C++ Compilers | Custom Shader Language Compiler www.codeplay.com It’s a risk to underestimate the complexity of programming multicore applications Software developers are now presented with a rapidly-growing range of different multi-core processors. The common feature of many of these processors is that they are difficult and error-prone to program with existing tools, give very unpredictable performance, and that incompatible, complex programming models are used. Codeplay develop compilers and programming tools with one primary goal - to make it easy for programmers to achieve big performance boosts with multi-core processors, but without needing bigger, specially-trained, expensive development teams to get there. Introducing Codeplay Based in Edinburgh, Scotland, Codeplay Software Limited was founded by veteran games developer Andrew Richards in 2002 with funding from Jez San (the founder of Argonaut Games and ARC International). Codeplay introduced their first product, VectorC, a highly optimizing compiler for x86 PC and PlayStation®2, in 2003. In 2004 Codeplay further developed their business by offering services to processor developers to provide them with compilers and programming tools for their new and unique architectures, using VectorC’s highly retargetable compiler technology. Realising the need for new multicore tools Codeplay started the development of the company’s latest product, the Offload™ C++ Multicore Programming Platform. In October 2009 Offload™: Community Edition was released as a free-to-use tool for PlayStation®3 programmers. Experience and Expertise Codeplay have developed compilers and software optimization technology since 1999.
    [Show full text]
  • Pathscale ENZO GTC12 S0631 – Programming Heterogeneous Many-Cores Using Directives C
    PathScale ENZO GTC12 S0631 – Programming Heterogeneous Many-Cores Using Directives C. Bergström | May 14th, 2012 Brief Introduction to ENZO 2 | PathScale GTC12 S0631 Tutorial | May 14th, 2012 ENZO Overview & Goals Speed transition to GPU & many-core systems • Simplify the task of migrating software written in C, C++ & Fortran • Uses OpenHMPP Standard (easy migration) • CAPS HMPP compatible Performance & HPC focused • Fully exploits NVIDIA GPU features • Generates native instructions optimized for NVIDIA GPU 3 | PathScale GTC12 S0631 Tutorial | May 14th, 2012 Project Schedule & Status 4 | PathScale GTC12 S0631 Tutorial | May 14th, 2012 Project Schedule . ENZO Production release June 2012 – OpenHMPP 2.5 C, C++ and Fortran . Next ENZO Production release October 2012 – More tools and better support for libraries – x8664 OpenHMPP task parallelism (similar to OMP3 tasks) – More optimizations (IPA / CG2 / textures) – OpenHMPP 3.0 – CUDA 4.x – Kepler 5 | PathScale GTC12 S0631 Tutorial | May 14th, 2012 Project Status . OpenHMPP 2.5 – Running CAPS C & Fortran Labs – PathScale written HMPP test suite – Customer code . New C++ compiler – Perennial C++VS and CVSA regression free – Corner case compile time issues – Corner case runtime issues . Ongoing effort – Performance tuning & benchmarking – Compiler robustness – Nightly compiler builds to address issues 6 | PathScale GTC12 S0631 Tutorial | May 14th, 2012 Performance 7 | PathScale GTC12 S0631 Tutorial | May 14th, 2012 Performance . NVIDIA Tesla 2050 - “Lab2” SGEMM – ENZO – /opt/enzo/bin/pathcc -hmpp
    [Show full text]
  • Programming Languages, Database Language SQL, Graphics, GOSIP
    b fl ^ b 2 5 I AH1Q3 NISTIR 4951 (Supersedes NISTIR 4871) VALIDATED PRODUCTS LIST 1992 No. 4 PROGRAMMING LANGUAGES DATABASE LANGUAGE SQL GRAPHICS Judy B. Kailey GOSIP Editor POSIX COMPUTER SECURITY U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Computer Systems Laboratory Software Standards Validation Group Gaithersburg, MD 20899 100 . U56 4951 1992 NIST (Supersedes NISTIR 4871) VALIDATED PRODUCTS LIST 1992 No. 4 PROGRAMMING LANGUAGES DATABASE LANGUAGE SQL GRAPHICS Judy B. Kailey GOSIP Editor POSIX COMPUTER SECURITY U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Computer Systems Laboratory Software Standards Validation Group Gaithersburg, MD 20899 October 1992 (Supersedes July 1992 issue) U.S. DEPARTMENT OF COMMERCE Barbara Hackman Franklin, Secretary TECHNOLOGY ADMINISTRATION Robert M. White, Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY John W. Lyons, Director - ;,’; '^'i -; _ ^ '’>.£. ; '':k ' ' • ; <tr-f'' "i>: •v'k' I m''M - i*i^ a,)»# ' :,• 4 ie®®;'’’,' ;SJ' v: . I 'i^’i i 'OS -.! FOREWORD The Validated Products List is a collection of registers describing implementations of Federal Information Processing Standards (FTPS) that have been validated for conformance to FTPS. The Validated Products List also contains information about the organizations, test methods and procedures that support the validation programs for the FTPS identified in this document. The Validated Products List is updated quarterly. iii ' ;r,<R^v a;-' i-'r^ . /' ^'^uffoo'*^ ''vCJIt<*bjteV sdT : Jr /' i^iL'.JO 'j,-/5l ':. ;urj ->i: • ' *?> ^r:nT^^'Ad JlSid Uawfoof^ fa«Di)itbiI»V ,, ‘ isbt^u ri il .r^^iytsrH n 'V TABLE OF CONTENTS 1.
    [Show full text]
  • Locality-Aware Automatic Parallelization for GPGPU with Openhmpp Directives
    Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives José M. Andión, Manuel Arenaz, François Bodin, Gabriel Rodríguez and Juan Touriño 7th International Symposium on High-Level Parallel Programming and Applications (HLPP 2014) July 3-4, 2014 — Amsterdam, Netherlands Outline • Motivation: General Purpose Computation with GPUs • GPGPU with CUDA & OpenHMPP • The KIR: an IR for the Detection of Parallelism • Locality-Aware Generation of Efficient GPGPU Code • Case Studies: CONV3D & SGEMM • Performance Evaluation • Conclusions & Future Work J.M. Andión et al. Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives. HLPP 2014. Outline • Motivation: General Purpose Computation with GPUs • GPGPU with CUDA & OpenHMPP • The KIR: an IR for the Detection of Parallelism • Locality-Aware Generation of Efficient GPGPU Code • Case Studies: CONV3D & SGEMM • Performance Evaluation • Conclusions & Future Work J.M. Andión et al. Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives. HLPP 2014. 100,000 Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz) Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz) Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz) 24,129 Intel Core Duo Extreme 2 cores, 3.0 GHz 21,871 Intel Core 2 Extreme 2 cores, 2.9 GHz 19,484 10,000 AMD Athlon 64, 2.8 GHz 14,387 AMD Athlon, 2.6 GHz 11,865 Intel Xeon EE 3.2 GHz 7,108 Intel D850EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology) 6,043 6,681 IBM Power4, 1.3 GHz 4,195 3,016 Intel VC820 motherboard, 1.0 GHz Pentium III processor 1,779 Professional Workstation XP1000, 667 MHz 21264A Digital AlphaServer 8400 6/575, 575 MHz 21264 1,267 1000 993 AlphaServer 4000 5/600, 600 MHz 21164 649 Digital Alphastation 5/500, 500 MHz 481 Digital Alphastation 5/300, 300 MHz 280 22%/year Digital Alphastation 4/266, 266 MHz 183 IBM POWERstation 100, 150 MHz 117 100 Digital 3000 AXP/500, 150 MHz 80 HP 9000/750, 66 MHz 51 IBM RS6000/540, 30 MHz 24 52%/year Performance (vs.
    [Show full text]
  • How to Write Code That Will Survive
    Programming Heterogeneous Many-cores Using Directives HMPP - OpenAcc F. Bodin, CAPS CTO Introduction • Programming many-core systems faces the following dilemma o Achieve "portable" performance • Multiple forms of parallelism cohabiting – Multiple devices (e.g. GPUs) with their own address space – Multiple threads inside a device – Vector/SIMD parallelism inside a thread • Massive parallelism – Tens of thousands of threads needed o The constraint of keeping a unique version of codes, preferably mono- language • Reduces maintenance cost • Preserves code assets • Less sensitive to fast moving hardware targets • Codes last several generations of hardware architecture • For legacy codes, directive-based approach may be an alternative o And may benefit from auto-tuning techniques CC 2012 www.caps-entreprise.com 2 Profile of a Legacy Application • Written in C/C++/Fortran • Mix of user code and while(many){ library calls ... mylib1(A,B); ... • Hotspots may or may not be myuserfunc1(B,A); parallel ... mylib2(A,B); ... • Lifetime in 10s of years myuserfunc2(B,A); ... • Cannot be fully re-written } • Migration can be risky and mandatory CC 2012 www.caps-entreprise.com 3 Overview of the Presentation • Many-core architectures o Definition and forecast o Why usual parallel programming techniques won't work per se • Directive-based programming o OpenACC sets of directives o HMPP directives o Library integration issue • Toward a portable infrastructure for auto-tuning o Current auto-tuning directives in HMPP 3.0 o CodeletFinder for offline auto-tuning o Toward a standard auto-tuning interface CC 2012 www.caps-entreprise.com 4 Many-Core Architectures Heterogeneous Many-Cores • Many general purposes cores coupled with a massively parallel accelerator (HWA) Data/stream/vector CPU and HWA linked with a parallelism to be PCIx bus exploited by HWA e.g.
    [Show full text]
  • CAPS Openacc Compiler
    CAPS OpenACC Compiler HMPP Workbench 3.2 IDDN.FR.001.490007.000.S.P.2008.000.10600 This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization. Headquarters – France CAPS – USA CAPS – CHINA Immeuble CAP Nord 4701 Patrick Drive Bldg 12 Suite E2, 30/F 4A Allée Marie Berhaut Santa Clara JuneYao International Plaza 35000 Rennes CA 95054 789, Zhaojiabang Road, France Shanghai 200032 Tel.: +33 (0)2 22 51 16 00 Tel.: +1 408 550 2887 x70 Tel.: +86 21 3363 0057 Fax: +33 (0)2 23 20 16 43 Fax: +86 21 3363 0067 [email protected] [email protected] [email protected] N° d’agrément formation : 53 35 08397 35 Visit our website: http://www.caps-entreprise.com CAPS OpenACC Compiler SUMMARY 1. Introduction 5 1.1. Revisions history .................................................................................................................................... 5 1.2. Introduction ............................................................................................................................................ 6 1.3. What is HMPP Workbench? What is the CAPS OpenACC Compiler? ................................................. 6 1.4. Execution Model .................................................................................................................................... 8 1.5. Memory Model ....................................................................................................................................... 8 2. OpenACC Directives 9 2.1. kernels
    [Show full text]
  • Using CAPS Compiler on NVIDIA Kepler and CARMA Systems
    Using CAPS Compiler on NVIDIA Kepler and CARMA Systems F. Bodin CTO – CAPS entreprise Introduction • CAPS develops programming tools to help writing a unique source code that can be executed on existing accelerator technologies o C / C++ / Fortran • Fast moving hardware systems require two directives sets o OpenHMPP - easy to extend – integrate new HW features o OpenACC - standardized – longer term view but moving slowly • Generates CUDA or OpenCL codes o Portable on AMD GPU and APU, Intel MIC, Nvidia Kepler-Carma, … nvidia SC 2012 www.caps-entreprise.com 2 CAPS Technology • Provide OpenACC and OpenHMPP directives o OpenHMPP codelet based o OpenACC code region based #pragma hmpp myfunc codelet, … void saxpy(int n, float alpha, float x[n], float y[n]){ #pragma hmppcg gridify(i) for(int i = 0; i<n; ++i) y[i] = alpha*x[i] + y[i]; } #pragma acc kernels … { for(int i = 0; i<n; ++i) y[i] = alpha*x[i] + y[i]; } nvidia SC 2012 www.caps-entreprise.com 3 Compilation Process • Source-to-source technology C++ C Fortran Frontend Frontend Frontend Extraction module codelets Host Fun#1 Fun #2 code Fun #3 Instrumentation OpenCL/Cuda module Generation CPU compiler Native (gcc, ifort, …) compilers Executable CAPS HWA Code (mybin.exe) Runtime (Dyn. library) www.caps-entreprise.com nvidia SC 2012 4 A Few Typical Situations 1. Simple nested loops 6. Dealing with accelerated library 2. Data transfer optimization 7. Dealing with dynamic accelerated tasks scheduling 3. Complex loop nests 8. Using multiple accelerators 4. Code tuning 9. Nested parallelism using native 5. Integrating auto-tuning techniques nvidia SC 2012 www.caps-entreprise.com 5 Simple nested loops - 1 Host • The simple construct is to CPU declare a parallel loop to be code Accelerator compiled and executed on an accelerator send A,B,C o Iterations of the loop nests are converted into threads execute kern.
    [Show full text]
  • This Is the GPU Based ANUGA
    This is the GPU based ANUGA Documentation Documentation is under doc directory, and the html version generated by Sphinx under the directory doc/sphinx/build/html/ Install Guide 1. Original ANUGA is required 2. For CUDA version, PyCUDA is required 3. For OpenHMPP version, current implementation is based on the CAPS OpenHMPP Compiler When compiling the code with Makefile, the NVIDIA device architecture and compute capability need to be specified For example, GTX480 with 2.0 compute capability HMPP_FLAGS13 = -e --nvcc-options -Xptxas=-v,-arch=sm_20 -c --force For GTX680 with 3.0 compute capability HMPP_FLAGS13 = -e --nvcc-options -Xptxas=-v,-arch=sm_30 -c --force Also the path for python, numpy, and ANUGA/utilities packages need to be specified Defining the macro USING_MIRROR_DATA in hmpp_fun.h #define USING_MIRROR_DATA will enable the advanced version, which uses OpenHMPP Mirrored Data technology so that data transmission costs can be effectively cut down, otherwise basic version is enabled. Environment Vars Please add following vars to you .bashrc or .bash_profile file export ANUGA_CUDA=/where_the_anuga-cuda/src export $PYTHONPATH=$PYTHONPATH:$ANUGA_CUDA Basic Code Structure README Evolve workflow.pdf device_spe/ docs/ profiling/ CUDA/ source/ sphinx/ build/ html/ config.py anuga_cuda/ gpu_domain_advanced.py gpu_domain_basic.py Makefile anuga-cuda/ hmpp_domain.py hmpp_python_glue.c src/ anuga_HMPP/ sw_domain.h sw_domain_fun.h hmpp_fun.h evolve.c scripts/ utilities/ CUDA/ merimbula/ merimbula.py tests/ HMPP/ merimbula.py README (What you are
    [Show full text]
  • Educational Goals for Embedded Systems in the Multicore Era
    AC 2009-414: EDUCATIONAL GOALS FOR EMBEDDED SYSTEMS IN THE MULTICORE ERA James Holt, Freescale Semiconductor, Inc. Jim leads the Multicore Design Evaluation team for Freescale’s NMG/NSD division. Jim has 27 years of industry experience focused on distributed systems, microprocessor and SoC architecture, design verification, and optimization. Jim is an IEEE Senior Member, and is a board member for the Multicore Association. He is also chair of the Integrated Systems & Circuits Science area for the Semiconductor Research Corporation (SRC), and chair of the Multicore Resource API Working group for the Multicore Association. Jim earned a Ph.D. in Electrical and Computer Engineering from the University of Texas at Austin, and an MS in Computer Science from Texas State University. Hongchi Shi, Texas State University, San Marcos Hongchi Shi is Professor and Chair of the Computer Science Department at Texas State University-San Marcos. Prior to joining Texas State University, he has been an Assistant/Associate/Full Professor of Computer Science and Electrical and Computer Engineering at the University of Missouri. He obtained his BS degree and MS degree in Computer Science and Engineering from Beijing University of Aeronautics and Astronautics in 1983 and 1986, respectively. He obtained his PhD degree in Computer and Information Sciences from the University of Florida in 1994. Hongchi Shi's research interests include parallel and distributed computing, wireless sensor networks, neural networks, and image processing. He has served on many organizing and/or technical program committees of international conferences in his research areas. He is a member of ACM and a senior member of IEEE.
    [Show full text]
  • Performance Analysis and Tuning in Multicore Environments
    Computer Architecture and Operative Systems Department Master in High Performance Computing Performance Analysis and Tuning in Multicore Environments MSc research Project for the “Master in High Performance Computing” submitted by MARIO ADOLFO ZAVALA JIMENEZ, advised by Eduardo Galobardes. Dissertation done at Escola Tècnica Superior d’Enginyeria (Computer Architecture and Operative Systems Department). 2009 Abstract Performance analysis is the task of monitor the behavior of a program execution. The main goal is to find out the possible adjustments that might be done in order improve the performance. To be able to get that improvement it is necessary to find the different causes of overhead. Nowadays we are already in the multicore era, but there is a gap between the level of development of the two main divisions of multicore technology (hardware and software). When we talk about multicore we are also speaking of shared memory systems, on this master thesis we talk about the issues involved on the performance analysis and tuning of applications running specifically in a shared Memory system. We move one step ahead to take the performance analysis to another level by analyzing the applications structure and patterns. We also present some tools specifically addressed to the performance analysis of OpenMP multithread application. At the end we present the results of some experiments performed with a set of OpenMP scientific application. Keywords: Performance analysis, application patterns, Tuning, Multithread, OpenMP, Multicore. Resumen Análisis de rendimiento es el área de estudio encargada de monitorizar el comportamiento de la ejecución de programas informáticos. El principal objetivo es encontrar los posibles ajustes que serán necesarios para mejorar el rendimiento.
    [Show full text]