Cyprinodontiformes: Anablepidae) Related to Major South American Geological Events
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11. -
The Etyfish Project © Christopher Scharpf and Kenneth J
CYPRINODONTIFORMES (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 3.0 - 13 Nov. 2020 Order CYPRINODONTIFORMES (part 3 of 4) Suborder CYPRINODONTOIDEI Family PANTANODONTIDAE Spine Killifishes Pantanodon Myers 1955 pan(tos), all; ano-, without; odon, tooth, referring to lack of teeth in P. podoxys (=stuhlmanni) Pantanodon madagascariensis (Arnoult 1963) -ensis, suffix denoting place: Madagascar, where it is endemic [extinct due to habitat loss] Pantanodon stuhlmanni (Ahl 1924) in honor of Franz Ludwig Stuhlmann (1863-1928), German Colonial Service, who, with Emin Pascha, led the German East Africa Expedition (1889-1892), during which type was collected Family CYPRINODONTIDAE Pupfishes 10 genera · 112 species/subspecies Subfamily Cubanichthyinae Island Pupfishes Cubanichthys Hubbs 1926 Cuba, where genus was thought to be endemic until generic placement of C. pengelleyi; ichthys, fish Cubanichthys cubensis (Eigenmann 1903) -ensis, suffix denoting place: Cuba, where it is endemic (including mainland and Isla de la Juventud, or Isle of Pines) Cubanichthys pengelleyi (Fowler 1939) in honor of Jamaican physician and medical officer Charles Edward Pengelley (1888-1966), who “obtained” type specimens and “sent interesting details of his experience with them as aquarium fishes” Yssolebias Huber 2012 yssos, javelin, referring to elongate and narrow dorsal and anal fins with sharp borders; lebias, Greek name for a kind of small fish, first applied to killifishes (“Les Lebias”) by Cuvier (1816) and now a -
From the Western Mosquitofish, Gambusia Affinis (Cyprinodontiformes: Poeciliidae): New Distributional Records for Arkansas, Kansas and Oklahoma
42 Salsuginus seculus (Monogenoidea: Dactylogyrida: Ancyrocephalidae) from the Western Mosquitofish, Gambusia affinis (Cyprinodontiformes: Poeciliidae): New distributional records for Arkansas, Kansas and Oklahoma Chris T. McAllister Science and Mathematics Division, Eastern Oklahoma State College, Idabel, OK 74745 Donald G. Cloutman P. O. Box 197, Burdett, KS 67523 Henry W. Robison Department of Biology, Southern Arkansas University, Magnolia, AR 71754 Studies on fish monogeneans in Oklahoma and S. fundulus (Mizelle) Murith and Beverley- are relatively uncommon (Seamster 1937, 1938, Burton in Northern Studfish,Fundulus catenatus 1960; Mizelle 1938; Monaco and Mizelle 1955; (McAllister et al. 2015, 2016). In Kansas, a McDaniel 1963; McDaniel and Bailey 1966; single species, S. thalkeni Janovy, Ruhnke, and Wheeler and Beverley-Burton 1989) with little Wheeler (syn. S. fundulus) has been reported or no published work in the past two decades from Northern Plains Killifish,Fundulus kansae or more. Members of the ancyrocephalid (see Janovy et al. 1989). Here, we report genus Salsuginus (Beverley-Burton) Murith new distributional records for a species of and Beverley-Burton have been reported Salsuginus in Arkansas, Kansas and Oklahoma. from various fundulid fishes including those from Alabama, Arkansas, Illinois, Kentucky, During June 1983 (Kansas only) and again Nebraska, New York, Tennessee, and Texas, between April 2014 and September 2015, and Newfoundland and Ontario, Canada, 36 Western Mosquitofish, Gambusia affinis and the Bahama Islands; additionally, two were collected by dipnet, seine (3.7 m, 1.6 species have been reported from the Western mm mesh) or backpack electrofisher from Big Mosquitofish, Gambusia affinis (Poeciliidae) Spring at Spring Mill, Independence County, from California, Louisiana, and Texas, and Arkansas (n = 4; 35.828152°N, 91.724273°W), the Bahama Islands (see Hoffman 1999). -
Fish Larvae, Development, Allometric Growth, and the Aquatic Environment
II. Developmental and environmental interactions ICES mar. Sei. Symp., 201: 21-34. 1995 Fish larvae, development, allometric growth, and the aquatic environment J. W. M. Osse and J. G. M. van den Boogaart Osse, J. W. M., and van den Boogaart, J. G. M. 1995. Fish larvae, development, allometric growth, and the aquatic environment. - ICES mar. Sei. Symp., 201: 21-34. During metamorphosis, fish larvae undergo rapid changes in external appearance and dimensions of body parts. The juveniles closely resemble the adult form. The focus of the present paper is the comparison of stages of development of fishes belonging within different taxa in a search for general patterns. The hypothesis that these patterns reflect the priorities of vital functions, e.g., feeding, locomotion, and respiration, is tested taking into account the size-dependent influences of the aquatic environment on the larvae. A review of some literature on ailometries of fish larvae is given and related to the rapidly changing balance between inertial and viscous forces in relation to body length and swimming velocity. New data on the swimming of larval and juvenile carp are presented. It is concluded that the patterns of development and growth shows in many cases a close parallel with the successive functional requirements. J. W. M. Osse and J. G. M. van den Boogaart: Wageningen Agricultural University, Department of Experimental Animal Morphology and Cell Biology, Marijkeweg 40, 6709 PG Wageningen, The Netherlands [tel: (+31) (0)317 483509, fax: (+31) (0)317 483962], Introduction Fish larvae, being so small, must have problems using their limited resources for maintenance, activity, obtain Fish larvae are the smallest free-living vertebrates. -
Options for Selectively Controlling Non-Indigenous Fish in the Upper Colorado River Basin
Options for Selectively Controlling Non-Indigenous Fish in the Upper Colorado River Basin Draft Report June 1995 Leo D. Lentsch Native Fish and Herptile Coordinator Utah Division of Wildlife Resources Robert Muth Larval Fish Lab Colorado State University Paul D. Thompson Native Fish Biologist Utah Division of Wildlife Resources Dr. Todd A. Crowl Utah State University and Brian G. Hoskins Native Fish Technician Utah Division of Wildlife Resources Utah Division of Wildlife Resources Colorado River Fishery Project Salt Lake City, Utah TABLE OP CONTENTS PAGE ABSTRACT .......................... INTRODUCTION ...................... Non-Indigenous Problems ..... Objectives ................... Control Options ............. Mechanical Control ..... Chemical Control ....... Biological Control ..... Physicochemical Control METHODS .......................................................... Literature Review .......................................... Species Accounts ........................................... RESULTS .......................................................... Species Accounts ........................................... Clupeidae-Herrings ................................... Threadfin Shad .................................. Cyprinidae-Carps and Minnows ........................ Red Shiner ...................................... Common Carp ..................................... Utah Chub ........................................ Leathers ide Chub ................................ Brassy Minnow ................................... Plains Minnow -
Intertidal Migration of the Four-Eyed Fish Anableps Anableps in North Brazilian Mangrove Creeks
Vol. 509: 271–287, 2014 MARINE ECOLOGY PROGRESS SERIES Published August 27 doi: 10.3354/meps10863 Mar Ecol Prog Ser Intertidal migration of the four-eyed fish Anableps anableps in North Brazilian mangrove creeks Uwe Krumme1,2,*, Marianna Audfroid Calderón1, Andreas Echterhoff1 1Leibniz Center for Tropical Marine Ecology (ZMT), Fahrenheitstr. 6, 28359 Bremen, Germany 2Thünen Institute of Baltic Sea Fisheries (TI-OF), Alter Hafen Süd 2, 18069 Rostock, Germany ABSTRACT: The movement patterns of mangrove fish during tidal cycles are virtually unknown, yet needed to understand fish habitat use. The intertidal migration of the four-eyed fish Anableps anableps L. (Anablepidae, Cyprinodontiformes), a surface-swimming species, was observed along 2 large mangrove-lined creeks in North Brazil. The number, direction and size of the fish crossing fixed line transects were recorded at 5 min intervals using visual surveys during daylight at spring, mid- and neap tide cycles. Migration took place in a surge and was predictably structured and directly related to water level, current speed and direction, and recurred independent of creek and tide. The fish rode the early flood tide upstream towards the creek heads. After the ebb current peak, they returned in a surge along the same pathways. The intertidal distances travelled ranged from 0.7 to >2 km per tide. Fish density maxima occurred at early flood and late ebb tide, with more fish swimming alone during flood tide and largest group sizes during ebb tides. At neap high tides, fish aggregated in fewer accessible creek heads. When spring tides inundated wider creek areas and made additional creek heads available, maximum fish dispersal occurred. -
Phylogeographic Pattern of Jenynsia Multidentata (Cyprinodontiformes: Anablepidae) in the Southern Boundary of the Brazilian Subregion, Argentina
Neotropical Ichthyology, 11(3):477-486, 2013 Copyright © 2013 Sociedade Brasileira de Ictiologia Phylogeographic pattern of Jenynsia multidentata (Cyprinodontiformes: Anablepidae) in the southern boundary of the Brazilian Subregion, Argentina María Cecilia Bruno1, Jorge Rafael Casciotta2,3, Adriana Edith Almirón2 and Marta Susana Lizarralde1 The Atlantic drainage basins are located in the southern Pampean area, in the southernmost part of the Brazilian subregion. Tectonic and paleoclimatic phenomena, occurring during the Quaternary, have currently isolated these basins from the present hydrographic system. Their ichthyofaunal composition is similar to that of hydric systems located further northward. Jenynsia multidentata is a species with wide distribution in the Atlantic drainage basins, as well as in those Northern basins. Here we investigated the phylogeographic pattern of Jenynsia multidentata and analyzed its relationships with the paleoclimatic and geologic history of the region. The analysis of the population’s assemblage showed moderate genetic diversity, demo- graphic equilibrium and marked genetic structure in the populations that occupy the extremes of the distributional range. The populations in the center of the range did not present genetic diversity, sharing a single haplotype. These results allow inferring that the presence of Jenynsia multidentata in the area results from historical demographic processes that are independent but complementary. In turn, these processes could arise from paleoclimatic changes occurred during the Quater- nary. Las cuencas de pendiente atlántica del área pampeana Austral son el límite meridional de la subregión Brasílica. Fenómenos tectónicos y paleoclimáticos ocurridos durante el Cuaternario han dejado aisladas a estas cuencas del diseño hidrográfico actual. La composición íctica de estás cuencas es similar a la de los sistemas hídricos ubicados más al norte. -
Life History Patterns and Biogeography: An
LIFE HISTORY PATTERNS AND Lynne R. Parenti2 BIOGEOGRAPHY: AN INTERPRETATION OF DIADROMY IN FISHES1 ABSTRACT Diadromy, broadly defined here as the regular movement between freshwater and marine habitats at some time during their lives, characterizes numerous fish and invertebrate taxa. Explanations for the evolution of diadromy have focused on ecological requirements of individual taxa, rarely reflecting a comparative, phylogenetic component. When incorporated into phylogenetic studies, center of origin hypotheses have been used to infer dispersal routes. The occurrence and distribution of diadromy throughout fish (aquatic non-tetrapod vertebrate) phylogeny are used here to interpret the evolution of this life history pattern and demonstrate the relationship between life history and ecology in cladistic biogeography. Cladistic biogeography has been mischaracterized as rejecting ecology. On the contrary, cladistic biogeography has been explicit in interpreting ecology or life history patterns within the broader framework of phylogenetic patterns. Today, in inferred ancient life history patterns, such as diadromy, we see remnants of previously broader distribution patterns, such as antitropicality or bipolarity, that spanned both marine and freshwater habitats. Biogeographic regions that span ocean basins and incorporate ocean margins better explain the relationship among diadromy, its evolution, and its distribution than do biogeographic regions centered on continents. Key words: Antitropical distributions, biogeography, diadromy, eels, -
Courtship and Mating of Nomorhamphus Liemi Vogt, 1978 (Zenarchopteridae)
Bulletin of Fish Biology Volume 9 Nos. 1/2 15.12.2007 27-38 Courtship and mating of Nomorhamphus liemi Vogt, 1978 (Zenarchopteridae) Balz und Kopulation von Nomorhamphus liemi Vogt, 1978 (Zenarchopteridae) Thomas Magyar & Hartmut Greven Institut für Zoomorphologie und Zellbiologie der Heinrich-Heine-Universität Düsseldorf, Universitäts- str. 1, D-40225 Düsseldorf, Germany; [email protected] Summary: Courtship and mating of the males of the viviparous halfbeak Nomorhamphus liemi includes various elements such as watching the female, approach, swimming towards the female, nipping, checking, copulatory events, emerging, retreat and escape) and of females such as resting, cooperative behaviour (if any), evasion, retreat, threatening, biting. Males courted virgins (presumably receptive) and gravid (presumably unreceptive) females. Starting copulations or copulation attempts, the male swims alongside the female, rapidly bends his body and flicks his genital region towards the female urogenital aperture. Distinction between cooperative copulations, sneak copulations and copulation attempts is nearly impossible due to the rapidity of the process. However, some indirect evidence is given by the receptivity state of the female (non-receptive, but also otherwise reluctant females may attack males) and her cooperative behaviour. Presumably receptive females did not escape and occasionally appeared to tilt their genital opening towards the male’s genital. We were not able to visualize the immediate physical contact of mates with the technique -
Ictiofauna Da Lagoa Rodrigo De Freitas, Estado Do Rio De Janeiro: Composição E Aspectos Ecológicos
Oecologia Australis 16(3): 467-500, Setembro 2012 http://dx.doi.org/10.4257/oeco.2012.1603.10 ICTIOFAUNA DA LAGOA RODRIGO DE FREITAS, ESTADO DO RIO DE JANEIRO: COMPOSIÇÃO E ASPECTOS ECOLÓGICOS José V. Andreata1 1 Universidade Santa Úrsula, Instituto de Ciências Biológicas e Ambientais, Laboratório de Ictiologia. Rua Fernando Ferrari, no: 75, Botafogo, Rio de Janeiro, RJ, Brasil. CEP: 22231-040. E-mail: [email protected] RESUMO No presente trabalho, foram realizadas coletas mensais de peixes, no período de março de 1991 a dezembro de 1996, em cinco áreas na Lagoa Rodrigo de Freitas. Foram utilizados quatro instrumentos de captura com o mesmo esforço para cada área. Do total de 59 espécies capturadas, 51 são de origem marinha e as demais de água doce. É apresentada uma caracterização sucinta de todas as famílias que ocorrem na lagoa, com a descrição das espécies mais abundantes de cada família, enquanto que, para as demais, foram citadas apenas as diferenças entre elas. As oito espécies mais representativas foram: Atherinella brasiliensis, Mugil liza, Brevoortia aurea, Brevoortia pectinata, Jenynsia multidentata, Poecilia vivipara, Geophagus brasiliensis e Genidens genidens, as quais perfizeram 94,97 % do total capturado. O arrasto-de-praia foi o instrumento mais eficaz para todas as áreas. Uma discussão sobre o comportamento das espécies e as prováveis causas da mortandade dos peixes na lagoa também é apresentada. Palavras-chave: ictiofauna; ecologia; Lagoa Rodrigo de Freitas. ABSTRACT ICHTHYOFAUNA OF THE LAGOA RODRIGO DE FREITAS, RIO DE JANEIRO STATE: COMPOSITION AND ECOLOGICAL ASPECTS. In the present work, five sites in the Lagoa Rodrigo de Freitas were sampled monthly, between March 1991 and December 1996. -
Fundulus Diaphanus) Ecological Risk Screening Summary
Banded Killifish (Fundulus diaphanus) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, December 2016 Revised, November 2017 Web version, 8/16/2018 Photo: hjnugent(iNaturalist). Licensed under Creative Commons BY-NC 4.0. Available: http://eol.org/data_objects/33497673. (November 1, 2017). 1 Native Range and Status in the United States Native Range From Fuller and Neilson (2016): “Atlantic Slope drainages from Newfoundland to Pee Dee River, South Carolina; St. Lawrence- Great Lakes and Mississippi River basins from Quebec to Manitoba, and south to southern Pennsylvania, northern Illinois, and northeastern Nebraska. Two subspecies with intergrades in 1 St. Lawrence and Lake Erie drainages: F[undulus]. d[iaphanus]. diaphanus on the Atlantic Slope, F. d. menona in the rest of the range (Page and Burr 1991).” From NatureServe (2013): “Range includes Atlantic Slope drainages from the Peedee River, South Carolina, north to the Maritime Provinces and Newfoundland; St. Lawrence-Great Lakes and Mississippi River basins from Quebec to Manitoba, south to southern Pennsylvania, northern Illinois, and northeastern Nebraska (Page and Burr 2011).” Status in the United States The native range of this species is within the United States (Fuller and Neilson 2016). From Fuller and Neilson (2016): “The species is established in Silvio O. Conte National Fish and Wildlife Refuge, Franklin County, Massachussetts [sic] (USFWS 2005). The eastern subspecies F. d. diaphanus was introduced into Lake Erie, the Little Miami drainage, and several areas in the upper Ohio River basin in Ohio, and into the Ohio and Beaver River drainages (Raney 1938, cited in Trautman 1981), the Monongahela drainage (Hocutt et al.