Spectroscopic Analysis of Exoplanet Atmospheres Ground-Based High-Resolution Atmospheric Characterization of Hot Jupiters Using Near Infrared Spectroscopy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i, -
Arxiv:1501.00633V1 [Astro-Ph.EP] 4 Jan 2015 Teria (Han Et Al
Draft version September 24, 2018 Preprint typeset using LATEX style emulateapj v. 5/2/11 THE CALIFORNIA PLANET SURVEY IV: A PLANET ORBITING THE GIANT STAR HD 145934 AND UPDATES TO SEVEN SYSTEMS WITH LONG-PERIOD PLANETS * Y. Katherina Feng1,4, Jason T. Wright1, Benjamin Nelson1, Sharon X. Wang1, Eric B. Ford1, Geoffrey W. Marcy2, Howard Isaacson2, and Andrew W. Howard3 (Received 2014 August 11; Accepted 2014 November 26) Draft version September 24, 2018 ABSTRACT We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters for these planets, four of which are known multi- planet systems. HD 24040 b and HD 183263 c are super-Jupiters with circular orbits and periods longer than 8 yr. We present a previously unseen linear trend in the residuals of HD 66428 indicative on an additional planetary companion. We confirm that GJ 849 is a multi-planet system and find a good orbital solution for the c component: it is a 1MJup planet in a 15 yr orbit (the longest known for a planet orbiting an M dwarf). We update the HD 74156 double-planet system. We also announce the detection of HD 145934 b, a 2MJup planet in a 7.5 yr orbit around a giant star. Two of our stars, HD 187123 and HD 217107, at present host the only known examples of systems comprising a hot Jupiter and a planet with a well constrained period > 5 yr, and with no evidence of giant planets in between. -
Mètodes De Detecció I Anàlisi D'exoplanetes
MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits -
Prospects for Near-Infrared Characterisation of Hot Jupiters With
Prospects for near-infrared characterisation of hot Jupiters with the VLTI Spectro-Imager (VSI) S. Renarda, O. Absila, J.-P. Bergera, X. Bonfilsb, T. Forveillea, F. Malbeta aLaboratoire d’Astrophysique de l’Observatoire de Grenoble (LAOG), France; bObservatorio Astronomico de Lisboa, Lisboa, Portugal ABSTRACT In this paper, we study the feasibility of obtaining near-infrared spectra of bright extrasolar planets with the 2nd generation VLTI Spectro-Imager instrument (VSI), which has the required angular resolution to resolve nearby hot Extrasolar Giant Planets (EGPs) from their host stars. Taking into account fundamental noises, we simulate closure phase measurements of several extrasolar systems using four 8-m telescopes at the VLT and a low spectral resolution (R = 100). Synthetic planetary spectra from T. Barman are used as an input. Standard χ2-fitting methods are then used to reconstruct planetary spectra from the simulated data. These simulations show that low-resolution spectra in the H and K bands can be retrieved with a good fidelity for half a dozen targets in a reasonable observing time (about 10 hours, spread over a few nights). Such observations would strongly constrain the planetary temperature and albedo, the energy redistribution mechanisms, as well as the chemical composition of their atmospheres. Systematic errors, not included in our simulations, could be a serious limitation to these performance estimations. The use of integrated optics is however expected to provide the required instrumental stability (around 10−4 on the closure phase) to enable the first thorough characterisation of extrasolar planetary emission spectra in the near-infrared. Keywords: hot EGPs - Interferometry - VSI 1. -
Estimation of the XUV Radiation Onto Close Planets and Their Evaporation⋆
A&A 532, A6 (2011) Astronomy DOI: 10.1051/0004-6361/201116594 & c ESO 2011 Astrophysics Estimation of the XUV radiation onto close planets and their evaporation J. Sanz-Forcada1, G. Micela2,I.Ribas3,A.M.T.Pollock4, C. Eiroa5, A. Velasco1,6,E.Solano1,6, and D. García-Álvarez7,8 1 Departamento de Astrofísica, Centro de Astrobiología (CSIC-INTA), ESAC Campus, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain e-mail: [email protected] 2 INAF – Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento, 1, 90134, Palermo, Italy 3 Institut de Ciènces de l’Espai (CSIC-IEEC), Campus UAB, Fac. de Ciències, Torre C5-parell-2a planta, 08193 Bellaterra, Spain 4 XMM-Newton SOC, European Space Agency, ESAC, Apartado 78, 28691 Villanueva de la Cañada, Madrid, Spain 5 Dpto. de Física Teórica, C-XI, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain 6 Spanish Virtual Observatory, Centro de Astrobiología (CSIC-INTA), ESAC Campus, Madrid, Spain 7 Instituto de Astrofísica de Canarias, 38205 La Laguna, Spain 8 Grantecan CALP, 38712 Breña Baja, La Palma, Spain Received 27 January 2011 / Accepted 1 May 2011 ABSTRACT Context. The current distribution of planet mass vs. incident stellar X-ray flux supports the idea that photoevaporation of the atmo- sphere may take place in close-in planets. Integrated effects have to be accounted for. A proper calculation of the mass loss rate through photoevaporation requires the estimation of the total irradiation from the whole XUV (X-rays and extreme ultraviolet, EUV) range. Aims. The purpose of this paper is to extend the analysis of the photoevaporation in planetary atmospheres from the accessible X-rays to the mostly unobserved EUV range by using the coronal models of stars to calculate the EUV contribution to the stellar spectra. -
Osiris, Planeta Gaseoso... Y Migrante; Se Acerca Cada Vez Más a Su Estrella
INFO GRA CIENCIA FÍA 19 razon.com.mx LUNES 12.04.2021 • La Razón CADA AÑO LLEGAN A LA TIERRA 5 MIL TONELADAS DE POLVO ESPACIAL. Expertos del Centro Nacional para la Investigación Científica de Francia estudiaron partículas cósmicas durante 20 años y determinaron que la mayor fuente de material CIENCIA extraterrestre en la Tierra forma parte de la lluvia cósmica que proviene de cometas que transitan por la órbita de nuestro planeta. SE FORMÓ MÁS LEJOS DE SU SOL DE LO QUE SE ENCUENTRA AHORA UBICACIÓN El planeta gaseoso se encuentra en la constelación Pegaso, el sistema IK Pegasi, se ubica a 154 años luz de distancia, siendo el Osiris, planeta gaseoso... y migrante; candidato a supernova más cercano a la Tierra. se acerca cada vez más a su estrella Pegaso Gráficos Roberto Alvarado y Luisa Ortega UN EQUIPO DE ASTRÓNOMOS INTERNACIONALES liderado por la Universidad de Warwick, de Inglaterra, y pu- blicado en la revista Nature descubrió que el planeta gaseoso Osiris o HD209458b se formó a mayor distancia de su estrella de lo que se encuentra actualmente, a sólo 7 millones de kilómetros, lo que equivale a un veinteavo de la dis- tancia de la Tierra al Sol; el hallazgo fue posible gracias a que los científicos descubrieron abundantes moléculas de car- bono durante su formación, lo que sólo es posible si orbitaba mucho más lejos de su estrella durante su nacimiento, apro- ximadamente a una distancia como la de Júpiter o Saturno en nuestro sistema solar; en el mismo estudio los expertos consiguieron medir por primera vez en la historia hasta seis moléculas de la atmósfera de un exoplaneta para determinar su Planeta Osiris composición y es la primera vez que los astrónomos las usan para señalar con exactitud donde se forman estos planetas gigan- tes; para realizar estos descubrimientos los investigadores utilizaron el Telescopio Nazionale Galileo para obtener espectros de alta resolución de la atmósfera del exoplaneta cuando pasaba frente a su estrella anfitriona en cuatro ocasiones distintas. -
Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C. -
Astronomy Magazine 2011 Index Subject Index
Astronomy Magazine 2011 Index Subject Index A AAVSO (American Association of Variable Star Observers), 6:18, 44–47, 7:58, 10:11 Abell 35 (Sharpless 2-313) (planetary nebula), 10:70 Abell 85 (supernova remnant), 8:70 Abell 1656 (Coma galaxy cluster), 11:56 Abell 1689 (galaxy cluster), 3:23 Abell 2218 (galaxy cluster), 11:68 Abell 2744 (Pandora's Cluster) (galaxy cluster), 10:20 Abell catalog planetary nebulae, 6:50–53 Acheron Fossae (feature on Mars), 11:36 Adirondack Astronomy Retreat, 5:16 Adobe Photoshop software, 6:64 AKATSUKI orbiter, 4:19 AL (Astronomical League), 7:17, 8:50–51 albedo, 8:12 Alexhelios (moon of 216 Kleopatra), 6:18 Altair (star), 9:15 amateur astronomy change in construction of portable telescopes, 1:70–73 discovery of asteroids, 12:56–60 ten tips for, 1:68–69 American Association of Variable Star Observers (AAVSO), 6:18, 44–47, 7:58, 10:11 American Astronomical Society decadal survey recommendations, 7:16 Lancelot M. Berkeley-New York Community Trust Prize for Meritorious Work in Astronomy, 3:19 Andromeda Galaxy (M31) image of, 11:26 stellar disks, 6:19 Antarctica, astronomical research in, 10:44–48 Antennae galaxies (NGC 4038 and NGC 4039), 11:32, 56 antimatter, 8:24–29 Antu Telescope, 11:37 APM 08279+5255 (quasar), 11:18 arcminutes, 10:51 arcseconds, 10:51 Arp 147 (galaxy pair), 6:19 Arp 188 (Tadpole Galaxy), 11:30 Arp 273 (galaxy pair), 11:65 Arp 299 (NGC 3690) (galaxy pair), 10:55–57 ARTEMIS spacecraft, 11:17 asteroid belt, origin of, 8:55 asteroids See also names of specific asteroids amateur discovery of, 12:62–63 -
Macrocosmo Nº33
HA MAIS DE DOIS ANOS DIFUNDINDO A ASTRONOMIA EM LÍNGUA PORTUGUESA K Y . v HE iniacroCOsmo.com SN 1808-0731 Ano III - Edição n° 33 - Agosto de 2006 * t i •■•'• bSÈlÈWW-'^Sif J fé . ’ ' w s » ws» ■ ' v> í- < • , -N V Í ’\ * ' "fc i 1 7 í l ! - 4 'T\ i V ■ }'- ■t i' ' % r ! ■ 7 ji; ■ 'Í t, ■ ,T $ -f . 3 j i A 'A ! : 1 l 4/ í o dia que o ceu explodiu! t \ Constelação de Andrômeda - Parte II Desnudando a princesa acorrentada £ Dicas Digitais: Softwares e afins, ATM, cursos online e publicações eletrônicas revista macroCOSMO .com Ano III - Edição n° 33 - Agosto de I2006 Editorial Além da órbita de Marte está o cinturão de asteróides, uma região povoada com Redação o material que restou da formação do Sistema Solar. Longe de serem chamados como simples pedras espaciais, os asteróides são objetos rochosos e/ou metálicos, [email protected] sem atmosfera, que estão em órbita do Sol, mas são pequenos demais para serem considerados como planetas. Até agora já foram descobertos mais de 70 Diretor Editor Chefe mil asteróides, a maior parte situados no cinturão de asteróides entre as órbitas Hemerson Brandão de Marte e Júpiter. [email protected] Além desse cinturão podemos encontrar pequenos grupos de asteróides isolados chamados de Troianos que compartilham a mesma órbita de Júpiter. Existem Editora Científica também aqueles que possuem órbitas livres, como é o caso de Hidalgo, Apolo e Walkiria Schulz Ícaro. [email protected] Quando um desses asteróides cruza a nossa órbita temos as crateras de impacto. A maior cratera visível de nosso planeta é a Meteor Crater, com cerca de 1 km de Diagramadores diâmetro e 600 metros de profundidade. -
TRUE MASSES of RADIAL-VELOCITY EXOPLANETS Robert A
APP Template V1.01 Article id: apj513330 Typesetter: MPS Date received by MPS: 19/05/2015 PE: CE : LE: UNCORRECTED PROOF The Astrophysical Journal, 00:000000 (28pp), 2015 Month Day © 2015. The American Astronomical Society. All rights reserved. TRUE MASSES OF RADIAL-VELOCITY EXOPLANETS Robert A. Brown Space Telescope Science Institute, USA; [email protected] Received 2015 January 12; accepted 2015 April 14; published 2015 MM DD ABSTRACT We study the task of estimating the true masses of known radial-velocity (RV) exoplanets by means of direct astrometry on coronagraphic images to measure the apparent separation between exoplanet and host star. Initially, we assume perfect knowledge of the RV orbital parameters and that all errors are due to photon statistics. We construct design reference missions for four missions currently under study at NASA: EXO-S and WFIRST-S, with external star shades for starlight suppression, EXO-C and WFIRST-C, with internal coronagraphs. These DRMs reveal extreme scheduling constraints due to the combination of solar and anti-solar pointing restrictions, photometric and obscurational completeness, image blurring due to orbital motion, and the “nodal effect,” which is the independence of apparent separation and inclination when the planet crosses the plane of the sky through the host star. Next, we address the issue of nonzero uncertainties in RV orbital parameters by investigating their impact on the observations of 21 single-planet systems. Except for two—GJ 676 A b and 16 Cyg B b, which are observable only by the star-shade missions—we find that current uncertainties in orbital parameters generally prevent accurate, unbiased estimation of true planetary mass. -
Download Full Text (Pdf)
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2052 Statistical Methods in Quantitative Spectroscopy of Solar-Type Stars ALVIN GAVEL ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-1237-8 UPPSALA URN urn:nbn:se:uu:diva-446479 2021 Dissertation presented at Uppsala University to be publicly examined on Zoom, Friday, 10 September 2021 at 13:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Dr. Coryn Bailer-Jones (Max Planck Institute for Astronomy). Online defence: https://uu-se.zoom.us/my/alvinzoomroom Abstract Gavel, A. 2021. Statistical Methods in Quantitative Spectroscopy of Solar-Type Stars. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2052. 115 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1237-8. Galactic archaeology is the research field that attempts to reconstruct the history of the Milky Way, using primarily the tools of astrometric studies and chemical studies. The latter in turn uses stellar spectroscopy. Thanks to technological advances, the field of stellar spectroscopy now has access to much larger amounts of observational data than it used to. At the same time, also thanks to technological advances, the field able to use increasingly more sophisticated modelling. This opens up for the possibility of attacking research problems in Galactic archaeology that were previously intractable. However, it also creates a problem: Access to greater amounts of data means that the random errors in studies will tend to shrink, while the systematic errors tend to stay of the same size.